1 Introduction and main results

Differential equations and variational problems with double phase operator are a new and interesting topic. It arises from the nonlinear elasticity theory, strongly anisotropic materials, Lavrentiev’s phenomenon, and so on (see [25]). The study on double-phase problems attracts more and more interest in recent years, and many results have been obtained [1, 610]. More precisely, the research is related to the energy functional

$$ u\mapsto \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p}+a(x) \vert \nabla u \vert ^{q}\bigr)\,dx, $$
(1)

where the integrand switches between two different elliptic behaviors. In [5], energies of the form (1) are used in the context of homogenization and elasticity, and the function a drives the geometry of a composite of two different materials with hardening powers p and q.

In this paper, we are concerned with the existence of sign-changing solutions of the double-phase problem

figure a

where Ω is a smooth bounded domain in \(\mathbb{R}^{N}\), \(N\geq 2\), \(1< p< q< N\), and

$$ \begin{aligned} \frac{q}{p}< 1+ \frac{1}{N},\qquad a:\overline{\varOmega }\mapsto [0,+\infty ) \quad \text{is Lipschitz continuous}, \end{aligned} $$
(2)

and \(f:\varOmega \times \mathbb{R}\mapsto \mathbb{R}\) is a Carathéodory function satisfying the following assumptions:

\((h_{1})\):

\(f(x,t)=o(|t|^{p-2}t)\) as \(t\rightarrow 0\) uniformly in \(x\in \varOmega \);

\((h_{2})\):

there exist \(q< r< p^{*}\) and some positive constant C such that

$$ \bigl\vert f(x,t) \bigr\vert \leq C\bigl(1 + \vert t \vert ^{r-1}\bigr), $$

where \(p^{*} = \frac{Np}{N-p}\) is the critical exponent.

\((h_{3})\):

\(\lim_{|t|\rightarrow +\infty } \frac{F(x,t)}{|t|^{q}} = +\infty \) uniformly in \(x\in \varOmega \), where \(F(x,t)=\int _{0}^{t}f(x,s)\,ds\);

\((h_{4})\):

the function \(t\mapsto \frac{f(x,t)}{|t|^{q-1}}\) is nondecreasing on \((-\infty ,0)\cup (0,+\infty )\) for a.e. \(x\in \varOmega \).

The solution of (P) is understand in the weak sense, that is, \(u\in W_{0}^{1,H}(\varOmega )\) is a solution of (P) if

$$\begin{aligned}& \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p-2} \nabla u\cdot \nabla v+a(x) \vert \nabla u \vert ^{q-2} \nabla u \cdot \nabla v\bigr)\,dx \\& \quad = \int _{\varOmega }f(x,u)v\,dx,\quad \forall v \in W_{0}^{1,H}(\varOmega ), \end{aligned}$$

where \(W_{0}^{1,H}(\varOmega )\) will be defined in Sect. 2.

Note that energy functional φ associated with (P) is defined by

$$ \varphi (u)= \int _{\varOmega }\biggl(\frac{1}{p} \vert \nabla u \vert ^{p}+\frac{a(x)}{q} \vert \nabla u \vert ^{q}\biggr)\,dx- \int _{\varOmega }F(x,u)\,dx. $$

It is a well-known consequence of \((h_{1})\) and \((h_{2})\) that \(\varphi \in C^{1}(W_{0}^{1,H}(\varOmega ),\mathbb{R})\) and the critical points of φ are weak solutions of (P). Furthermore, if \(u\in W_{0}^{1,H}(\varOmega )\) is a solution of (P) and \(u^{\pm } \neq 0\), then u is a sign-changing solution of (P), where

$$ u^{+}(x):=\max \bigl\{ u(x),0\bigr\} \quad \text{and}\quad u^{-}(x):=\min \bigl\{ u(x),0\bigr\} . $$

To facilitate the narrative, we set

$$\begin{aligned}& \mathbb{M}_{0}:=\bigl\{ u\in W_{0}^{1,H}( \varOmega ): u^{\pm }\neq 0, \bigl\langle \varphi '(u),u^{+} \bigr\rangle =\bigl\langle \varphi '(u),u^{-}\bigr\rangle =0\bigr\} , \\& \mathbb{N}_{0}:=\bigl\{ u\in W_{0}^{1,H}( \varOmega ): u\neq 0, \bigl\langle \varphi '(u),u\bigr\rangle =0 \bigr\} , \end{aligned}$$

and put

$$ m_{0}:=\inf_{u\in \mathbb{M}_{0}}\varphi (u),\qquad n_{0}:=\inf_{u\in \mathbb{N}_{0}}\varphi (u). $$

Let us recall some previous results that led us to the present research. The first result is due to Perera and Squassina [6], who considered the following form of (P) with the q-superlinear nonlinearity:

figure b

Applying the Morse theory, they proved that (\(P_{1}\)) has a nontrivial solution by assuming that either

\((T_{1})\):

\(\lambda \notin \{\lambda _{k}\}_{k=1}^{\infty }\); or

\((T_{2})\):

for some \(\delta >0\), \(\frac{|t|^{r}}{r}+H(x,t)\leq 0\) for a.e. \(x\in \varOmega \) and \(|t|\leq \delta \); or

\((T_{3})\):

\(\frac{|t|^{r}}{r}+H(x,t)\geq c|t|^{s}\) for a.e. \(x\in \varOmega \) and all \(t\in \mathbb{R}\) for some \(s\in (p,q)\) and \(c>0\).

Recently, Liu and Dai [1] investigated the sign-changing ground state solution of (P) under \((h_{1})\), \((h_{2})\), \((h_{3})\), and

\((h_{4})'\):

the function \(t\mapsto \frac{f(x,t)}{|t|^{q-1}}\) is strictly increasing on \((-\infty ,0)\cup (0,+\infty )\).

Additionally, Liu and Dai [9] also obtained the existence of at least three ground state solutions of (P) by using the strong maximum principle for the homogeneous double-phase problem.

It is a well-known consequence of \((h_{4})'\) that there is unique \(t_{u}>0\) such that \(t_{u} u\in \mathbb{N}_{0}\) for every \(u\in W_{0} ^{1,H}(\varOmega )\setminus \{0\}\), which implies that φ has at most one minimizer on \(\mathbb{M}_{0}\). Moreover, \((h_{4})'\) plays a crucial role in [1]. In fact, condition \((h_{4})'\) implies that every minimizer of φ on \(\mathbb{M}_{0}\) is a critical point. However, if \(t\mapsto \frac{f(x,t)}{|t|^{q-1}}\) is nonstrictly increasing, then \(t_{u}\) and minimizer of φ on \(\mathbb{M} _{0}\) may not be unique, and their arguments become invalid.

Motivated by the aforementioned works, in the present paper, our goal is to generalize the results mentioned to (P) under a weaker assumption. Precisely, we obtain following results.

Theorem 1.1

Assume that\((h_{1})\)\((h_{4})\)hold. Then problem (P) has a sign-changing solution\(u_{0}\in \mathbb{M}_{0}\)such that

$$ \varphi (u_{0})=\inf_{u\in \mathbb{M}_{0}}\varphi (u). $$

Furthermore, suppose that

$$ \begin{aligned} \frac{1}{q}f(x,t)t-F(x,t)>0, \quad \forall x\in \varOmega , t\neq 0, \end{aligned} $$
(3)

then\(u_{0}\)has precisely two nodal domains.

Theorem 1.2

Assume that\((h_{1})\)\((h_{4})\)hold. Then\(m_{0}\geq 2n_{0}\).

The rest of this paper is organized as follows. In Sect. 2, we present some necessary preliminary knowledge on space \(W_{0}^{1,H}(\varOmega )\). In Sect. 3, we give some preliminary lemmas needed for the proofs of our main results. We complete the proofs of Theorems 1.11.2 in Sect. 4.

2 Preliminaries

To discuss problem (P), we need some facts on the space \(W_{0}^{1,H}( \varOmega )\), which is called the Musielak–Orlicz–Sobolev space. For this reason, we recall some properties involving the Musielak–Orlicz spaces, which can be found in [1014] and references therein.

Denote by \(N(\varOmega )\) the set of all generalized N-functions. For \(1 < p < q\) and \(0\leq a(\cdot )\in L^{1}(\varOmega )\), we define

$$ H(x,t)=t^{p}+a(x)t^{q}, \quad (x,t)\in \varOmega \times [0,+\infty ). $$

It is clear that \(H\in N(\varOmega )\) is locally integrable and

$$ H(x,2t)\leq 2^{q} H(x,t), \quad (x,t)\in \varOmega \times [0,+\infty ), $$

which is called condition \((\triangle _{2})\).

The Musielak–Orlicz space \(L^{H}(\varOmega )\) is defined by

$$ L^{H}(\varOmega )= \biggl\{ u:\varOmega \rightarrow \mathbb{R} \text{ measurable } : \int _{\varOmega }H\bigl(x, \vert u \vert \bigr)\,dx< +\infty \biggr\} , $$

endowed with the Luxemburg norm

$$ \vert u \vert _{H}=\mathrm{inf} \biggl\{ \lambda >0: \int _{\varOmega }H\biggl(x, \biggl\vert \frac{u}{ \lambda } \biggr\vert \biggr)\,dx\leq 1 \biggr\} . $$

The Musielak–Orlicz–Sobolev space \(W^{1, H}(\varOmega )\) is defined by

$$ W^{1, H}(\varOmega )=\bigl\{ u\in L^{H}(\varOmega ): \vert \nabla u \vert \in L^{H}(\varOmega ) \bigr\} $$

and is equipped with the norm

$$ \begin{aligned} \Vert u \Vert = \vert u \vert _{H}+ \vert \nabla u \vert _{H}. \end{aligned} $$
(4)

We denote by \(W_{0}^{1,H}(\varOmega )\) the completion of \(C_{0}^{\infty }(\varOmega )\) in \(W^{1,H}(\varOmega )\). With these norms, the spaces \(L^{H}(\varOmega )\), \(W_{0}^{1,H}(\varOmega )\) and \(W^{1,H}(\varOmega )\) are separable reflexive Banach spaces; see [10] for the details.

Proposition 2.1

([1, Proposition 2.1])

Set\(\rho _{H}(u)=\int _{ \varOmega }(|u|^{p}+a(x)|u|^{q})\,dx\). For\(u\in L^{H}(\varOmega )\), we have:

  1. (i)

    For\(u\neq 0\), \(|u|_{H}=\lambda \Leftrightarrow \rho _{H}(\frac{u}{ \lambda })=1\);

  2. (ii)

    \(|u|_{H}<1(=1; >1)\Leftrightarrow \rho _{H}(u)<1(=1; >1)\);

  3. (iii)

    If\(|u|_{H}\geq 1\), then\(|u|^{p}_{H}\leq \rho _{H}(u)\leq |u|^{q} _{H}\);

  4. (iv)

    If\(|u|_{H}\leq 1\), then\(|u|^{q}_{H}\leq \rho _{H}(u)\leq |u|^{p} _{H}\).

Proposition 2.2

([11, Propositions 2.15 and 2.18])

  1. (1)

    If\(1\leq \vartheta \leq p^{*}\), then the embedding from\(W_{0}^{1,H}(\varOmega )\)to\(L^{\vartheta }(\varOmega )\)is continuous. In particular, if\(\vartheta \in [1,p^{*})\), then the embedding\(W_{0}^{1,H}(\varOmega )\hookrightarrow L^{\vartheta }(\varOmega )\)is compact.

  2. (2)

    Assume that (2) holds. Then the Poincaré’s inequality holds, that is, there exists a positive constant\(C_{0}\)such that

    $$ \vert u \vert _{H}\leq C_{0} \vert \nabla u \vert _{H},\quad u\in W_{0}^{1, H}(\varOmega ). $$

By this lemma there exists \(c_{\vartheta }> 0\) such that

$$ \vert u \vert _{\vartheta }\leq c_{\vartheta } \Vert u \Vert , \quad \forall u\in W_{0}^{H}( \varOmega ), $$

where \(|u|_{s}\) denotes the usual norm in \(L^{\vartheta }(\varOmega )\) for \(1\leq \vartheta < p^{*}\). It follows from (2) of Proposition 2.2 that \(|\nabla u|_{H}\) is an equivalent norm in \(W_{0}^{1, H}(\varOmega )\). We will use the equivalent norm in the following discussion and write \(\|u\|=|\nabla u|_{H}\) for simplicity.

To discuss problem (P), we need to define a functional in \(W_{0}^{1,H}(\varOmega )\):

$$ \begin{aligned} J(u)= \int _{\varOmega }\biggl(\frac{1}{p} \vert \nabla u \vert ^{p}+\frac{a(x)}{q} \vert \nabla u \vert ^{q}\biggr)\,dx. \end{aligned} $$

We know that (see [15, p. 63, example]) \(J\in C^{1}(W_{0}^{1,H}( \varOmega ),\mathbb{R})\) and the double-phase operator \(-\operatorname{div}(| \nabla u|^{p-2}\nabla u+a(x)|\nabla u|^{q-2}\nabla u)\) is the derivative operator of J in the weak sense. We denote \(L=J': W_{0}^{1,H}( \varOmega )\rightarrow (W_{0}^{1,H}(\varOmega ))^{*}\). Then

$$ \begin{aligned} \bigl\langle L(u), v\bigr\rangle = \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p-2} \nabla u\cdot \nabla v+a(x) \vert \nabla u \vert ^{q-2}\nabla u\cdot \nabla v\bigr)\,dx \end{aligned} $$

for all \(u, v\in W_{0}^{1,H}(\varOmega )\). Here \((W_{0}^{1,H}(\varOmega ))^{*}\) denotes the dual space of \(W_{0}^{1,H}( \varOmega )\), and \(\langle \cdot , \cdot \rangle \) denotes the pairing between \(W_{0}^{1,H}(\varOmega )\) and \((W_{0}^{1,H}(\varOmega ))^{*}\). Then we have the following:

Proposition 2.3

([1, Proposition 3.1])

Let\(E= W^{1,H}_{0}(\varOmega )\), and letLbe as before. Then

  1. (1)

    \(L: E\rightarrow E^{*}\)a continuous, bounded, and strictly monotone operator.

  2. (2)

    \(L: E\rightarrow E^{*}\)is a mapping of type\((S)_{+}\), that is, if\(u_{n}\rightharpoonup u\)inEand\(\limsup_{n\rightarrow +\infty }\langle L(u_{n})-L(u), u_{n}-u\rangle \leq 0\), then\(u_{n}\rightarrow u\)inE.

  3. (3)

    \(L: E\rightarrow E^{*}\)is a homeomorphism.

3 Some preliminary lemmas

In this section, we give some preliminary lemmas crucial for proving our results.

Lemma 3.1

If assumptions\((h_{1})\)\((h_{4})\)hold, then

$$ \begin{aligned}[b] \varphi (u)\geq{} &\varphi \bigl(su^{+}+tu^{-}\bigr)+\frac{1-s^{q}}{q}\bigl\langle \varphi '(u),u^{+}\bigr\rangle + \frac{1-t^{q}}{q}\bigl\langle \varphi '(u),u ^{-} \bigr\rangle \\ &{}+ \int _{\varOmega }g(s) \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx+ \int _{\varOmega }g(t) \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx, \\ &{}\forall u=u^{+}+u^{-}\in E, s,t\geq 0, \end{aligned} $$
(5)

where\(g(\tau )=\frac{1-\tau ^{p}}{p}-\frac{1-\tau ^{q}}{q}\), \(\tau \geq 0\).

Proof

By condition \((h_{4})\) we have

$$ \begin{aligned}[b] &\frac{1-t^{q}}{q}\tau f(x, \tau )+F(x,t\tau )-F(x,\tau ) \\ &\quad = \int _{t} ^{1} f(x,\tau )s^{q-1}\tau \,ds- \int _{t}^{1} f(x,\tau s)\tau \,ds \\ &\quad = \int _{t}^{1} \biggl[\frac{f(x,\tau )}{ \vert \tau \vert ^{q-1}}- \frac{f(x,\tau s)}{ \vert \tau s \vert ^{q-1}} \biggr]s^{q-1} \vert \tau \vert ^{q-1}\tau \,ds \\ &\quad \geq 0,\quad t\geq 0, \tau \in \mathbb{R}\setminus \{0\}. \end{aligned} $$
(6)

Clearly, \(g(t)\geq g(1)=0\) for any \(t\geq 0\). Hence from (6) it follows that

$$\begin{aligned}& \varphi (u)-\varphi \bigl(su^{+}+tu^{-} \bigr) \\& \quad = \int _{\varOmega }\biggl(\frac{1}{p} \bigl\vert \nabla u^{+} \bigr\vert ^{p}+\frac{a(x)}{q} \bigl\vert \nabla u^{+} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,u ^{+}\bigr)\,dx \\& \qquad {}+ \int _{\varOmega }\biggl(\frac{1}{p} \bigl\vert \nabla u^{-} \bigr\vert ^{p}+ \frac{a(x)}{q} \bigl\vert \nabla u^{-} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,u^{-}\bigr)\,dx \\& \qquad {}- \int _{\varOmega }\biggl(\frac{s^{p}}{p} \bigl\vert \nabla u^{+} \bigr\vert ^{p}+\frac{a(x)s^{q}}{q} \bigl\vert \nabla u^{+} \bigr\vert ^{q}\biggr)\,dx+ \int _{\varOmega }F\bigl(x,su^{+}\bigr)\,dx \\& \qquad {}- \int _{\varOmega }\biggl(\frac{t ^{p}}{p} \bigl\vert \nabla u^{-} \bigr\vert ^{p}+\frac{a(x)t^{q}}{q} \bigl\vert \nabla u^{-} \bigr\vert ^{q}\biggr)\,dx+ \int _{\varOmega }F\bigl(x,tu^{-}\bigr)\,dx \\& \qquad {}-\frac{1-s^{q}}{q}\bigl\langle \varphi '(u),u ^{+}\bigr\rangle -\frac{1-t^{q}}{q}\bigl\langle \varphi '(u),u^{-}\bigr\rangle \\& \qquad {}+\frac{1-s ^{q}}{q}\bigl\langle \varphi '(u),u^{+} \bigr\rangle +\frac{1-t^{q}}{q}\bigl\langle \varphi '(u),u^{-} \bigr\rangle \\& \quad = \int _{\varOmega }g(s) \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx+ \int _{\varOmega }g(t) \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx \\& \qquad {}+\frac{1-s^{q}}{q}\bigl\langle \varphi '(u),u^{+} \bigr\rangle +\frac{1-t^{q}}{q}\bigl\langle \varphi '(u),u ^{-}\bigr\rangle \\& \qquad {}+ \int _{\varOmega } \biggl[\frac{1-s^{q}}{q}f\bigl(x,u^{+} \bigr)u^{+}+F\bigl(x,su ^{+}\bigr)-F \bigl(x,u^{+}\bigr) \biggr]\,dx \\& \qquad {}+ \int _{\varOmega } \biggl[\frac{1-t^{q}}{q}f\bigl(x,u ^{-}\bigr)u^{-}+F\bigl(x,tu^{-}\bigr)-F \bigl(x,u^{-}\bigr) \biggr]\,dx \\& \quad \geq \frac{1-s^{q}}{q} \bigl\langle \varphi '(u),u^{+} \bigr\rangle +\frac{1-t^{q}}{q}\bigl\langle \varphi '(u),u ^{-}\bigr\rangle \\& \qquad {}+ \int _{\varOmega }g(s) \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx+ \int _{\varOmega }g(t) \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx. \end{aligned}$$

The proof is completed. □

From Lemma 3.1 we immediately have the following two corollaries.

Corollary 3.2

Assume that\((h_{1})\)\((h_{4})\)hold. If\(u=u^{+}+u^{-}\in \mathbb{M}_{0}\), then

$$\begin{aligned}& \varphi (u)=\varphi \bigl(u^{+}+u^{-} \bigr)=\max_{s,t\geq 0}\varphi \bigl(su ^{+}+tu^{-} \bigr). \end{aligned}$$

Corollary 3.3

Assume that\((h_{1})\)\((h_{4})\)hold. If\(u\in \mathbb{N}_{0}\), then

$$\begin{aligned}& \varphi (u)=\max_{t\geq 0}\varphi (tu). \end{aligned}$$

Lemma 3.4

Assume that\((h_{1})\)\((h_{3})\)and\((h_{4})'\)hold. If\(u\in E\)and\(u^{\pm }\neq 0\), then there exists a unique pair\((s_{u}, t_{u})\)of positive numbers such that

$$ s_{u} u^{+}+t_{u} u^{-}\in \mathbb{M}_{0}. $$

Proof

For any \(u\in E\) with \(u^{\pm }\neq 0\), we consider the functions \(g(s,t), h(s,t): [0,+\infty )\times [0,+\infty )\rightarrow \mathbb{R}\) given by

$$ g(s,t)=\bigl\langle \varphi '\bigl(su^{+}+tu^{-} \bigr),su^{+}\bigr\rangle \quad \text{and}\quad h(s,t)=\bigl\langle \varphi '\bigl(su^{+}+tu^{-} \bigr),tu^{-}\bigr\rangle . $$

We directly compute that

$$ \begin{aligned} g(s,t)={} &\bigl\langle \varphi '\bigl(su^{+}+tu^{-} \bigr),su^{+}\bigr\rangle \\ ={}& \int _{ \varOmega }\bigl(s^{p} \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x)s^{q} \bigl\vert \nabla u^{+} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,su^{+}\bigr)su^{+} \,dx, \\ h(s,t)={}&\bigl\langle \varphi '\bigl(su^{+}+tu ^{-}\bigr),tu^{-}\bigr\rangle \\ ={}& \int _{\varOmega }\bigl(t^{p} \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x)t ^{q} \bigl\vert \nabla u^{-} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,tu^{-}\bigr)tu^{-} \,dx. \end{aligned} $$
(7)

Using assumptions \((h_{1})\) and \((h_{2})\), we deduce that, for any \(\varepsilon >0\), there is \(C_{\varepsilon }>0\) such that, for all \((x,t)\in \varOmega \times \mathbb{R}\),

$$ \begin{aligned} & \bigl\vert f(x,t) \bigr\vert \leq \varepsilon \vert t \vert ^{p-1}+C_{\varepsilon } \vert t \vert ^{r-1}, \\ & \bigl\vert F(x,t) \bigr\vert \leq \varepsilon \vert t \vert ^{p}+C_{\varepsilon } \vert t \vert ^{r}, \end{aligned} $$
(8)

where \(r\in [1,p^{*})\) was given in \((h_{2})\).

Thus, for \(s>0\) sufficiently small, by (8) and Proposition 2.2(2) we have

$$ \begin{aligned}[b] g(s,t)={} & \int _{\varOmega }\bigl(s^{p} \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x)s^{q} \bigl\vert \nabla u ^{+} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,su^{+}\bigr)su^{+} \,dx \\ \geq {}&s^{q} \int _{ \varOmega }\bigl( \bigl\vert \nabla u^{+} \bigr\vert ^{p}+ a(x) \bigl\vert \nabla u^{+} \bigr\vert ^{q}\bigr)\,dx \\ &- \int _{ \varOmega } \bigl(\varepsilon s^{p} \bigl\vert u^{+} \bigr\vert ^{p}+C_{\varepsilon }s^{r} \bigl\vert u^{+} \bigr\vert ^{r}\bigr)\,dx \\ \geq {}& \textstyle\begin{cases} s^{q} \Vert u^{+} \Vert ^{q}-\varepsilon c_{p}^{p}s^{p} \Vert u^{+} \Vert ^{p} - C_{ \varepsilon }c_{r}^{r}s^{r} \Vert u^{+} \Vert ^{r}&\text{if } \Vert u^{+} \Vert < 1, \\ s^{q} \Vert u^{+} \Vert ^{p}-\varepsilon c_{p}^{p}s^{p} \Vert u^{+} \Vert ^{p} - C _{\varepsilon }c_{r}^{r}s^{r} \Vert u^{+} \Vert ^{r}&\text{if } \Vert u^{+} \Vert >1, \end{cases}\displaystyle \end{aligned} $$
(9)

and

$$\begin{aligned} h(s,t) = & \int _{\varOmega }\bigl(t^{p} \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x)t^{q} \bigl\vert \nabla u ^{-} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,tu^{-}\bigr)tu^{-} \,dx \\ \geq &t^{q} \int _{ \varOmega }\bigl( \bigl\vert \nabla u^{-} \bigr\vert ^{p}+ a(x) \bigl\vert \nabla u^{-} \bigr\vert ^{q}\bigr)\,dx \\ &{}- \int _{ \varOmega } \bigl(\varepsilon t^{p} \bigl\vert u^{-} \bigr\vert ^{p}+C_{\varepsilon }t^{r} \bigl\vert u^{-} \bigr\vert ^{r}\bigr)\,dx \\ \geq & \textstyle\begin{cases} t^{q} \Vert u^{-} \Vert ^{q}-\varepsilon c_{p}^{p}t^{p} \Vert u^{-} \Vert ^{p} - C_{ \varepsilon }c_{r}^{r}t^{r} \Vert u^{-} \Vert ^{r}&\text{if } \Vert u^{-} \Vert < 1, \\ t^{q} \Vert u^{-} \Vert ^{p}-\varepsilon c_{p}^{p}t^{p} \Vert u^{-} \Vert ^{p} - C _{\varepsilon }c_{r}^{r}t^{r} \Vert u^{-} \Vert ^{r}&\text{if } \Vert u^{-} \Vert >1. \end{cases}\displaystyle \end{aligned}$$
(10)

By (9), (10), and the arbitrariness of ε, it is easy to prove that \(g(s,s)>0\) and \(h(s,s)>0\) for \(s>0\) small.

Moreover, using (6), we have

$$ \begin{aligned} \frac{1}{q}\tau f(x,\tau )-F(x,\tau )\geq 0,\quad \tau \in \mathbb{R} \setminus \{0\}. \end{aligned} $$
(11)

Hence by (11) and \((h_{3})\) we have that, for \(s>1\),

$$ \begin{aligned}[b] g(s,t)&= \int _{\varOmega }\bigl(s^{p} \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x)s^{q} \bigl\vert \nabla u ^{+} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,su^{+}\bigr)su^{+} \,dx \\ &\leq s^{q} \int _{ \varOmega }\bigl( \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{+} \bigr\vert ^{q}\bigr)\,dx-q \int _{\varOmega } F\bigl(x,su^{+}\bigr)\,dx \\ &=s^{q} \int _{\varOmega }\bigl( \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{+} \bigr\vert ^{q}\bigr)\,dx-q \int _{\varOmega } \frac{F(x,su^{+})}{ \vert su^{+} \vert ^{q}} \bigl\vert su ^{+} \bigr\vert ^{q}\,dx \\ &=s^{q} \biggl( \int _{\varOmega }\bigl( \bigl\vert \nabla u^{+} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{+} \bigr\vert ^{q}\bigr)\,dx-q \int _{u^{+}\neq 0} \frac{F(x,su^{+})}{ \vert su^{+} \vert ^{q}} \bigl\vert u^{+} \bigr\vert ^{q}\,dx \biggr) \end{aligned} $$
(12)

and, for \(t>1\),

$$ \begin{aligned}[b] g(s,t)={}& \int _{\varOmega }\bigl(t^{p} \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x)t^{q} \bigl\vert \nabla u ^{-} \bigr\vert ^{q}\bigr)\,dx- \int _{\varOmega }f\bigl(x,tu^{-}\bigr)tu^{-} \,dx \\ \leq {}&t^{q} \int _{ \varOmega }\bigl( \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{-} \bigr\vert ^{q}\bigr)\,dx-q \int _{\varOmega } F\bigl(x,tu^{+}\bigr)\,dx \\ ={}&t^{q} \int _{\varOmega }\bigl( \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{-} \bigr\vert ^{q}\bigr)\,dx-q \int _{\varOmega } \frac{F(x,tu^{-})}{ \vert tu^{-} \vert ^{q}} \bigl\vert tu ^{-} \bigr\vert ^{q}\,dx \\ ={}&t^{q} \biggl( \int _{\varOmega }\bigl( \bigl\vert \nabla u^{-} \bigr\vert ^{p}+a(x) \bigl\vert \nabla u^{-} \bigr\vert ^{q}\bigr)\,dx-q \int _{u^{-}\neq 0} \frac{F(x,tu^{+})}{ \vert tu^{-} \vert ^{q}} \bigl\vert u^{-} \bigr\vert ^{q}\,dx \biggr), \end{aligned} $$
(13)

which yields that \(g(t,t)<0\) and \(h(t,t)<0\) for \(t>0\) large. Thus there are \(0< T< R\) such that

$$ \begin{aligned} g(T,T), h(T,T)>0 \quad \text{and}\quad g(R,R), h(R,R)< 0. \end{aligned} $$
(14)

This fact, combined with (7), implies that

$$ g(T,t)=g(T,T)>0,\qquad g(R,t)=g(R,R)< 0,\quad t\in [r,R], $$

and

$$ h(T,t)=h(T,T)>0,\qquad h(R,t)=h(R,R)< 0, \quad t\in [r,R]. $$

So, by the Miranda theorem in [16] we can find \((s_{u},t_{u}) \in (T,R)\times (T,R)\) such that \(g(s_{u},t_{u})=h(s_{u},t_{u})=0\). Therefore \(s_{u} u^{+}+t_{u} u^{-}\in \mathbb{M}_{0}\).

Next, we prove the uniqueness. Let \((s_{i}, t_{i})\) be such that \(s_{i} u^{+}+t_{i} u^{-}\in \mathbb{M}_{0}\), \(i=1,2\), that is,

$$ \begin{aligned} g(s_{1},t_{1})=h(s_{1},t_{1})=g(s_{2},t_{2})=h(s_{2},t_{2})=0. \end{aligned} $$
(15)

Then from (5), (7), and (15) it follows that

$$ \begin{aligned}[b] \varphi \bigl(s_{1}u^{+}+t_{1}u^{-} \bigr)\geq{} &\frac{s_{1}^{q}-s_{2}^{q}}{qs _{1}^{q}}\bigl\langle \varphi ' \bigl(s_{1}u^{+}+t_{1}u^{-} \bigr),s_{1}u^{+}\bigr\rangle \\ &{} +\frac{t_{1}^{q}-t_{2}^{q}}{qt_{1}^{q}}\bigl\langle \varphi ' \bigl(s_{1}u ^{+}+t_{1}u^{-} \bigr),t_{1}u^{-}\bigr\rangle \\ &+\varphi \bigl(s_{2}u^{+}+t_{2}u^{-} \bigr) \\ &{}+ \biggl(\frac{s_{1}^{p}-s_{2}^{p}}{p}-\frac{s_{1}^{q}-s_{2}^{q}}{qs _{1}^{q}}s_{1}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx \\ &{}+ \biggl(\frac{t _{1}^{p}-t_{2}^{p}}{p}-\frac{t_{1}^{q}-t_{2}^{q}}{qt_{1}^{q}}t_{1} ^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx \\ ={}&\varphi \bigl(s_{2}u^{+}+t _{2}u^{-} \bigr) \\ &{}+ \biggl(\frac{s_{1}^{p}-s_{2}^{p}}{p}-\frac{s_{1}^{q}-s _{2}^{q}}{qs_{1}^{q}}s_{1}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx \\ &{}+ \biggl(\frac{t_{1}^{p}-t_{2}^{p}}{p}-\frac{t_{1}^{q}-t_{2}^{q}}{qt _{1}^{q}}t_{1}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx \end{aligned} $$
(16)

and

$$ \begin{aligned}[b] \varphi \bigl(s_{2}u^{+}+t_{2}u^{-} \bigr)\geq{} &\frac{s_{2}^{q}-s_{1}^{q}}{qs _{2}^{q}}\bigl\langle \varphi ' \bigl(s_{2}u^{+}+t_{2}u^{-} \bigr),s_{2}u^{+}\bigr\rangle \\ &{} +\frac{t_{2}^{q}-t_{1}^{q}}{qt_{2}^{q}}\bigl\langle \varphi ' \bigl(s_{2}u ^{+}+t_{2}u^{-} \bigr),t_{2}u^{-}\bigr\rangle \\ &{}+\varphi \bigl(s_{1}u^{+}+t_{1}u ^{-}\bigr) \\ &{}+ \biggl(\frac{s_{2}^{p}-s_{1}^{p}}{p}-\frac{s_{2}^{q}-s_{1} ^{q}}{qs_{2}^{q}}s_{2}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{+} \bigr\vert ^{p}\,dx \\ &{}+ \biggl(\frac{t_{2}^{p}-t_{1}^{p}}{p}-\frac{t_{2}^{q}-t_{1}^{q}}{qt_{2} ^{q}}t_{2}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx \\ ={}&\varphi \bigl(s _{1}u^{+}+t_{1}u^{-} \bigr) \\ &{}+ \biggl(\frac{s_{2}^{p}-s_{1}^{p}}{p}-\frac{s _{2}^{q}-s_{1}^{q}}{qs_{2}^{q}}s_{2}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u ^{+} \bigr\vert ^{p}\,dx \\ &{}+ \biggl(\frac{t_{2}^{p}-t_{1}^{p}}{p}-\frac{t_{2}^{q}-t _{1}^{q}}{qt_{2}^{q}}t_{2}^{p} \biggr) \int _{\varOmega } \bigl\vert \nabla u^{-} \bigr\vert ^{p}\,dx. \end{aligned} $$
(17)

Both (16) and (17) imply that \(s_{1}=s_{2}\) and \(t_{1}=t_{2}\), which in turn implies that \((s_{u},t_{u})\) is the unique pair of positive numbers such that \(s_{u} u^{+}+t_{u} u^{-}\in \mathbb{M}_{0}\). We end the proof. □

Furthermore we have the following:

Lemma 3.5

Assume that\((h_{1})\)\((h_{3})\)and\((h_{4})'\)hold. Then

$$ m_{0}=\inf_{u\in \mathbb{M}_{0}}\varphi (u)=\inf _{u\in E,u^{\pm }\neq 0}\max_{s,t\geq 0}\varphi \bigl(su^{+}+tu ^{-}\bigr). $$

Proof

By Corollary 3.2 we conclude that

$$ \begin{aligned}[b] \inf_{u\in E,u^{\pm }\neq 0} \max_{s,t\geq 0}\varphi \bigl(su ^{+}+tu^{-} \bigr)\leq{} & \inf_{u\in \mathbb{M}_{0}}\max_{s,t\geq 0}\varphi \bigl(su^{+}+tu^{-}\bigr) \\ ={}&\inf_{u\in \mathbb{M}_{0}}\varphi (u)=m_{0}. \end{aligned} $$
(18)

Moreover, for any \(u\in E\) with \(u^{\pm }\neq 0\), from Lemma 3.4 we deduce that

$$ \max_{s,t\geq 0}\varphi \bigl(su^{+}+tu^{-} \bigr)\geq \varphi \bigl(s_{u}u ^{+}+t_{u}u^{-} \bigr)\geq \inf_{u\in \mathbb{M}_{0}}\varphi (u)=m _{0}, $$

which implies

$$ \begin{aligned} \inf_{u\in E,u^{\pm }\neq 0}\max _{s,t\geq 0}\varphi \bigl(su ^{+}+tu^{-} \bigr)\geq \inf_{u\in \mathbb{M}_{0}}\varphi (u)=m_{0}. \end{aligned} $$
(19)

Therefore the conclusion directly follows from (18) and (19). □

Lemma 3.6

Assume that\((h_{1})\)\((h_{3})\)and\((h_{4})'\)hold. Then\(m_{0}>0\)can be achieved.

Proof

Firstly, we will show that \(m_{0}>0\). Indeed, for every \(u\in \mathbb{M}_{0}\), we have \(u\in \mathbb{N}_{0}\) and \(\langle \varphi '(u),u\rangle =0\). Then by \((h_{1})\)\((h_{2})\) and Propositions 2.1 and 2.2 we get

$$\begin{aligned}& \begin{aligned} &\varepsilon c_{p}^{p} \Vert u \Vert ^{p}+C_{\varepsilon }c_{r}^{r} \Vert u \Vert ^{r} \\ &\quad \geq\varepsilon \vert u \vert _{p}^{p}+C_{\varepsilon } \vert u \vert _{r}^{r} \\ &\quad \geq \int _{\varOmega }f(x,u)u\,dx \\ &\quad = \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p}+a(x) \vert \nabla u \vert ^{q}\bigr)\,dx \\ &\quad \geq\textstyle\begin{cases} \Vert u \Vert ^{q}&\text{if } \Vert u \Vert < 1, \\ \Vert u \Vert ^{p}&\text{if } \Vert u \Vert >1. \end{cases}\displaystyle \end{aligned} \end{aligned}$$

Thus, for any \(u\in \mathbb{N}_{0}\) with \(\|u\|<1\), we have that

$$ \frac{1}{2} \Vert u \Vert ^{q}\leq C_{\varepsilon }c_{r}^{r} \Vert u \Vert ^{r}, $$

which implies that

$$ \Vert u \Vert \geq \biggl(\frac{1}{2C_{\varepsilon }c_{r}^{r}} \biggr)^{ \frac{1}{r-q}}=: \alpha _{0}. $$

Therefore we obtain that \(m_{0}=\inf_{u\in \mathbb{M}_{0}} \varphi (u)\geq \alpha _{0}>0\).

It remains to prove that \(u_{0}\in \mathbb{M}_{0}\) and \(\varphi (u _{0})=m_{0}\). Let \(\{u_{n}\}\subset \mathbb{M}_{0}\) be a sequence of functions such that \(\varphi (u_{n})\rightarrow m_{0}\) as \(n\rightarrow +\infty \). Firstly, we claim that \(\{u_{n}\}\) is bounded. Suppose, by contradiction, that \(\|u_{n}\|\rightarrow +\infty \) and let \(v_{n}=\frac{u_{n}}{\|u_{n}\|}\). Without loss of generality, we may assume that \(v_{n}\rightharpoonup v\) in E. By the Sobolev embedding theorem we have

$$ v_{n}\rightarrow v \quad \text{in } L^{\vartheta }( \varOmega ), 1\leq \vartheta < p^{*},\qquad v_{n} \rightarrow v \quad \text{a.e. on } \varOmega . $$

If \(v=0\), then \(v_{n}\rightarrow 0\) in \(L^{\vartheta }( \varOmega )\) for \(1\leq \vartheta < p^{*}\). Fix \(R>[q(m_{0}+1)]^{ \frac{1}{p}}(>1)\). By \((h_{1})\)\((h_{2})\) there exists \(C_{1}>0\) such that

$$ F(x,t)\leq \vert t \vert ^{p}+C_{1} \vert t \vert ^{r},\quad x\in \varOmega , t\in \mathbb{R}. $$

Then we have that

$$ \begin{aligned} \limsup_{n\rightarrow \infty } \int _{\varOmega }F(x,Rv_{n})\,dx \leq R^{p} \lim_{n\rightarrow \infty }\bigl( \vert v_{n} \vert _{p}^{p}+C_{1}R ^{r} \vert v_{n} \vert _{r}^{r}\bigr)=0. \end{aligned} $$
(20)

Let \(t_{n}=\frac{R}{\|u_{n}\|}\). Hence by (20) and Corollary 3.3 we get that

$$\begin{aligned}& \begin{aligned} m_{0}+o(1)={} &\varphi (u_{n}) \\ \geq{}& \varphi (t_{n}u_{n}) \\ ={}&\varphi (Rv_{n}) \\ ={}& \int _{\varOmega }\biggl(\frac{1}{p}R^{p} \vert \nabla v_{n} \vert ^{p}+\frac{a(x)}{q}R ^{q} \vert \nabla v_{n} \vert ^{q} \biggr)\,dx- \int _{\varOmega }F(x,Rv_{n})\,dx \\ \geq {}& \frac{1}{q}R^{p}- \int _{\varOmega }F(x,Rv_{n})\,dx \\ \geq {}&\frac{1}{q}R^{p}+o(1) \\ >{}&m_{0}+1+o(1), \end{aligned} \end{aligned}$$

which yields a contradiction. Thus \(v\neq 0\).

For \(x\in \{y\in \mathbb{R}^{N}: v(y)\neq 0\}\), it is clear that \(\lim_{n\rightarrow +\infty }|u_{n}(x)|=+\infty \). By hypotheses \((h_{1})\) and \((h_{2})\) we can find \(C_{2}\in \mathbb{R}\) such that

$$ \begin{aligned} F(x,t)\geq C_{2},\quad (x,t)\in \varOmega \times \mathbb{R}. \end{aligned} $$
(21)

Hence by using (21), \((h_{3})\), Proposition 2.1, and Fatou’s lemma we have

$$\begin{aligned} 0 = &\lim_{n\rightarrow +\infty }\frac{m+o(1)}{ \Vert u_{n} \Vert ^{q}}= \lim _{n\rightarrow +\infty }\frac{\varphi (u_{n})}{ \Vert u_{n} \Vert ^{q}} \\ \leq &\lim_{n\rightarrow +\infty } \biggl[\frac{1}{p} \frac{ \int _{\varOmega }( \vert \nabla u_{n} \vert ^{p}+a(x) \vert \nabla u_{n} \vert ^{q})\,dx}{ \Vert u_{n} \Vert ^{q}}- \int _{\varOmega }\frac{F(x,u_{n})}{ \Vert u_{n} \Vert ^{q}}\,dx \biggr] \\ \leq &\frac{1}{p}-\lim_{n\rightarrow +\infty } \int _{\varOmega }\frac{F(x,u _{n})}{ \Vert u_{n} \Vert ^{q}}\,dx \\ =&\frac{1}{p}-\lim_{n\rightarrow +\infty } \int _{\varOmega }\frac{F(x,u_{n})-C_{2}}{ \Vert u_{n} \Vert ^{q}}\,dx \\ \leq &\frac{1}{p}-\liminf_{n\rightarrow +\infty } \int _{\varOmega }\frac{F(x,u_{n})-C_{2}}{ \Vert u_{n} \Vert ^{q}}\,dx \\ =&\frac{1}{p}-\liminf_{n\rightarrow +\infty } \int _{\varOmega }\frac{F(x,u_{n})}{ \Vert u_{n} \Vert ^{q}}\,dx \\ \leq &\frac{1}{p}- \int _{\varOmega }\liminf_{n\rightarrow +\infty } \frac{F(x,u_{n}(x))}{ \vert u _{n}(x) \vert ^{q}} \bigl\vert v_{n}(x) \bigr\vert ^{q}\,dx \\ =&-\infty . \end{aligned}$$

This contradiction shows that \(\{u_{n}\}\) is bounded in E. Going if necessary to a subsequence, we can assume that \(u_{n}^{\pm }\rightharpoonup u_{0}^{\pm }\) in E. Then \(u_{n}^{\pm }\rightarrow u_{0}^{\pm }\) in \(L^{\vartheta }(\varOmega )\) for \(\vartheta \in [1,p^{*})\) and \(u_{n}\rightarrow u_{0}\) a.e. on Ω.

Our next goal is to prove that \(u_{0}\in \mathbb{M}_{0}\) and \(\varphi (u_{0})=m_{0}\). Firstly, we claim that \(\inf_{u\in \mathbb{N}_{0}}\varphi (u)>0\). Indeed, for every \(u\in \mathbb{N}_{0}\), we have \(\langle \varphi '(u),u\rangle =0\). Then by \((h_{1})\), \((h_{2})\), and Propositions 2.1 and 2.2 we get

$$\begin{aligned}& \varepsilon c_{p}^{p} \Vert u \Vert ^{p}+C_{\varepsilon }c_{r}^{r} \Vert u \Vert ^{r} \\& \quad \geq \varepsilon \vert u \vert _{p}^{p}+C_{\varepsilon } \vert u \vert _{r}^{r} \\& \quad \geq \int _{\varOmega }f(x,u)u\,dx \\& \quad = \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p}+a(x) \vert \nabla u \vert ^{q}\bigr)\,dx \\& \quad \geq \textstyle\begin{cases} \Vert u \Vert ^{q}&\text{if } \Vert u \Vert < 1, \\ \Vert u \Vert ^{p}&\text{if } \Vert u \Vert >1. \end{cases}\displaystyle \end{aligned}$$

Thus, for any \(u\in \mathbb{N}_{0}\) with \(\|u\|<1\), we have that

$$ \frac{1}{2} \Vert u \Vert ^{q}\leq C_{\varepsilon }c_{r}^{r} \Vert u \Vert ^{r}, $$

which implies that \(\|u\|\geq \alpha _{0}\). This implies that \(\inf_{u\in \mathbb{N}_{0}}\varphi (u)>0\). Note that \(\{u_{n}\}_{n\in N}\subset \mathbb{M}_{0}\). Then it is obvious that \(\{u_{n}^{\pm }\}_{n\in N}\subset \mathbb{N}_{0}\), that is,

$$ \begin{aligned} \int _{\varOmega }\bigl( \bigl\vert \nabla u_{n}^{\pm } \bigr\vert ^{p}+a(x) \bigl\vert \nabla u_{n}^{\pm } \bigr\vert ^{q}\bigr)\,dx= \int _{\varOmega }f\bigl(x,u_{n}^{\pm } \bigr)u_{n}^{\pm }\,dx \quad \text{and}\quad \bigl\Vert u_{n} ^{\pm } \bigr\Vert \geq \alpha _{0}. \end{aligned} $$

By \((h_{1})\) and \((h_{2})\), for any \(\varepsilon > 0\), there exists \(C_{\varepsilon }> 0\) such that

$$ \begin{aligned} \bigl\vert f(x,t) \bigr\vert \leq \varepsilon \vert t \vert ^{p-1}+C_{\varepsilon } \vert t \vert ^{r-1} \end{aligned} $$
(22)

for all \((x,t)\in \varOmega \times \mathbb{R}\), where \(r\in [1,p^{*})\) was given in \((h_{2})\). Thus

$$\begin{aligned}& \min \bigl\{ \alpha _{0}^{p}, \alpha _{0}^{q}\bigr\} \\& \quad \leq \min \bigl\{ \bigl\Vert u_{n}^{ \pm } \bigr\Vert ^{p}, \bigl\Vert u_{n}^{\pm } \bigr\Vert ^{q}\bigr\} \\& \quad \leq \int _{\varOmega }\bigl( \bigl\vert \nabla u _{n}^{\pm } \bigr\vert ^{p}+a(x) \bigl\vert \nabla u_{n}^{\pm } \bigr\vert ^{q}\bigr)\,dx \\& \quad = \int _{\varOmega }f\bigl(x,u _{n}^{\pm } \bigr)u_{n}^{\pm }\,dx \\& \quad \leq \varepsilon \int _{\varOmega } \bigl\vert u_{n} ^{\pm } \bigr\vert ^{p}\,dx+C_{\varepsilon } \int _{\varOmega } \bigl\vert u_{n}^{\pm } \bigr\vert ^{r}\,dx. \end{aligned}$$
(23)

Because of the boundedness of \(u_{n}\), there is \(C_{1}>0\) such that

$$\begin{aligned}& \min \bigl\{ \alpha _{0}^{p},\alpha _{0}^{q}\bigr\} \leq \varepsilon C_{1}+C_{ \varepsilon } \int _{\varOmega } \bigl\vert u_{n}^{\pm } \bigr\vert ^{r}\,dx. \end{aligned}$$

Choosing \(\varepsilon =\frac{\min \{\alpha _{0}^{p},\alpha _{0}^{q}\}}{2C _{1}}\), we get

$$\begin{aligned}& \int _{\varOmega } \bigl\vert u_{n}^{\pm } \bigr\vert ^{r}\,dx\geq \frac{\min \{\alpha _{0}^{p}, \alpha _{0}^{q}\}}{2C_{\varepsilon }}. \end{aligned}$$

By the compactness of the embedding \(E\hookrightarrow L^{r}(\varOmega )\) for \(p< q< r< p^{*}\) we get

$$\begin{aligned}& \int _{\varOmega } \bigl\vert u_{0}^{\pm } \bigr\vert ^{r}\,dx\geq \frac{\min \{\alpha _{0}^{p}, \alpha _{0}^{q}\}}{2C_{\varepsilon }}, \end{aligned}$$

which yields \(u_{0}^{\pm }\neq 0\). Moreover, note that \(u_{n}^{\pm } \rightarrow u_{0}^{\pm }\) in \(L^{\vartheta }(\varOmega )\), \(\vartheta \in [1,p^{*})\). By conditions \((h_{1})\) and \((h_{2})\), combined with the Hölder inequality and Lebesgue theorem, we have

$$ \begin{aligned} &\lim_{n\rightarrow +\infty } \int _{\varOmega }f\bigl(x,u_{n}^{\pm }\bigr)u _{n}^{\pm }\,dx= \int _{\varOmega }f\bigl(x,u_{0}^{\pm } \bigr)u_{0}^{\pm }\,dx, \\ & \lim_{n\rightarrow +\infty } \int _{\varOmega }F\bigl(x,u_{n}^{\pm }\bigr) \,dx= \int _{\varOmega }F\bigl(x,u_{0}^{\pm }\bigr) \,dx.\end{aligned} $$
(24)

Hence by the weak lower semicontinuity of the norm we conclude that

$$\begin{aligned} \bigl\langle \varphi '(u_{0}), u_{0}^{\pm }\bigr\rangle = & \int _{\varOmega }\bigl( \bigl\vert \nabla u_{0}^{\pm } \bigr\vert ^{p}+a(x) \bigl\vert \nabla u_{0}^{\pm } \bigr\vert ^{q}\bigr)\,dx- \int _{ \varOmega }f\bigl(x,u_{0}^{\pm } \bigr)u_{0}^{\pm }\,dx \\ \leq &\liminf_{n\rightarrow +\infty } \int _{\varOmega }\bigl( \bigl\vert \nabla u_{n}^{\pm } \bigr\vert ^{p}+a(x) \bigl\vert \nabla u_{n}^{\pm } \bigr\vert ^{q}\bigr)\,dx \\ &{}-\lim_{n\rightarrow +\infty } \int _{\varOmega }f\bigl(x,u_{n}^{\pm } \bigr)u_{n}^{\pm }\,dx \\ =&\liminf_{n\rightarrow +\infty }\bigl\langle \varphi '(u_{n}), u_{n}^{ \pm }\bigr\rangle =0, \end{aligned}$$
(25)

because \(u_{n}^{\pm }\in \mathbb{N}_{0}\). Thus by Lemma 3.4 there exist \(s_{0}, t_{0}>0\) such that \(s_{0}u_{0}^{+}+t_{0}u_{0}^{-} \in \mathbb{M}_{0}\). Consequently, from (24) and Lemma 3.1 we have

$$\begin{aligned} m_{0} = & \lim_{n\rightarrow +\infty } \biggl[\varphi (u_{n})- \frac{1}{q}\bigl\langle \varphi '(u_{n}), u_{n}\bigr\rangle \biggr] \\ =&\lim_{n\rightarrow +\infty } \int _{\varOmega } \biggl(\frac{1}{p}- \frac{1}{q} \biggr) \vert \nabla u_{n} \vert ^{p}\,dx+\lim_{n\rightarrow + \infty } \int _{\varOmega } \biggl[\frac{1}{q}f(x,u_{n})u_{n}-F(x,u_{n}) \biggr]\,dx \\ \geq &\liminf_{n\rightarrow +\infty } \int _{\varOmega } \biggl(\frac{1}{p}-\frac{1}{q} \biggr) \vert \nabla u_{n} \vert ^{p}\,dx+\lim _{n\rightarrow +\infty } \int _{\varOmega } \biggl[\frac{1}{q}f(x,u _{n})u_{n}-F(x,u_{n}) \biggr]\,dx \\ \geq & \int _{\varOmega } \biggl(\frac{1}{p}- \frac{1}{q} \biggr) \vert \nabla u_{0} \vert ^{p}\,dx+ \int _{\varOmega } \biggl[\frac{1}{q}f(x,u _{0})u_{0}-F(x,u_{0}) \biggr]\,dx \\ =&\varphi (u_{0})-\frac{1}{q}\bigl\langle \varphi '(u_{0}), u_{0}\bigr\rangle \\ \geq &\varphi \bigl(s_{0}u_{0}^{+}+t_{0}u _{0}^{-}\bigr)+\frac{1-s_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{+} \bigr\rangle +\frac{1-t_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{-} \bigr\rangle \\ &{}-\frac{1}{q}\bigl\langle \varphi '(u_{0}), u_{0}\bigr\rangle \\ =& \varphi \bigl(s_{0}u_{0}^{+}+t_{0}u_{0}^{-} \bigr)-\frac{s_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{+} \bigr\rangle -\frac{t_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{-} \bigr\rangle \\ \geq &m_{0}-\frac{s_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{+}\bigr\rangle -\frac{t_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{-} \bigr\rangle . \end{aligned}$$

This shows that

$$ \frac{s_{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{+} \bigr\rangle +\frac{t _{0}^{q}}{q}\bigl\langle \varphi '(u_{0}),u_{0}^{-} \bigr\rangle \geq 0. $$

From this and from (25) we conclude that

$$ \bigl\langle \varphi '(u_{0}),u_{0}^{\pm } \bigr\rangle =0 \quad \text{and}\quad \varphi (u_{0})=m_{0}. $$

 □

Similarly to the proof of [1, Theorem 1.4], we can prove the following lemma.

Lemma 3.7

Assume that\((h_{1})\)\((h_{3})\)and\((h_{4})'\)hold. If\(u_{0}\in \mathbb{M}_{0}\)and\(\varphi (u_{0})=m_{0}\), then\(u_{0}\)is a critical point ofφ.

Proof

It is clear that \(\langle \varphi '(u_{0}^{\pm }),u _{0}^{\pm }\rangle =0=\langle \varphi '(u_{0}),u_{0}^{\pm }\rangle \). It follows from assumption \((h_{4})'\) that, for \(0< s\neq 1\) and \(0< t\neq 1\),

$$\begin{aligned} \varphi \bigl(su_{0}^{+}+tu_{0}^{-} \bigr) = &\varphi \bigl(su_{0}^{+}\bigr)+\varphi \bigl(tu_{0} ^{-}\bigr) \\ < &\varphi \bigl(u_{0}^{+}\bigr)+\varphi \bigl(u_{0}^{-}\bigr) \\ =&\varphi (u_{0})= m_{0}. \end{aligned}$$
(26)

If \(\varphi '(u_{0})\neq 0\), then there exist \(\delta >0\) and \(\nu >0\) such that

$$ \Vert v-u_{0} \Vert \leq 3\delta \quad \Rightarrow \quad \bigl\Vert \varphi '(v) \bigr\Vert \geq \nu . $$

Let \(D=(\frac{1}{2},\frac{3}{2})\times (\frac{1}{2},\frac{3}{2})\) and \(g(s,t)=su_{0}^{+}+tu_{0}^{-}\). By (26) we have

$$ \begin{aligned} \beta =\max_{(s,t)\in \partial D} \varphi \bigl(g(s,t)\bigr)< m_{0}. \end{aligned} $$
(27)

Let \(\varepsilon :=\min \{\frac{m_{0}-\beta }{4},\frac{\lambda \delta }{8}\}\) and \(B(u,\delta ):=\{v\in E:\|v-u\|\leq \delta \}\). Then [17, Lemma 2.3] yields a deformation η such that

  1. (a)

    \(\eta (1,v)=v\) if \(\varphi (v)< m_{0}-2\varepsilon \) or \(\varphi (v)>m _{0}+2\varepsilon \),

  2. (b)

    \(\eta (1,\varphi ^{m_{0}+\varepsilon }\cap B(u,\delta ))\subset \varphi ^{m_{0}-\varepsilon }\), and

  3. (c)

    \(\varphi (\eta (1,v))\leq \varphi (v)\) for all \(v\in E\),

where \(\varphi ^{m_{0}\pm \varepsilon }:=\{v\in E: \varphi (v)\leq m _{0}\pm \varepsilon \}\).

It is easy to see that

$$ \max_{(s,t)\in D}\varphi \bigl(\eta \bigl(1,g(s,t)\bigr) \bigr)< m_{0}. $$

Next, we show that \(\eta (1,g(D))\cap \mathbb{M}_{0}\neq \emptyset \), contradicting the definition of \(m_{0}\). Let \(h(s,t)=\eta (1,g(s,t))\), \(\varphi _{0}(s,t)=\langle \varphi '(su_{0}^{+})u_{0}^{+}, \varphi '(su _{0}^{-})u_{0}^{-}\rangle \), and \(\varphi _{1}(s,t)=\langle \frac{1}{s}\varphi '(h^{+}(s,t)), \frac{1}{t}\varphi '(h^{-}(s,t)) \rangle \). Note that

$$\begin{aligned}& \bigl\langle \varphi '\bigl(tu_{0}^{\pm } \bigr), u_{0}^{\pm }\bigr\rangle >0 \quad \text{if } 0< t< 1, \\& \bigl\langle \varphi '\bigl(tu_{0}^{\pm } \bigr), u_{0}^{ \pm }\bigr\rangle < 0 \quad \text{if } t>1. \end{aligned}$$

Hence we have that \(\deg (\varphi _{0}, D, 0)=1\). On the other hand, using (27) and property (a) of η, we have that \(g=h\) on ∂D. Hence \(\varphi _{1}=\varphi _{0}\) on ∂D and \(\deg (\varphi _{1}, D, 0)=\deg (\varphi _{0}, D, 0)=1\). This show that \(\varphi _{1}(s,t)=0\) for some \((s,t)\in D\), and so \(\eta (1,g(s,t))=h(s,t) \in \mathbb{M}_{0}\). Therefore \(u_{0}\) is a critical point of φ. □

4 Sign-changing solutions

For any \(\lambda >0\), let \(f_{\lambda }(x,t)=f(x,t)+\lambda r|t|^{r-2}t\) and

$$ \varphi _{\lambda }(u)=\varphi (u)-\lambda \vert u \vert _{r}^{r},\quad u\in E. $$

Similarly, we define

$$\begin{aligned}& \mathbb{M}_{\lambda }:=\bigl\{ u\in E: u^{\pm }\neq 0, \bigl\langle \varphi _{\lambda }'(u),u^{+}\bigr\rangle =\bigl\langle \varphi _{\lambda }'(u),u ^{-}\bigr\rangle =0\bigr\} , \\& \mathbb{N}_{\lambda }:=\bigl\{ u\in E: u\neq 0, \bigl\langle \varphi _{\lambda }'(u),u \bigr\rangle =0\bigr\} , \end{aligned}$$

and

$$ m_{\lambda }:=\inf_{u\in \mathbb{M}_{\lambda }}\varphi _{\lambda }(u), \quad n_{\lambda }:=\inf_{u\in \mathbb{N}_{\lambda }} \varphi _{\lambda }(u). $$

Lemma 4.1

Assume that\((h_{1})\)\((h_{4})\)hold. Then there exists a constant\(\alpha >0\), which does not depend on\(\lambda \in (0,1]\), such that

$$ \varphi _{\lambda }(u)\geq \alpha ,\quad u\in \mathbb{N}_{\lambda }, \lambda \in (0,1]. $$

Proof

For any \(\varepsilon >0\), by \((h_{1})\), \((h_{2})\), and Propositions 2.1 and 2.2, for any \(\lambda \in (0,1]\) and \(u\in \mathbb{N}_{\lambda }\), we have

$$\begin{aligned}& \varepsilon c_{p}^{p} \Vert u \Vert ^{p}+(C_{\varepsilon }+1) c_{r}^{r} \Vert u \Vert ^{r} \\& \quad \geq \varepsilon \vert u \vert _{p}^{p}+(C_{\varepsilon }+1) \vert u \vert _{r}^{r} \\& \quad \geq \int _{\varOmega }f_{\lambda }(x,u)u\,dx \\& \quad = \int _{\varOmega }\bigl( \vert \nabla u \vert ^{p}+a(x) \vert \nabla u \vert ^{q}\bigr)\,dx \\& \quad \geq \textstyle\begin{cases} \Vert u \Vert ^{q}&\text{if } \Vert u \Vert < 1, \\ \Vert u \Vert ^{p}&\text{if } \Vert u \Vert >1. \end{cases}\displaystyle \end{aligned}$$

Thus for any \(u\in \mathbb{N}_{\lambda }\) with \(\|u\|<1\), we have that

$$ \frac{1}{2} \Vert u \Vert ^{q}\leq (C_{\varepsilon }+1) c_{r}^{r} \Vert u \Vert ^{r}, $$

which implies that

$$ \Vert u \Vert \geq \biggl(\frac{1}{2(C_{\varepsilon }+1) c_{r}^{r}} \biggr)^{ \frac{1}{r-q}}. $$

The proof is completed. □

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1

Clearly, for every \(\lambda >0\), \(f_{\lambda }\) satisfies conditions \((h_{1})\)\((h_{3})\) and \((h_{4})'\), and Lemmas 3.6 and 3.7 imply that there exists \(u_{\lambda }\in \mathbb{M}_{\lambda }\) such that

$$ \begin{aligned} \varphi _{\lambda }(u_{\lambda })=m_{\lambda } \quad \text{and}\quad \varphi _{\lambda }'(u_{\lambda })=0. \end{aligned} $$
(28)

Furthermore, under assumptions \((h_{1})\)\((h_{3})\), we easily obtain that \(\mathbb{M}_{0}\neq \emptyset \). Let \(v_{0}\in \mathbb{M}_{0}\). Then \(\varphi (v_{0}):=\kappa >0\) and \(\langle \varphi '(v_{0}),v_{0} ^{\pm }\rangle =0\). Therefore by Lemma 3.4 there exist \(s_{\lambda }>0\) and \(t_{\lambda }>0\) such that \(s_{\lambda }v_{0} ^{+}+t_{\lambda }v_{0}^{-}\in \mathbb{M}_{\lambda }\). Then from Corollary 3.2 and Lemma 4.1 we have

$$ \begin{aligned}[b] \kappa &=\varphi (v_{0}) \\ &\geq \varphi \bigl(s_{\lambda }v_{0}^{+}+t_{ \lambda }v_{0}^{-} \bigr) \\ &\geq\varphi _{\lambda }\bigl(s_{\lambda }v_{0}^{+}+t _{\lambda }v_{0}^{-}\bigr) \\ &\geq m_{\lambda }\geq c_{*},\quad \lambda \in (0,1). \end{aligned} $$
(29)

Hence, we can choose a sequence \(\{\lambda _{n}\}\) such that \(\lambda _{n}\rightarrow 0\) as \(n\rightarrow +\infty \) and

$$ \begin{aligned} u_{\lambda _{n}}\in \mathbb{M}_{\lambda _{n}},\qquad \varphi _{\lambda _{n}}(u _{\lambda _{n}})=m_{\lambda _{n}}\rightarrow \overline{m}, \qquad \varphi '_{ \lambda _{n}}(u_{\lambda _{n}})=0. \end{aligned} $$
(30)

Thus we only need to prove the following claims to complete the proof of Theorem 1.1.

Claim 1

\(\{u_{\lambda _{n}}\}\)is bounded inE.

Arguing by contradiction, suppose that \(\|u_{\lambda _{n}}\|\rightarrow +\infty \) as \(n\rightarrow +\infty \). We define the sequence \(v_{n} =\frac{u_{\lambda _{n}}}{\|u_{\lambda _{n}}\|}\), \(n=1,2,\dots \). It is clear that \(\{v_{n}\}\subset E\) and \(\|v_{n}\|=1\) for any \(n\in N\). Therefore, going if necessary to a subsequence, we may assume that

$$ \begin{aligned} & v_{n}\rightharpoonup v \quad \text{in } E, \\ & v_{n}\rightarrow v \quad \text{in } L^{\vartheta }( \varOmega ), 1\leq \vartheta < p^{*}, \\ & v _{n}(x)\rightarrow v(x) \quad \text{a.e. on } \varOmega . \end{aligned} $$
(31)

If \(v=0\), then \(v_{n}\rightarrow 0\) in \(L^{\vartheta }(\varOmega )\) for \(1\leq \vartheta < p^{*}\). Fix \(R>[q(m_{0}+1)]^{\frac{1}{p}}\). Using conditions \((h_{1})\)\((h_{2})\) and the Lebesgue dominated convergence theorem, we deduce that

$$ \begin{aligned} \limsup_{n\rightarrow \infty } \int _{\varOmega }F(x,Rv_{n})\,dx \leq R^{p} \lim_{n\rightarrow \infty }\bigl( \vert v_{n} \vert _{p}^{p}+C_{3}R ^{r} \vert v_{n} \vert _{r}^{r}\bigr)=0 \end{aligned} $$
(32)

for some constant \(C_{3}>0\).

Let \(t_{n}=\frac{R}{\|u_{n}\|}\). Then by (32) and Corollary 3.3 we get that

$$\begin{aligned} m_{\lambda _{n}} = &\varphi _{\lambda _{n}}(u_{\lambda _{n}}) \geq \varphi _{\lambda _{n}}(t_{n}u_{\lambda _{n}})=\varphi _{\lambda _{n}}(Rv _{n}) \\ =& \int _{\varOmega }\biggl(\frac{1}{p}R^{p} \vert \nabla v_{n} \vert ^{p}+ \frac{a(x)}{q}R^{q} \vert \nabla v_{n} \vert ^{q}\biggr)\,dx \\ &{}- \int _{\varOmega }\bigl(F(x,Rv_{n})+ \lambda _{n}R^{r} \vert v_{n} \vert ^{r}\bigr)\,dx \\ \geq &\frac{1}{q}R^{p}- \int _{\varOmega }\bigl(F(x,Rv_{n})+\lambda _{n}R^{r} \vert v_{n} \vert ^{r}\bigr)\,dx \\ =&\frac{1}{q}R^{p}+o(1)>m _{0}+1+o(1), \end{aligned}$$

which yields a contradiction. Thus \(v\neq 0\).

By \((h_{3})\) we get

$$ \lim_{k\rightarrow +\infty }\frac{F(x,u_{\lambda _{n}}(x))}{ \Vert u _{\lambda _{n}} \Vert ^{q}}=\lim_{k\rightarrow +\infty } \frac{F(x,u _{\lambda _{n}}(x))}{ \vert u_{\lambda _{n}}(x) \vert ^{q}} \bigl\vert v_{n}(x) \bigr\vert ^{q}=+\infty $$

for all \(x\in \varOmega _{0}:=\{x\in \varOmega : v(x)\neq 0\}\). Therefore, using (21), (30), and Fatou’s lemma, we have

$$\begin{aligned} 0 \leq &\lim_{n\rightarrow \infty } \frac{\varphi _{\lambda _{n}}(u _{\lambda _{n}})}{ \Vert u_{\lambda _{n}} \Vert ^{q}} \\ \leq &\lim_{n\rightarrow \infty } \biggl[\frac{1}{p} \frac{\int _{\varOmega }( \vert \nabla u_{\lambda _{n}} \vert ^{p}+a(x) \vert \nabla u_{\lambda _{n}} \vert ^{q})\,dx}{ \Vert u _{n} \Vert ^{q}} \\ &{}- \int _{\varOmega }\frac{F(x,u_{\lambda _{n}})+\lambda _{n} \vert u _{\lambda _{n}} \vert ^{r}}{ \Vert u_{\lambda _{n}} \Vert ^{q}}\,dx \biggr] \\ \leq &\lim_{n\rightarrow \infty } \biggl[\frac{1}{p} \frac{\int _{\varOmega }( \vert \nabla u_{\lambda _{n}} \vert ^{p}+a(x) \vert \nabla u_{\lambda _{n}} \vert ^{q})\,dx}{ \Vert u _{\lambda _{n}} \Vert ^{q}}- \int _{\varOmega }\frac{F(x,u_{\lambda _{n}})}{ \Vert u _{\lambda _{n}} \Vert ^{q}}\,dx \biggr] \\ \leq &\frac{1}{p} -\lim_{n\rightarrow \infty } \int _{\varOmega }\frac{F(x,u_{\lambda _{n}})}{ \Vert u _{\lambda _{n}} \Vert ^{q}}\,dx \\ =&\frac{1}{p}-\lim_{n\rightarrow \infty } \int _{\varOmega }\frac{F(x,u_{\lambda _{n}})-C _{2}}{ \Vert u_{\lambda _{n}} \Vert ^{q}}\,dx \\ \leq &\frac{1}{p}-\liminf_{n\rightarrow \infty } \int _{\varOmega _{0}}\frac{F(x,u_{\lambda _{n}})-C_{2}}{ \Vert u_{\lambda _{n}} \Vert ^{q}}\,dx \\ =&\frac{1}{p}-\liminf_{n\rightarrow \infty } \int _{\varOmega _{0}}\frac{F(x,u_{\lambda _{n}}(x))}{ \vert u_{\lambda _{n}}(x) \vert ^{q}} \bigl\vert v_{n}(x) \bigr\vert ^{q}\,dx \\ \rightarrow &- \infty , \end{aligned}$$
(33)

which is contradiction. The proof of Claim 1 is complete. Thus there exist a subsequence of \(\{\lambda _{n}\}\), still denoted by \(\{\lambda _{n}\}\), and \(u_{0}\in E\) such that

$$ u_{\lambda _{n}}\rightharpoonup u_{0} \quad \text{in } E. $$

Claim 2

\(\varphi (u_{0})=m_{0}\)and\(\varphi '(u_{0})=0\).

By the Sobolev embedding theorem, \(u_{\lambda _{n}}\rightarrow u_{0} \) in \(L^{\vartheta }(\varOmega ), 1\leq \vartheta < p^{*}\), and \(u_{\lambda _{n}}(x)\rightarrow u_{0}(x)\) a.e. on Ω. By \((h_{2})\) and the Hölder inequality it is easy to directly compute that

$$\begin{aligned}& \int _{\varOmega } \bigl\vert f(x,u_{\lambda _{n}}) \bigr\vert \vert u_{n}-u_{0} \vert \,dx \\& \quad \leq \int _{\varOmega }C\bigl(1+ \vert u_{\lambda _{n}} \vert ^{r-1}\bigr) \vert u_{n}-u_{0} \vert \,dx \\& \quad \leq C \int _{\varOmega } \vert u_{n} \vert ^{r-1} \vert u_{\lambda _{n}}-u_{0} \vert \,dx+C \int _{\varOmega } \vert u _{n}-u_{0} \vert \,dx \\& \quad \leq C \biggl( \int _{\varOmega } \vert u_{\lambda _{n}} \vert ^{(r-1)r'}\,dx \biggr)^{\frac{1}{r'}} \biggl( \int _{\varOmega } \vert u_{\lambda _{n}}-u_{0} \vert ^{r}\,dx \biggr)^{\frac{1}{r}} \\& \qquad {}+C \int _{\varOmega } \vert u_{\lambda _{n}}-u_{0} \vert \,dx \\& \quad =C \biggl( \int _{\varOmega } \vert u_{\lambda _{n}} \vert ^{r}\,dx \biggr)^{\frac{r-1}{r}} \biggl( \int _{\varOmega } \vert u_{\lambda _{n}}-u_{0} \vert ^{r}\,dx \biggr)^{\frac{1}{r}} +C \int _{\varOmega } \vert u_{\lambda _{n}}-u_{0} \vert \,dx \\& \quad =C \vert u_{\lambda _{n}} \vert _{r} ^{r-1} \vert u_{\lambda _{n}}-u_{0} \vert _{r}+C \vert u_{\lambda _{n}}-u_{0} \vert _{1} \\& \quad \rightarrow 0 \quad \text{as } n\rightarrow \infty , \end{aligned}$$
(34)

where \(\frac{1}{r}+\frac{1}{r'}=1\). Then, using (30), (34), and \((h_{2})\), we deduce

$$\begin{aligned} \bigl\langle L(u_{\lambda _{n}})-L(u_{0}), u_{\lambda _{n}}-u_{0}\bigr\rangle =& \bigl\langle \varphi _{\lambda _{n}}'(u_{\lambda _{n}})-\varphi '(u_{0}), u _{\lambda _{n}}-u_{0}\bigr\rangle \\ &{}+ \int _{\varOmega } \bigl[f(x,u_{\lambda _{n}})+ \lambda _{n} r \vert u_{\lambda _{n}} \vert ^{r-2}u_{\lambda _{n}} \bigr](u_{\lambda _{n}}-u_{0})\,dx \\ &{}- \int _{\varOmega }f(x,u_{0}) (u_{\lambda _{n}}-u_{0}) \,dx \\ \rightarrow &0\quad \text{as } n\rightarrow +\infty . \end{aligned}$$

Since L is of type \((S)_{+}\), we see that

$$ u_{\lambda _{n}}\rightarrow u_{0} \quad \text{in } E, $$
(35)

and so \(u_{\lambda _{n}}^{\pm }\rightarrow u_{0}^{\pm }\) in E. Thus from (30) it follows that \(\varphi (u _{0})=\overline{m}\).

Moreover, by Proposition 2.3, (30), and (35) we get

$$\begin{aligned} \bigl\langle \varphi '(u_{0}), \eta \bigr\rangle =&\bigl\langle L(u_{0}),\eta \bigr\rangle - \int _{\varOmega }f(x,u_{0})\eta \,dx \\ =&\lim_{n\rightarrow + \infty } \biggl(\bigl\langle L(u_{\lambda _{n}}),\eta \bigr\rangle - \int _{\varOmega }\bigl[f(x,u _{\lambda _{n}})+\lambda _{n} r \vert u_{\lambda _{n}} \vert ^{r-2}u_{\lambda _{n}} \bigr] \eta \,dx \biggr) \\ =&\lim_{n\rightarrow +\infty }\bigl\langle \varphi _{\lambda _{n}}'(u_{\lambda _{n}}), \eta \bigr\rangle \\ =&0,\quad \eta \in E. \end{aligned}$$
(36)

This shows that \(\varphi '(u_{0})=0\). Again from Lemma 4.1 and (35) we have

$$\begin{aligned}& \int _{\varOmega } \biggl[\frac{1}{q}f\bigl(x,u_{0}^{\pm } \bigr)u_{0}^{\pm }-F\bigl(x,u _{0}^{\pm } \bigr) \biggr]\,dx+ \int _{\varOmega } \biggl(\frac{1}{p}-\frac{1}{q} \biggr) \bigl\vert \nabla u_{0}^{\pm } \bigr\vert ^{p}\,dx \\& \quad =\lim_{n\rightarrow +\infty } \int _{\varOmega } \biggl[\frac{1}{q}f\bigl(x,u_{\lambda _{n}}^{\pm } \bigr)u_{\lambda _{n}}^{\pm }-F\bigl(x,u_{\lambda _{n}}^{\pm } \bigr) \biggr]\,dx \\& \qquad {}+\lim_{n\rightarrow +\infty } \int _{\varOmega } \biggl(\frac{1}{p}- \frac{1}{q} \biggr) \bigl\vert \nabla u_{\lambda _{n}}^{\pm } \bigr\vert ^{p}\,dx+\lim_{n\rightarrow +\infty } \frac{\lambda _{n}(r-q)}{q} \bigl\vert u_{\lambda _{n}}^{\pm } \bigr\vert _{r}^{r} \\& \quad =\lim_{n\rightarrow +\infty } \biggl[ \varphi _{\lambda _{n}} \bigl(u_{\lambda _{n}}^{\pm }\bigr)-\frac{1}{q}\bigl\langle \varphi _{\lambda _{n}}'\bigl(u_{\lambda _{n}}^{\pm } \bigr),u_{n}^{\pm }\bigr\rangle \biggr] \\& \quad =\lim_{n\rightarrow +\infty }\varphi _{\lambda _{n}}\bigl(u _{\lambda _{n}}^{\pm }\bigr) \\& \quad \geq \alpha >0. \end{aligned}$$
(37)

This, together with (6) (\(t=0\)), shows that \(u_{0}^{\pm } \neq 0\). Therefore

$$ \varphi '(u_{0})=0, \quad u_{0}\in \mathbb{M}_{0}, \quad \text{and}\quad \varphi (u _{0})=\overline{m}\geq m_{0}. $$

Next, we will prove that \(\varphi (u_{0})= m_{0}\). Let ε be any positive number. Since \(m_{0}=\inf_{u\in \mathbb{M}_{0}} \varphi (u)\), there exists \(v_{\varepsilon }\in \mathbb{M}_{0}\) such that \(\varphi (v_{\varepsilon })< m_{0}+\varepsilon \). Then \((h_{3})\) implies that there exists \(M_{\varepsilon }>1\) such that, for \(s\geq M_{\varepsilon }\) or \(t\geq M_{\varepsilon }\),

$$\begin{aligned} \varphi _{\lambda _{n}}\bigl(sv_{\varepsilon }^{+}+tv_{\varepsilon }^{-} \bigr) = & \int _{\varOmega }\biggl(\frac{s^{p}}{p} \bigl\vert \nabla v_{\varepsilon }^{+} \bigr\vert ^{p}+ \frac{s ^{q}}{q} \bigl\vert \nabla v_{\varepsilon }^{+} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,sv_{ \varepsilon }^{+}\bigr) \,dx \\ &{}-\lambda _{n}s^{r} \int _{\varOmega } \bigl\vert v_{\varepsilon }^{+} \bigr\vert ^{r}\,dx \\ &{}+ \int _{\varOmega }\biggl(\frac{t^{p}}{p} \bigl\vert \nabla v_{\varepsilon }^{-} \bigr\vert ^{p}+ \frac{t^{q}}{q} \bigl\vert \nabla v_{\varepsilon }^{-} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,tv_{\varepsilon }^{-}\bigr) \,dx \\ &{}-\lambda _{n}t^{r} \int _{\varOmega } \bigl\vert v_{\varepsilon }^{-} \bigr\vert ^{r}\,dx \\ \leq & \int _{\varOmega }\biggl(\frac{s ^{p}}{p} \bigl\vert \nabla v_{\varepsilon }^{+} \bigr\vert ^{p}+ \frac{s^{q}}{q} \bigl\vert \nabla v _{\varepsilon }^{+} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,sv_{\varepsilon }^{+}\bigr) \,dx \\ &{}+ \int _{\varOmega }\biggl(\frac{t^{p}}{p} \bigl\vert \nabla v_{\varepsilon }^{-} \bigr\vert ^{p}+ \frac{t ^{q}}{q} \bigl\vert \nabla v_{\varepsilon }^{-} \bigr\vert ^{q}\biggr)\,dx- \int _{\varOmega }F\bigl(x,tv_{ \varepsilon }^{-}\bigr) \,dx \\ < &0. \end{aligned}$$
(38)

In view of Lemma 3.4, there exists a pair \((s_{n},t_{n})\) of positive numbers such that \(s_{n}v_{\varepsilon }^{+}+t_{n}v_{\varepsilon }^{-}\in \mathbb{M}_{\lambda _{n}}\), which, together with (38), implies \(0< s_{n}\), \(t_{n}< M_{\varepsilon }\). Thus from Lemma 3.1 and \(\langle \varphi '(v_{\varepsilon }),v_{\varepsilon }^{\pm }\rangle =0\) we have

$$\begin{aligned} m_{0}+\varepsilon > &\varphi (v_{\varepsilon })= \varphi _{\lambda _{n}}(v _{\varepsilon })+\lambda _{n} \vert v_{\varepsilon } \vert _{r}^{r} \\ \geq & \varphi _{\lambda _{n}}\bigl(s_{n}v_{\varepsilon }^{+}+t_{n}v_{\varepsilon } ^{-}\bigr)+\frac{1-s_{n}^{q}}{q}\bigl\langle \varphi _{\lambda _{n}}'(v_{\varepsilon }),v_{\varepsilon }^{+} \bigr\rangle +\frac{1-t_{n}^{q}}{q}\bigl\langle \varphi _{\lambda _{n}}'(v_{\varepsilon }),v_{\varepsilon }^{-} \bigr\rangle \\ &{}+ \int _{\varOmega }g(s_{n}) \bigl\vert \nabla v_{\varepsilon }^{+} \bigr\vert ^{p}\,dx+ \int _{\varOmega }g(t_{n}) \bigl\vert \nabla v_{\varepsilon }^{-} \bigr\vert ^{p}\,dx \\ \geq & m _{\lambda _{n}}-\frac{1+K_{\varepsilon }^{q}}{q} \bigl\vert \bigl\langle \varphi _{\lambda _{n}}'(v_{\varepsilon }),v_{\varepsilon }^{+} \bigr\rangle \bigr\vert -\frac{1+K_{\varepsilon }^{q}}{q} \bigl\vert \bigl\langle \varphi _{\lambda _{n}}'(v _{\varepsilon }),v_{\varepsilon }^{-} \bigr\rangle \bigr\vert \\ =&m_{\lambda _{n}}-\frac{(1+K _{\varepsilon }^{q})r\lambda _{n}}{q} \bigl\vert v_{\varepsilon }^{+} \bigr\vert _{r}^{r}-\frac{(1+K _{\varepsilon }^{q})r\lambda _{n}}{q} \bigl\vert v_{\varepsilon }^{-} \bigr\vert _{r}^{r}, \end{aligned}$$

which yields

$$ \begin{aligned} \overline{m}=\lim _{n\rightarrow +\infty }m_{\lambda _{n}}\leq m _{0}+\varepsilon . \end{aligned} $$
(39)

Since \(\varepsilon > 0\) is arbitrary, we have \(\overline{m}\leq m_{0}\). Thus \(\overline{m}= m_{0}\), that is, \(\varphi (u_{0})=m_{0}\).

Now we show that \(u_{0}\) has exactly two nodal domains. Let \(u_{0}=u_{1}+u_{2}+u_{3}\), where

$$ \begin{aligned} &u_{1}\geq 0,\qquad u_{2}\leq 0, \qquad \varOmega _{1}\cap \varOmega _{2}=\emptyset , \\ &u _{1}|_{\varOmega \backslash (\varOmega _{1}\cup \varOmega _{2})}=u_{2}|_{\varOmega \backslash (\varOmega _{1}\cup \varOmega _{2})}=u_{3}|_{\varOmega _{1}\cup \varOmega _{2}}, \\ & \varOmega _{1}:=\bigl\{ x\in \varOmega | u_{1}(x)>0 \bigr\} ,\qquad \varOmega _{2}:=\bigl\{ x \in \varOmega | u_{1}(x)< 0\bigr\} , \end{aligned} $$
(40)

and \(\varOmega _{i}\) (\(i=1,2\)) are connected open subsets of Ω.

Setting \(v=u_{1}+u_{2}\), we see that \(v^{+}=u_{1}\) and \(v^{-}=u_{2}\), that is, \(v^{\pm }\neq 0\). Noting that \(\varphi '(u_{0})=0\), by a simple computation we have

$$ \begin{aligned} &\bigl\langle \varphi '(v), v^{+}\bigr\rangle =\bigl\langle \varphi '(v), v^{-} \bigr\rangle =0. \end{aligned} $$
(41)

By Lemma 3.1 and again by (40) and (41) we conclude that

$$\begin{aligned} m_{0} = &\varphi (u_{0})=\varphi (u_{0})-\frac{1}{q}\bigl\langle \varphi '(u _{0}), u_{0}\bigr\rangle \\ =&\varphi (v)+\varphi (u_{3})-\frac{1}{q} \bigl(\bigl\langle \varphi '(v), v\bigr\rangle +\bigl\langle \varphi '(u_{3}), u_{3} \bigr\rangle \bigr) \\ \geq & \sup_{s,t\geq 0} \biggl[\varphi \bigl(sv^{+}+tv ^{-}\bigr)+\frac{1-s^{q}}{q}\bigl\langle \varphi '(v),v^{+}\bigr\rangle +\frac{1-t ^{q}}{q}\bigl\langle \varphi '(v),v^{-}\bigr\rangle \\ &{}+ \int _{\varOmega }g(s) \bigl\vert \nabla v^{+} \bigr\vert ^{p}\,dx+ \int _{\varOmega }g(t) \bigl\vert \nabla v^{-} \bigr\vert ^{p}\,dx \biggr]+ \varphi (u_{3})- \frac{1}{q}\bigl\langle \varphi '(u_{3}), u_{3}\bigr\rangle \\ \geq & \sup_{s,t\geq 0}\varphi \bigl(sv^{+}+tv^{-} \bigr)+\varphi (u_{3})- \frac{1}{q}\bigl\langle \varphi '(u_{3}), u_{3}\bigr\rangle \\ \geq & m_{0}+ \int _{\varOmega } \biggl(\frac{1}{q}f(x,u_{3})u_{3}-F(x,u_{3}) \biggr)\,dx+ \biggl(\frac{1}{p}-\frac{1}{q} \biggr) \int _{\varOmega } \vert \nabla u_{3} \vert ^{p}\,dx \\ \geq & m_{0}+ \int _{\varOmega }\biggl(\frac{1}{q}f(x,u_{3})u_{3}-F(x,u_{3}) \biggr)\,dx, \end{aligned}$$

which, together with (3), shows that \(u_{3}=0\). Therefore \(u_{0}\) has exactly two nodal domains.  □

Proof of Theorem 1.2

By Theorem 1.1 there exists \(u_{0}\in \mathbb{M}_{0}\) such that \(\varphi (u_{0})=m_{0}\). Since \(u_{0}^{\pm }\in \mathbb{N}_{0}\), we have \(m_{0}=\varphi (u_{0})= \varphi (u_{0}^{+})+\varphi (u_{0}^{-})\geq 2n_{0}\). □