1 Introduction

Assuming that \(p > 1,\frac{1}{p} + \frac{1}{q} = 1,a_{m},b{}_{n} \ge 0,0 < \sum_{m = 1}^{\infty} a_{m}^{p} < \infty \) and \(0 < \sum_{n = 1}^{\infty} b_{n}^{q} < \infty \), the following Hardy–Hilbert inequality with the best possible constant factor \(\pi /\sin (\frac{\pi}{p})\) was provided (cf. [1], Theorem 315):

$$\begin{aligned} \sum_{n = 1}^{\infty} \sum _{m = 1}^{\infty} \frac{a_{m}b_{n}}{m + n} < \frac{\pi}{\sin (\pi /p)} \Biggl(\sum_{m = 1}^{\infty} a_{m}^{p} \Biggr)^{\frac{1}{p}} \Biggl(\sum_{n = 1}^{\infty} b_{n}^{q} \Biggr)^{\frac{1}{q}}. \end{aligned}$$
(1)

If \(f(x),g(y) \ge 0,0 < \int _{0}^{\infty} f^{p}(x)\,dx < \infty \) and \(0 < \int _{0}^{\infty} g^{q}(y)\,dy < \infty \), then we still have the integral analog of (1) named in the Hardy–Hilbert integral inequality as follows (cf. [1], Theorem 316):

$$\begin{aligned} \int _{0}^{\infty} \int _{0}^{\infty} \frac{f(x)g(y)}{x + y}\,dx\,dy < \frac{\pi}{ \sin (\pi /p)} \biggl( \int _{0}^{\infty} f^{p}(x)\,dx \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{\infty} g^{q}(y)\,dy \biggr)^{\frac{1}{q}}, \end{aligned}$$
(2)

where the same constant factor \(\pi /\sin (\frac{\pi}{p})\) is still the best possible. Inequalities (1) and (2) played an important role in analysis and its applications (cf. [213]).

In 2006, by means of the Euler–Maclaurin summation formula, Krnic et al. [14] gave an extension of (1) with the kernel \(\frac{1}{(m + n)^{\lambda}}\ (0 < \lambda \le 4)\). Applying the result of [14], in 2019, Adiyasuren et al. [15] considered an extension of (1) involving partial sums, and then in 2020, Mo et al. [16] gave an extension of (2) involving two upper-limit functions. In 2016–2017, Hong et al. [17, 18] provided several equivalent statements of the extensions of (1) and (2) with multiparameters. Some similar results were given by [1922].

In this paper, following [15] and [17], by means of the weight functions, the idea of introducing parameters and the techniques of real analysis, a new Hardy–Hilbert-type integral inequality with the kernel \(\frac{1}{(x + y)^{\lambda}}\ (\lambda > 0)\) involving two multiple upper-limit functions is provided. The equivalent statements of the best possible constant factor related to the beta and gamma functions are considered. As applications, the equivalent forms, the case of a nonhomogeneous kernel, a few particular inequalities and the operator expressions are deduced. The lemmas and theorems provide an extensive account of this type of inequality.

2 Some lemmas

In what follows, we assume that \(p > 1,\frac{1}{p} + \frac{1}{q} = 1,0 < \lambda _{i} < \lambda\ (i = 1,2),\hat{\lambda}_{1}: = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q},\hat{\lambda}_{2}: = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p},\ F_{0}(x)\) and \(G_{0}(y)\) are nonnegative Lebesgue integrable functions in any interval \((0,b] \subset R_{ +} (b > 0)\), such that \(F_{0}(u),G_{0}(u) = o(e^{tu})\ (t > 0;u \to \infty )\), the multiple upper-limit functions \(\{ F_{j}(x)\}_{j = 1}^{m},\{ G_{k}(y)\}_{k = 1}^{n}\) are defined inductively by \(F_{j}(x): = \int _{0}^{x} F_{j - 1}(t)\,dt (x \ge 0;j = 1,2, \ldots ,m)\), and

$$\begin{aligned} G_{k}(y): = \int _{0}^{y} G_{k - 1}(t)\,dt \quad(y \ge 0;k = 1,2, \ldots ,n), \end{aligned}$$

where \(F_{1}(x) = \int _{0}^{x} F_{0} (t_{0})\,dt{}_{0}, G_{1}(y) = \int _{0}^{y} G_{0} (t_{0})\,dt{}_{0}\),

$$\begin{aligned} &F_{m}(x) = \int _{0}^{x} \biggl( \int _{0}^{t_{n - 1}} \cdots \int _{0}^{t_{1}} F_{0} (t_{0}) \,dt{}_{0} \cdots \,dt_{m - 2} \biggr)\,dt_{m - 1} \quad(t_{i},x \ge 0;m \ge 2),\quad\text{and}\\ &G_{n}(y) = \int _{0}^{y} \biggl( \int _{0}^{t_{n - 1}} \cdots \int _{0}^{t_{1}} G_{0} (t_{0}) \,dt{}_{0} \cdots \,dt_{n - 2} \biggr)\,dt_{n - 1} \quad(t_{i},y \ge 0;n \ge 2). \end{aligned}$$

For \(m,n \in \mathrm{N}_{0}: = \{ 0,1, \ldots \} \), we also suppose that \(F_{m}(x)\) and \(G_{n}(y)\) satisfy the following inequalities:

$$\begin{aligned} 0 < \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1} - m) - 1} F_{m}^{p}(x) \,dx < \infty \quad \text{and} \quad 0 < \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy < \infty . \end{aligned}$$

We indicate the gamma function as follows:

$$\begin{aligned} \Gamma (\alpha ): = \int _{0}^{\infty} e^{ - t} t^{\alpha - 1}\,dt \quad ( \alpha > 0), \end{aligned}$$
(3)

Satisfying \(\Gamma (\alpha + 1) = \alpha \Gamma (\alpha )(\alpha > 0)\), and define the following beta function (cf. [23]):

$$\begin{aligned} B(u,v): = \int _{0}^{\infty} \frac{t^{u - 1}}{(1 + t)^{u + v}} \,dt = \frac{1}{\Gamma (u + v)}\Gamma (u)\Gamma (v). \end{aligned}$$
(4)

By (3), for \(\lambda ,x,y > 0\), we still have the following formula related the gamma function:

$$\begin{aligned} \frac{1}{(x + y)^{\lambda}} = \frac{1}{\Gamma (\lambda )} \int _{0}^{\infty} t^{\lambda - 1} e^{ - (x + y)t} \,dt. \end{aligned}$$
(5)

Lemma 1

For \(t > 0, m,n \in \mathrm{N}\), we have the following expressions:

$$\begin{aligned} & \int _{0}^{\infty} e^{ - tx} F_{0}(x) \,dx = t^{m} \int _{0}^{\infty} e^{ - tx} F_{m}(x) \,dx, \end{aligned}$$
(6)
$$\begin{aligned} & \int _{0}^{\infty} e^{ - ty} G_{0}(y) \,dy = t^{n} \int _{0}^{\infty} e^{ - ty} G_{n}(y) \,dy. \end{aligned}$$
(7)

Proof

For \(n \in \mathrm{N}: = \{ 1,2, \ldots \} \), since \(F_{1}(0) = 0\), using integration by parts, we find

$$\begin{aligned} \int _{0}^{\infty} e^{ - tx} F_{0}(x) \,dx &= \int _{0}^{\infty} e^{ - tx} \,dF_{1}(x) \\ &= e^{ - tx}F_{1}(x)|_{0}^{\infty} - \int _{0}^{\infty} F_{1} (x) \,de^{ - tx} = \lim_{x \to \infty} \frac{F_{1}(x)}{e^{tx}} + t \int _{0}^{\infty} e^{ - tx} F_{1}(x) \,dx. \end{aligned}$$

If \(F{}_{1}(\infty ) =\) constant, then we have \(\lim_{x \to \infty} \frac{F_{1}(x)}{e^{tx}} = 0\); if \(F_{1}(\infty ) = \infty \), since \(F_{0}(x) = o(e^{tx})\ (t > 0;x \to \infty )\), then we obtain that \(\lim_{x \to \infty} \frac{F_{1}(x)}{e^{tx}} = \lim_{x \to \infty} \frac{F_{0}(x)}{te^{tx}} = 0\). Hence, we find

$$\begin{aligned} \int _{0}^{\infty} e^{ - tx} F_{0}(x) \,dx = t \int _{0}^{\infty} e^{ - tx} F_{1}(x) \,dx. \end{aligned}$$

In the same way, we can obtain that for \(F_{i}(\infty ) = \infty\ (i = 1, \ldots ,k),\lim_{x \to \infty} \frac{F_{k}(x)}{e^{tx}} = \cdots \ =\lim_{x \to \infty} \frac{F_{0}(x)}{t^{k}e^{tx}} = 0\), and then

$$\begin{aligned} \int _{0}^{\infty} e^{ - tx} F_{k - 1}(x) \,dx = t \int _{0}^{\infty} e^{ - tx} F_{k}(x) \,dx\quad (k = 1, \ldots ,m). \end{aligned}$$

Hence, we obtain (6) inductively. In the same way, we have (7).

The lemma is proved. □

Lemma 2

Define the following weight functions:

$$\begin{aligned} &\varpi (\lambda _{2},x): = x^{\lambda + m - \lambda _{2}} \int _{0}^{\infty} \frac{t^{\lambda _{2} + n - 1}}{(x + t)^{\lambda + m + n}}\,dt \quad(x \in \mathrm{R}_{ +} ), \end{aligned}$$
(8)
$$\begin{aligned} &\omega (\lambda _{1},y): = y^{\lambda + n - \lambda _{1}} \int _{0}^{\infty} \frac{t^{\lambda _{1} + m - 1}}{(t + y)^{\lambda + m + n}} \,dt\quad (y \in \mathrm{R}_{ +} ). \end{aligned}$$
(9)

We have the following expressions:

$$\begin{aligned} &\varpi (\lambda _{2},x) = B(\lambda _{2} + n,\lambda + m - \lambda _{2})\quad (x \in \mathrm{R}_{ +} ), \end{aligned}$$
(10)
$$\begin{aligned} &\omega (\lambda _{1},y) = B(\lambda _{1} + m,\lambda + n - \lambda _{1}) \quad(y \in \mathrm{R}_{ +} ). \end{aligned}$$
(11)

Proof

Setting \(u = \frac{t}{x}\), we find

$$\begin{aligned} \varpi (\lambda _{2},x) &= x^{\lambda + m - \lambda _{2}} \int _{0}^{\infty} \frac{(ux)^{\lambda _{2} + n - 1}}{(x + ux)^{\lambda + m + n}}x\,du = \int _{0}^{\infty} \frac{u^{\lambda _{2} + n - 1}}{(1 + u)^{\lambda + m + n}}\,du \\ &= B(\lambda _{2} + n,\lambda + m - \lambda _{2}), \end{aligned}$$

namely, (10) follows. In the same way, we obtain (11).

The lemma is proved. □

Lemma 3

We have the following Hardy–Hilbert integral inequality:

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{m}(x)G_{n}(y)}{(x + y)^{\lambda + m + n}} \,dx \\ &\quad< B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda {}_{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda {}_{1}) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1} - m) - 1} F_{m}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(12)

Proof

By Hölder’s inequality (cf. [24]), we obtain

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F(x)G_{n}(y)}{(x + y)^{\lambda + m + n}} \,dx\,dy \\ &\quad = \int _{0}^{\infty} \int _{0}^{\infty} \frac{1}{(x + y)^{\lambda + m + n}} \biggl[ \frac{y^{(\lambda _{2} + n - 1)/p}}{x^{(\lambda _{1} + m - 1)/q}}F_{m}(x) \biggr] \biggl[\frac{x^{(\lambda _{1} + m - 1)/q}}{y^{(\lambda _{2} + n - 1)/p}}G_{n}(y) \biggr]\,dx\,dy \\ &\quad\le \biggl\{ \int _{0}^{\infty} \biggl[ \int _{0}^{\infty} \frac{1}{(x + y)^{\lambda + m + n}} \frac{y^{\lambda _{2} + n - 1}\,dy}{x^{(\lambda _{1} + m - 1)(p - 1)}} \biggr]F_{m}^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \\ &\qquad{}\times\biggl\{ \int _{0}^{\infty} \biggl[ \int _{0}^{\infty} \frac{1}{(x + y)^{\lambda + m + n}} \frac{x^{\lambda _{1} + m - 1}\,dx}{y^{(\lambda _{2} + n - 1)(q - 1)}} \biggr]G_{n}^{q}(y)\,dy \biggr\} ^{\frac{1}{q}} \\ &\quad= \biggl[ \int _{0}^{\infty} \varpi (\lambda {}_{2},x) x^{p(1 - \hat{\lambda}_{1} - m) - 1}F_{m}^{p}(x)\,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \omega (\lambda _{1},y) y^{q(1 - \hat{\lambda}_{2} - n) - 1}G_{n}^{q}(y)\,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(13)

If (13) keeps the form of equality, then there exist constants A and B, such that they are not both zero, satisfying

$$\begin{aligned} A\frac{y^{\lambda _{2} + n - 1}}{x^{(\lambda _{1} + m - 1)(p - 1)}}F_{m}^{p}(x) = B\frac{x^{\lambda _{1} + m - 1}}{y^{(\lambda _{2} + n + 1)(q - 1)}}G_{n}^{q}(y)\quad \text{a.e. in }(0, \infty ) \times (0,\infty ). \end{aligned}$$

Assuming that \(A \ne 0\), for fixed \(a.e.y \in (0,\infty )\), we have

$$\begin{aligned} x^{p(1 - \hat{\lambda}_{1} - m) - 1}F_{m}^{p}(x) = \biggl(\frac{B}{A}y^{q(1 - \lambda _{2} - n)}G_{n}^{q}(y) \biggr)x^{ - 1 - (\lambda - \lambda _{1} - \lambda _{2})}\quad\text{a.e. in }(0,\infty ). \end{aligned}$$

Since for any \(a = \lambda - \lambda _{1} - \lambda _{2} \in \mathbf{R}\), \(\int _{0}^{\infty} x^{ - 1 - a}\,dx = \infty \), the above expression contradicts the fact that

$$\begin{aligned} 0 < \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1} - m) - 1} F_{m}^{p}(x) \,dx < \infty . \end{aligned}$$

Therefore, by (10), (11), and (13), we have (14).

The lemma is proved. □

3 Main results

Theorem 1

We have the following Hardy–Hilbert-type integral inequality involving two multiple upper-limit functions:

$$\begin{aligned} I: ={}& \int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(x + y)^{\lambda}} \,dx\,dy \\ < {}& \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \\ &{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1} - m) - 1} F_{m}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(14)

In particular, for \(\lambda _{1} + \lambda _{2} = \lambda \), we reduce (14) to the following:

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(x + y)^{\lambda}} \,dx\,dy \\ &\quad < \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\lambda _{1} + m,\lambda _{2} + n) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \lambda _{1} - m) - 1} F_{m}^{q}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(15)

where, the constant factor \(\frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\lambda _{1} + m,\lambda _{2} + n)\) is the best possible.

Proof

In view of (6), (7), and Fubini’s theorem (cf. [25]), we find

$$\begin{aligned} I &= \frac{1}{\Gamma (\lambda )} \int _{0}^{\infty} \int _{0}^{\infty} F_{0}(x)G_{0}(y) \biggl[ \int _{0}^{\infty} t^{\lambda - 1} e^{ - (x + y)t}\,dt \biggr]\,dx\,dy \\ &= \frac{1}{\Gamma (\lambda )} \int _{0}^{\infty} t^{\lambda - 1} \biggl( \int _{0}^{\infty} e^{ - xt}F_{0}(x) \,dx\biggr) \biggl( \int _{0}^{\infty} e^{ - yt} G_{0}(y) \,dy\biggr) \,dt \\ &= \frac{1}{\Gamma (\lambda )} \int _{0}^{\infty} t^{\lambda - 1} \biggl(t^{m} \int _{0}^{\infty} e^{ - xt}F_{m}(x)\,dx \biggr) \biggl( \int _{0}^{\infty} t^{n}e^{ - yt} G_{n}(y)\,dy\biggr) \,dt \\ &= \frac{1}{\Gamma (\lambda )} \int _{0}^{\infty} \int _{0}^{\infty} F_{m}(x)G_{n}(y) \biggl[ \int _{0}^{\infty} t^{(\lambda + m + n) - 1}e^{ - (x + y)t}\,dt \biggr] \,dx\,dy \\ &= \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )} \int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{m}(x)G_{n}(y)}{(x + y)^{\lambda + m + n}} \,dx \,dy. \end{aligned}$$
(16)

Then, by (12), we have (14).

For \(\lambda _{1} + \lambda _{2} = \lambda \) in (14), by simplification, we have (15). By (3) and (4), we still have

$$\begin{aligned} \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\lambda _{1} + m,\lambda _{2} + n)& = \frac{1}{\Gamma (\lambda )}\Gamma (\lambda _{1} + m)\Gamma (\lambda _{2} + n) \\ &= B(\lambda _{1},\lambda _{2})\prod _{i = 1}^{m} (\lambda _{1} + i - 1) \prod _{j = 1}^{n} (\lambda _{2} + j - 1), \end{aligned}$$
(17)

where, we define \(\prod_{i = 1}^{0} (\lambda _{1} + i - 1) = \prod_{j = 1}^{0} (\lambda _{2} + j - 1): = 1\).

For any \(0 < \varepsilon < \min \{ p\lambda _{1},q\lambda _{2}\}\), we set the following functions:

$$\begin{aligned} \tilde{F}_{0}(x): = \textstyle\begin{cases} 0,&0 < x \le 1, \\ x^{\lambda _{1} - \frac{\varepsilon}{p} - 1},&x > 1, \end{cases}\displaystyle \qquad\tilde{G}_{0}(y): = \textstyle\begin{cases} 0,&0 < y \le 1, \\ y^{\lambda _{2} - \frac{\varepsilon}{q} - 1},& y > 1. \end{cases}\displaystyle \end{aligned}$$

We obtain that \(\tilde{F}_{0}(u) = \tilde{G}_{0}(u) = o(e^{tu})\ (t > 0;u \to \infty )\),

$$\begin{aligned} &\tilde{F}_{i}(u) = \tilde{G}_{j}(u) \equiv 0\quad (0 < u \le 1;i = 1, \ldots ,m,j = 1, \ldots ,n),\\ &\tilde{F}_{1}(x) = \int _{1}^{x} t^{\lambda _{1} - \frac{\varepsilon}{p} - 1} \,dt < \frac{1}{\lambda _{1} - \frac{\varepsilon}{p}}x^{\lambda _{1} - \frac{\varepsilon}{p}}\quad (x > 1), \quad\text{and}\\ &\tilde{G}_{1}(y) = \int _{1}^{y} t^{\lambda _{2} - \frac{\varepsilon}{q} - 1} \,dt < \frac{1}{\lambda _{2} - \frac{\varepsilon}{q}}y^{\lambda _{2} - \frac{\varepsilon}{q}}\quad(y > 1). \end{aligned}$$

In general, by mathematical induction, we can show the following inequalities:

$$\begin{aligned} &\tilde{F}_{m}(x) < \frac{1}{\prod_{i = 1}^{m} (\lambda _{1} - \frac{\varepsilon}{p} + i - 1)} x^{\lambda _{1} - \frac{\varepsilon}{p} + m - 1}\quad(x > 1), \\ &\tilde{G}_{n}(y) < \frac{1}{\prod_{j = 1}^{n} (\lambda _{2} - \frac{\varepsilon}{q} + j - 1)} y^{\lambda _{2} - \frac{\varepsilon}{q} + n - 1}\quad (y > 1). \end{aligned}$$

If there exists a positive constant \(M \le B(\lambda _{1},\lambda _{2})\prod_{i = 1}^{m} (\lambda _{1} + i - 1) \prod_{j = 1}^{n} (\lambda _{2} + j - 1)\), such that (15) is valid when we replace \(B(\lambda _{1},\lambda _{2})\prod_{i = 1}^{m} (\lambda _{1} + i - 1) \prod_{j = 1}^{n} (\lambda _{2} + j - 1)\), by M, then in particular, since

$$\begin{aligned} \tilde{J}: = {}&\biggl[ \int _{0}^{\infty} x^{p(1 - \lambda _{1} - m) - 1} \tilde{F}_{m}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} \tilde{G}_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}\\ < {}& \frac{1}{\prod_{i = 1}^{m} ( \lambda _{1} - \frac{\varepsilon}{p} + i - 1)\prod_{j = 1}^{n} ( \lambda _{2} - \frac{\varepsilon}{q} + j - 1)}\biggl( \int _{1}^{\infty} x^{ - \varepsilon - 1} \,dx \biggr)^{\frac{1}{p}}\biggl( \int _{1}^{\infty} y^{ - \varepsilon - 1} \,dy \biggr)^{\frac{1}{q}} \\ ={}& \frac{1}{\varepsilon \prod_{i = 1}^{m} ( \lambda _{1} - \frac{\varepsilon}{p} + i - 1)\prod_{j = 1}^{n} ( \lambda _{2} - \frac{\varepsilon}{q} + j - 1)}, \end{aligned}$$

we have

$$\begin{aligned} \tilde{I}: = \int _{0}^{\infty} \int _{0}^{\infty} \frac{\tilde{F}_{0}(x)\tilde{G}_{0}(y)}{(x + y)^{\lambda}} \,dx\,dy < M \tilde{J} < \frac{M}{\varepsilon \prod_{i = 1}^{m} ( \lambda _{1} - \frac{\varepsilon}{p} + i - 1)\prod_{j = 1}^{n} ( \lambda _{2} - \frac{\varepsilon}{q} + j - 1)}. \end{aligned}$$
(18)

In view of Fubini’s theorem (cf. [25]), it follows that

$$\begin{aligned} \tilde{I}& = \int _{1}^{\infty} \biggl[ \int _{1}^{\infty} \frac{y^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(x + y)^{\lambda}} \,dy \biggr]x^{\lambda _{1} - \frac{\varepsilon}{p} - 1}\,dx = \int _{1}^{\infty} x^{ - \varepsilon - 1} \biggl[ \int _{\frac{1}{x}}^{\infty} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du \biggr] \,dx\\ &= \int _{1}^{\infty} x^{ - \varepsilon - 1}\biggl[ \int _{\frac{1}{x}}^{1} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du \biggr]\,dx + \int _{1}^{\infty} x^{ - \varepsilon - 1}\biggl[ \int _{1}^{\infty} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du \biggr]\,dx \\ &= \int _{0}^{1} \biggl( \int _{\frac{1}{u}}^{\infty} x^{ - \varepsilon - 1} \,dx\biggr) \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du + \frac{1}{\varepsilon} \int _{1}^{\infty} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du \\ &= \frac{1}{\varepsilon} \biggl[ \int _{0}^{1} \frac{u^{\lambda _{2} + \frac{\varepsilon}{p} - 1}}{(1 + u)^{\lambda}} \,du + \int _{1}^{\infty} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du\biggr]. \end{aligned}$$

Hence, by (18) and the above results, it follows that

$$\begin{aligned} \int _{0}^{1} \frac{u^{\lambda _{2} + \frac{\varepsilon}{p} - 1}}{(1 + u)^{\lambda}} \,du + \int _{1}^{\infty} \frac{u^{\lambda _{2} - \frac{\varepsilon}{q} - 1}}{(1 + u)^{\lambda}} \,du \le \varepsilon \tilde{I} < \frac{M}{\prod_{i = 1}^{m} ( \lambda _{1} - \frac{\varepsilon}{p} + i - 1)\prod_{j = 1}^{n} ( \lambda _{2} - \frac{\varepsilon}{q} + j - 1)}. \end{aligned}$$

Putting \(\varepsilon \to 0^{ +} \) in the above inequality, in view of the continuity of the beta function, we find

$$\begin{aligned} B(\lambda _{1},\lambda _{2}) \le \frac{M}{\prod_{i = 1}^{m} ( \lambda _{1} + i - 1)\prod_{j = 1}^{n} ( \lambda _{2} + j - 1)}, \end{aligned}$$

namely, \(B(\lambda _{1},\lambda _{2})\prod_{i = 1}^{m} (\lambda _{1} + i - 1) \prod_{j = 1}^{n} (\lambda _{2} + j - 1) \le M\), and then

$$\begin{aligned} M = B(\lambda _{1},\lambda _{2})\prod _{i = 1}^{m} (\lambda _{1} + i - 1) \prod _{j = 1}^{n} (\lambda _{2} + j - 1) = \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\lambda _{1} + m,\lambda _{2} + n) \end{aligned}$$

is the best possible constant factor in (15).

The theorem is proved. □

Remark 1

For \(\hat{\lambda}_{1} = \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q},\hat{\lambda}_{2} = \frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p}\), it follows that \(\hat{\lambda}_{1} + \hat{\lambda}_{2} = \lambda \). We find \(0 < \hat{\lambda}_{1} < \frac{\lambda}{p} + \frac{\lambda}{q} = \lambda \), and then \(0 < \hat{\lambda}_{2} = \lambda - \hat{\lambda}_{1} < \lambda \). By Hölder’s inequality (cf. [24]), we can obtain

$$\begin{aligned} 0 &< B(\hat{\lambda}_{1} + m,\hat{\lambda}_{2} + n) = \int _{0}^{\infty} \frac{u^{\hat{\lambda}_{1} + m - 1}}{(1 + u)^{\lambda + m + n}}\,du \\ &= \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda + m + n}}u^{\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} + m - 1}\,du = \int _{0}^{\infty} \frac{1}{(1 + u)^{\lambda + m + n}} \bigl(u^{\frac{\lambda - \lambda _{2} + m - 1}{p}}\bigr) \bigl(u^{\frac{\lambda _{1} + m - 1}{q}}\bigr)\,du \\ &\le \biggl[ \int _{0}^{\infty} \frac{u^{\lambda - \lambda _{2} + m - 1}}{(1 + u)^{\lambda + m + n}}\,du \biggr]^{\frac{1}{p}}\biggl[ \int _{0}^{\infty} \frac{u^{\lambda _{1} + m - 1}}{(1 + u)^{\lambda + m + n}}\,du \biggr]^{\frac{1}{q}} \\ &= B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) < \infty . \end{aligned}$$
(19)

Theorem 2

If the constant factor

$$\begin{aligned} \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \end{aligned}$$

in (14) is the best possible, then we have \(\lambda _{1} + \lambda _{2} = \lambda \).

Proof

By (15) (for \(\lambda _{i} = \hat{\lambda}_{i}\ (i = 1,2)\)), since

$$\begin{aligned} \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \end{aligned}$$

is the best possible constant factor in (15), we have

$$\begin{aligned} &\frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1})\\ &\quad \le \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\hat{\lambda}_{1} + m,\hat{ \lambda}_{2} + n) \quad( \in \mathrm{R} {}_{ +} ), \end{aligned}$$

namely,

$$\begin{aligned} B(\hat{\lambda}_{1} + m,\hat{\lambda}_{2} + n)\ge B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}). \end{aligned}$$

It follows that (19) keeps the form of equality.

We observe that (19) keeps the form of equality if and only if there exist constants A and B, such that they are not both zero and

$$\begin{aligned} Au^{\lambda - \lambda _{2} + m - 1} = Bu^{\lambda _{1} + m - 1}\quad \text{a.e. in }R_{ +} \end{aligned}$$

(cf. [24]). Assuming that \(A \ne 0\), it follows that \(u^{\lambda - \lambda _{2} - \lambda _{1}} = \frac{B}{A}\text{ a.e. in }R_{ +} \), namely, \(\lambda - \lambda _{1} - \lambda _{2} = 0\), and then \(\lambda _{1} + \lambda _{2} = \lambda \).

The theorem is proved. □

Theorem 3

The following statements (i), (ii), (iii), and (iv) are equivalent:

  1. (i)

    Both \(B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1})\) and \(B(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} + m,\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p} + n)\) are independent of \(p,q\);

  2. (ii)

    \(B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) = B(\hat{\lambda}_{1} + m,\hat{\lambda}_{2} + n)\);

  3. (iii)

    \(\lambda _{1} + \lambda _{2} = \lambda \);

  4. (iv)

    The constant factor

    $$\begin{aligned} \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \end{aligned}$$

    in (14) is the best possible.

Proof

(i) ⇒ (ii). In view of the continuity of the beta function. we find

$$\begin{aligned} &B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \\ &\quad= \lim_{p \to \infty} \lim_{q \to 1^{ +}} B^{\frac{1}{p}}( \lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}( \lambda _{1} + m,\lambda + n - \lambda _{1}) = B(\lambda _{1} + m,\lambda + n - \lambda _{1}), \\ &B(\hat{\lambda}_{1} + m,\hat{\lambda}_{2} + n) \\ &\quad= \lim _{p \to \infty} \lim_{q \to 1^{ +}} B \biggl( \frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} + m,\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p} + n \biggr) = B( \lambda _{1} + m,\lambda + n - \lambda _{1}). \end{aligned}$$

Hence, we have

$$\begin{aligned} B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) = B(\hat{\lambda}_{1} + m,\hat{ \lambda}_{2} + n). \end{aligned}$$

(ii) ⇒ (iii). Suppose that \(B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) = B(\hat{\lambda}_{1} + m,\hat{\lambda}_{2} + n)\). Then, (19) keeps the form of equality. In view of the proof of Theorem 2, we have \(\lambda _{1} + \lambda _{2} = \lambda \).

(iii) ⇒ (iv). If \(\lambda _{1} + \lambda _{2} = \lambda \), then by Theorem 1, the constant factor

$$\begin{aligned} &\frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})\\ &\quad\times{} B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) \biggl( = \frac{\Gamma (\lambda + m + n)}{\Gamma (\lambda )}B(\lambda _{1} + m,\lambda _{2} + n) \biggr) \end{aligned}$$

in (14) is the best possible.

(iv) ⇒ (i). By Theorem 2, we have \(\lambda _{1} + \lambda _{2} = \lambda \), and then

$$\begin{aligned} &B^{\frac{1}{p}}(\lambda _{2} + n,\lambda + m - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1} + m,\lambda + n - \lambda _{1}) = B(\lambda _{1} + m,\lambda _{2} + n),\\ &B \biggl(\frac{\lambda - \lambda _{2}}{p} + \frac{\lambda _{1}}{q} + m,\frac{\lambda - \lambda _{1}}{q} + \frac{\lambda _{2}}{p} + n \biggr) = B(\lambda _{1} + m,\lambda _{2} + n). \end{aligned}$$

Both of them are independent of \(p,q\).

Hence, the statements (i), (ii), (iii), and (iv) are equivalent.

The theorem is proved. □

Remark 2

(i) For \(\lambda _{1} + \lambda _{2} = \lambda \) in (12), we have

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{n}(x)G_{n}(y)}{(x + y)^{\lambda + m + n}} \,dx \\ &\quad < B(\lambda _{1} + m,\lambda {}_{2} + n) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \lambda _{1} - m) - 1} F_{m}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(20)

We confirm that the constant factor \(B(\lambda {}_{1} + m,\lambda _{2} + n)\) in (20) is the best possible. Otherwise, we would reach a contradiction by (16) (for \(\lambda _{1} + \lambda _{2} = \lambda \)) that the constant factor in (15) is not the best possible.

(ii) For \(m = n = 0,\lambda = 1,\lambda _{1} = \frac{1}{q},\lambda _{2} = \frac{1}{p}\), both (20) and (15) reduce to (2).

4 Equivalent forms and some particular inequalities

For \(m = 0\) in (14), we have

$$\begin{aligned} I ={}& \int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(x + y)^{\lambda}} \,dx\,dy \\ < {}& \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \\ &{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(21)

In particular, for \(\lambda _{1} + \lambda _{2} = \lambda \), we have

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(x + y)^{\lambda}} \,dx\,dy \\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \lambda _{1}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(22)

where the constant factor \(\frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n)\) is the best possible.

Theorem 4

Inequality (21) is equivalent to the following:

$$\begin{aligned} J&: = \biggl\{ \int _{0}^{\infty} x^{q\hat{\lambda} {}_{1} - 1} \biggl[ \int _{0}^{\infty} \frac{G{}_{0}(y)}{(x + y)^{\lambda}} \,dy \biggr]^{q}\,dx \biggr\} ^{\frac{1}{q}} \\ &< \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(23)

In particular, for \(\lambda _{1} + \lambda _{2} = \lambda \), we reduce (23) to the equivalent form of (22) as follows:

$$\begin{aligned} &\biggl\{ \int _{0}^{\infty} x^{q\lambda {}_{1} - 1} \biggl[ \int _{0}^{\infty} \frac{G_{0}(y)}{(x + y)^{\lambda}} \,dy \biggr]^{q}\,dx \biggr\} ^{\frac{1}{q}} \\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n) \biggl( \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr)^{\frac{1}{q}}, \end{aligned}$$
(24)

where the constant factor \(\frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n)\) is the best possible.

Proof

Suppose that (19) is valid. By Hölder’s inequality, we have

$$\begin{aligned} I = \int _{0}^{\infty} \bigl(x^{\frac{1}{q} - \hat{\lambda}_{1}}F_{0}(x) \bigr) \biggl[x^{ - \frac{1}{q} + \hat{\lambda}_{1}} \int _{0}^{\infty} \frac{G_{0}(y)}{(x + y)^{\lambda}} \,dy \biggr]\,dx\le \biggl\{ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1}) - 1} F_{0}^{p}(x) \,dx \biggr\} ^{\frac{1}{p}}J. \end{aligned}$$
(25)

Then, by (23), we have (21).

On the other hand, assuming that (21) is valid, we set

$$\begin{aligned} F_{0}(x): = x^{q\hat{\lambda} {}_{1} - 1} \biggl[ \int _{0}^{\infty} \frac{G_{0}(y)}{(x + y)^{\lambda}} \,dy \biggr]^{q - 1},\quad x \in \mathrm{R}_{ +}. \end{aligned}$$

If \(J = 0\), then, (23) is naturally valid; if \(J = \infty \), then it is impossible that (23) is valid, namely \(J < \infty \). Suppose that \(0 < J < \infty \). By (21), we have

$$\begin{aligned} &\int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1}) - 1} F_{0}^{p}(x) \,dx\\ &\quad = J^{q} = I\\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1})\\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}},\\ &J = \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{1}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{q}}\\ &\phantom{J }< \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$

namely, (23) follows, which is equivalent to (21).

The constant factor \(\frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n)\) in (24) is the best possible. Otherwise, by (25) (for \(\lambda _{1} + \lambda _{2} = \lambda \)), we would reach a contradiction that the constant factor in (22) is not the best possible.

The theorem is proved. □

Replacing x by \(\frac{1}{x}\), then replacing \(x^{\lambda - 2}F_{0}(\frac{1}{x})\) by \(F_{0}(x)\) in (21) and (23), by simplification, we have

Corollary 1

The following Hardy–Hilbert-type integral inequalities with a nonhomogeneous kernel are equivalent:

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(1 + xy)^{\lambda}} \,dx\,dy \\ &\quad< \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \hat{\lambda}_{2}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(26)
$$\begin{aligned} &\biggl\{ \int _{0}^{\infty} x^{q\hat{\lambda} {}_{2} - 1} \biggl[ \int _{0}^{\infty} \frac{G_{0}(y)}{(1 + xy)^{\lambda}} \,dy \biggr]^{q}\,dx \biggr\} ^{\frac{1}{q}} \\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \biggl[ \int _{0}^{\infty} y^{q(1 - \hat{\lambda}_{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(27)

Moreover, \(\lambda _{1} + \lambda _{2} = \lambda \) if and only if the constant factor

$$\begin{aligned} \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \end{aligned}$$

in (26) and (27) is the best possible.

For \(\lambda _{1} + \lambda _{2} = \lambda \), we have the following equivalent inequalities with the best possible constant factor \(\frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n)\):

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{(1 + xy)^{\lambda}} \,dx\,dy \\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n) \\ &\qquad{}\times \biggl[ \int _{0}^{\infty} x^{p(1 - \lambda _{2}) - 1} F_{0}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(28)
$$\begin{aligned} &\biggl\{ \int _{0}^{\infty} x^{q\lambda {}_{2} - 1} \biggl[ \int _{0}^{\infty} \frac{G_{0}(y)}{(1 + xy)^{\lambda}} \,dy \biggr]^{q}\,dx \biggr\} ^{\frac{1}{q}} \\ &\quad < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n) \biggl[ \int _{0}^{\infty} y^{q(1 - \lambda _{2} - n) - 1} G_{n}^{q}(y) \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(29)

Remark 3

(i) For \(\lambda = 1,\lambda _{1} = \frac{1}{q},\lambda _{2} = \frac{1}{p}\) in (22), (24), (28), and (29), we have the following two couples of equivalent integral inequalities:

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{x + y} \,dx\,dy \\ &\quad < \frac{\pi}{\sin (\pi /p)}\prod_{i = 1}^{n} \biggl(i - \frac{1}{q} \biggr) \biggl( \int _{0}^{\infty} F_{0}^{p}(x) \,dx \biggr)^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(30)
$$\begin{aligned} &\biggl[ \int _{0}^{\infty} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{x + y} \,dy \biggr)^{q}\,dx \biggr]^{\frac{1}{q}} < \frac{\pi}{\sin (\pi /p)}\prod _{i = 1}^{n} \biggl(i - \frac{1}{q} \biggr) \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}; \end{aligned}$$
(31)
$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{1 + xy} \,dx\,dy \\ &\quad < \frac{\pi}{\sin (\pi /p)}\prod_{i = 1}^{n} \biggl(i - \frac{1}{q} \biggr) \biggl( \int _{0}^{\infty} x^{p - 2} F_{0}^{p}(x) \,dx \biggr)^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(32)
$$\begin{aligned} &\biggl[ \int _{0}^{\infty} x^{q - 2} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{1 + xy} \,dy \biggr)^{q}\,dx \biggr]^{\frac{1}{q}} < \frac{\pi}{\sin (\pi /p)}\prod _{i = 1}^{n} \biggl(i - \frac{1}{q} \biggr) \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(33)

(ii) For \(\lambda = 1,\lambda _{1} = \frac{1}{p},\lambda _{2} = \frac{1}{q}\) in (22), (24), (28), and (29), we have the dual forms of (30)–(33) as follows:

$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F{}_{0}(x)G_{0}(y)}{x + y} \,dx\,dy \\ &\quad < \frac{\pi}{\sin (\pi /p)}\prod_{i = 1}^{n} \biggl(i - \frac{1}{p} \biggr) \biggl( \int _{0}^{\infty} x^{p - 2}F_{0}^{p}(x) \,dx \biggr)^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n + \frac{2}{q} - 1}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(34)
$$\begin{aligned} &\biggl[ \int _{0}^{\infty} x^{q - 2} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{x + y} \,dy \biggr)^{q}\,dx \biggr]^{\frac{1}{q}} < \frac{\pi}{\sin (\pi /p)}\prod _{i = 1}^{n} \biggl(i - \frac{1}{p} \biggr) \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n + \frac{2}{q} - 1}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}; \end{aligned}$$
(35)
$$\begin{aligned} &\int _{0}^{\infty} \int _{0}^{\infty} \frac{F{}_{0}(x)G_{0}(y)}{1 + xy} \,dx\,dy \\ &\quad < \frac{\pi}{\sin (\pi /p)}\prod_{i = 1}^{n} \biggl(i - \frac{1}{p} \biggr) \biggl( \int _{0}^{\infty} F_{0}^{p} (x)\,dx \biggr)^{\frac{1}{p}} \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n + \frac{2}{q} - 1}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}, \end{aligned}$$
(36)
$$\begin{aligned} &\biggl[ \int _{0}^{\infty} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{1 + xy} \,dy \biggr)^{q}\,dx \biggr]^{\frac{1}{q}} < \frac{\pi}{\sin (\pi /p)}\prod _{i = 1}^{n} \biggl(i - \frac{1}{p} \biggr) \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n + \frac{2}{q} - 1}} \biggr)^{q} \,dy \biggr]^{\frac{1}{q}}. \end{aligned}$$
(37)

(iii) For \(p = q = 2,(2n - 1)!!: = 1 \cdot 3 \cdot \cdots \cdot (2n - 1)\), both (30) and (34) reduce to

$$\begin{aligned} \int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G_{0}(y)}{x + y} \,dx\,dy < \frac{\pi}{2^{n}}(2n - 1)!! \biggl[ \int _{0}^{\infty} F_{0}^{2}(x) \,dx \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{2} \,dy \biggr]^{\frac{1}{2}}, \end{aligned}$$
(38)

both (31) and (35) reduce to the following equivalent inequality of (38):

$$\begin{aligned} \biggl[ \int _{0}^{\infty} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{x + y} \,dy \biggr)^{2}\,dx \biggr]^{\frac{1}{2}} < \frac{\pi}{2^{n}}(2n - 1)!! \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{2} \,dy \biggr]^{\frac{1}{2}}, \end{aligned}$$
(39)

both (32) and (36) reduce to

$$\begin{aligned} \int _{0}^{\infty} \int _{0}^{\infty} \frac{F_{0}(x)G{}_{0}(y)}{1 + xy} \,dx\,dy < \frac{\pi}{2^{n}}(2n - 1)!! \biggl[ \int _{0}^{\infty} F_{0}^{2}(x) \,dx \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{2} \,dy \biggr]^{\frac{1}{2}}, \end{aligned}$$
(40)

and both (33) and (37) reduce to the following equivalent inequality of (40):

$$\begin{aligned} \biggl[ \int _{0}^{\infty} \biggl( \int _{0}^{\infty} \frac{G_{0}(y)}{1 + xy} \,dy \biggr)^{2}\,dx \biggr]^{\frac{1}{2}} < \frac{\pi}{2^{n}}(2n - 1)!! \biggl[ \int _{0}^{\infty} \biggl(\frac{G_{n}(y)}{y^{n}} \biggr)^{2} \,dy \biggr]^{\frac{1}{2}}. \end{aligned}$$
(41)

The constant factor in the above inequalities (30)–(41) are all the best possible.

5 Operator expressions

We set functions

$$\begin{aligned} \phi (x): = x^{p(1 - \hat{\lambda}_{1}) - 1},\qquad \psi (y): = y^{q(1 - \hat{\lambda}_{2} - n) - 1}, \end{aligned}$$

hence, \(\phi ^{1 - q}(x) = x^{q\hat{\lambda}_{1} - 1}(x,y \in \mathrm{R}_{ +} )\). Define the following real normed spaces:

$$\begin{aligned} &L_{p,\phi} (\mathrm{R}_{ +} ): = \biggl\{ f = f(x); \Vert f \Vert _{p,\phi}: = \biggl( \int _{0}^{\infty} \phi (x) \bigl\vert f(x) \bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}} < \infty \biggr\} ,\\ &L_{q,\psi} (\mathrm{R}_{ +} ): = \biggl\{ \tilde{g} = \tilde{g}(y); \Vert \tilde{g} \Vert _{q,\psi}: = \biggl( \int _{0}^{\infty} \psi (y) \bigl\vert \tilde{g}(y) \bigr\vert ^{q}\,dy\biggr)^{\frac{1}{q}} < \infty \biggr\} , \\ &L_{q,\phi ^{1 - q}}(\mathrm{R}_{ +} ): = \biggl\{ h = h(x); \Vert h \Vert _{p,\phi ^{1 - q}}: = \biggl( \int _{0}^{\infty} \phi ^{1 - q}(x) \bigl\vert h(x) \bigr\vert ^{q}\,dx\biggr)^{\frac{1}{q}} < \infty \biggr\} . \end{aligned}$$

Assuming that \(G_{0}(y)\) is a nonnegative Lebesgue integrable function in any interval \((0,b] \subset R_{ +} (b > 0)\),

$$\begin{aligned} G_{0} \in \tilde{L}(\mathrm{R}_{ +} ): = \bigl\{ g = g(y);g(y) = o \bigl(e^{ty} \bigr)\ (t > 0;y \to \infty ), G_{0} \in L_{q,\psi} (\mathrm{R}_{ +} ) \bigr\} , \end{aligned}$$

setting

$$\begin{aligned} h = h(x),\qquad h(x): = \int _{0}^{\infty} \frac{1}{(x + y)^{\lambda}} G_{0}(y) \,dy,\quad x \in \mathrm{R}_{ +}, \end{aligned}$$
(42)

we can rewrite (23) as follows:

$$\begin{aligned} \Vert h \Vert _{q,\phi ^{1 - q}} \le \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \Vert G_{n} \Vert _{q,\psi} < \infty , \end{aligned}$$

namely, \(h \in L_{q,\phi ^{1 - q}}(\mathrm{R}_{ +} )\).

Definition 1

Define a Hardy–Hilbert-type operator \(T:\tilde{L}(\mathrm{R}_{ +} ) \to L_{q,\phi ^{1 - q}}(\mathrm{R}_{ +} )\) as follows: For any \(G_{0} \in \tilde{L}(\ \mathrm{R}_{ +} ),\ G_{0}(y)\) is a nonnegative Lebesgue integrable function in any interval \((0,b] \subset R_{ +} (b > 0)\), there exists a unique representation \(h \in L_{q,\phi ^{1 - q}}(\mathrm{R}_{ +} )\), satisfying (42). Define the formal inner product of \(F_{0} \in L_{p,\phi} (\mathrm{R}_{ +} )\) and \(TG_{0}\), and the norm of T as follows:

$$\begin{aligned} &(F_{0},TG_{0}): = \int _{0}^{\infty} F_{0}(x) \biggl[ \int _{0}^{\infty} \frac{1}{(x + y)^{\lambda}} G_{0}(y) \,dy \biggr]\,dx = I,\\ &\Vert T \Vert : = \sup_{G_{0}( \ne 0) \in \tilde{L}(R_{ +} )}\frac{ \Vert TG_{0} \Vert _{q,\phi ^{1 - q}}}{ \Vert G_{n} \Vert _{q,\psi}}. \end{aligned}$$

By Theorem 4, we have

Theorem 5

If \(F_{0} \in L_{p,\phi} (\mathrm{R}_{ +} ),G_{0} \in \tilde{L}(\mathrm{R}_{ +} ),\Vert F_{0}\Vert _{p,\phi},\Vert G_{n}\Vert _{q,\psi} > 0\), (\(G_{0}(y)\) is a nonnegative Lebesgue integrable function in any interval \((0,b] \subset R_{ +} (b > 0)\)), then we have the following equivalent inequalities:

$$\begin{aligned} &(F_{0},TG_{0}) < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \Vert F_{0} \Vert _{p,\phi} \Vert G_{n} \Vert _{q,\psi}, \end{aligned}$$
(43)
$$\begin{aligned} &\Vert TG_{0} \Vert _{q,\phi ^{1 - q}} < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}( \lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}( \lambda _{1},\lambda + n - \lambda _{1}) \Vert G_{n} \Vert _{q,\psi}. \end{aligned}$$
(44)

Moreover, \(\lambda _{1} + \lambda _{2} = \lambda \) if and only if the constant factor \(\frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1})\) in (42) and (43) is the best possible, namely,

$$\begin{aligned} \Vert T \Vert = \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1},\lambda _{2} + n). \end{aligned}$$

We also set functions \(\varphi (x): = x^{p(1 - \hat{\lambda}_{2}) - 1}\), hence,

$$\begin{aligned} \varphi ^{1 - q}(x) = x^{q\hat{\lambda}_{2} - 1}\quad(x \in \mathrm{R}_{ +} ), \end{aligned}$$

and define the following real normed spaces:

$$\begin{aligned} &L_{p,\varphi} (\mathrm{R}_{ +} ): = \biggl\{ f = f(x); \Vert f \Vert _{p,\varphi}: = \biggl( \int _{0}^{\infty} \varphi (x) \bigl\vert f(x) \bigr\vert ^{p}\,dx \biggr)^{\frac{1}{p}} < \infty \biggr\} ,\\ &L_{q,\varphi ^{1 - q}}(\mathrm{R}_{ +} ): = \biggl\{ h = h(x); \Vert h \Vert _{p,\varphi ^{1 - q}}: = \biggl( \int _{0}^{\infty} \varphi ^{1 - q}(x) \bigl\vert h(x) \bigr\vert ^{q}\,dx \biggr)^{\frac{1}{q}} < \infty \biggr\} . \end{aligned}$$

Assuming that \(G_{0} \in \tilde{L}(\mathrm{R}_{ +} )\), setting

$$\begin{aligned} H = H(x),\qquad H(x): = \int _{0}^{\infty} \frac{1}{(1 + xy)^{\lambda}} G_{0}(y) \,dy,\quad x \in \mathrm{R}_{ +}, \end{aligned}$$
(45)

we can rewrite (27) as follows:

$$\begin{aligned} \Vert H \Vert _{q,\varphi ^{1 - q}} \le \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \Vert G_{n} \Vert _{q,\psi} < \infty , \end{aligned}$$

namely, \(H \in L_{q,\varphi ^{1 - q}}(\mathrm{R}_{ +} )\).

Definition 2

Define a Hardy–Hilbert-type operator \(T_{1}:\tilde{L}(\mathrm{R}_{ +} ) \to L_{q,\varphi ^{1 - q}}(\mathrm{R}_{ +} )\) as follows: For any \(G_{0} \in \tilde{L}(\ \mathrm{R}_{ +} )\), there exists a unique representation \(H \in L_{q,\varphi ^{1 - q}}(\mathrm{R}_{ +} )\). Define the formal inner product of \(F_{0} \in L_{p,\varphi} (\mathrm{R}_{ +} )\) and \(T_{1}G_{0}\), and the norm of \(T_{1}\) as follows:

$$\begin{aligned} &(F_{0},T_{1}G_{0}): = \int _{0}^{\infty} F_{0}(x) \biggl[ \int _{0}^{\infty} \frac{1}{(1 + xy)^{\lambda}} G_{0}(y) \,dy \biggr]\,dx,\\ &\Vert T_{1} \Vert : = \sup_{G_{0}( \ne \theta ) \in \tilde{L}(R_{ +} )} \frac{ \Vert TG_{0} \Vert _{q,\varphi ^{1 - q}}}{ \Vert G_{n} \Vert _{q,\psi}}. \end{aligned}$$

By Corollary 1, we have

Corollary 2

If \(F_{0} \in L_{p,\varphi} (\mathrm{R}_{ +} ),G_{0} \in \tilde{L}(\mathrm{R}_{ +} ),\Vert F_{0}\Vert _{p,\varphi},\Vert G_{n}\Vert _{q,\psi} > 0\), then we have the following equivalent inequalities:

$$\begin{aligned} &(F_{0},T_{1}G_{0}) < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}( \lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}( \lambda _{1},\lambda + n - \lambda _{1}) \Vert F_{0} \Vert _{p,\varphi} \Vert G_{n} \Vert _{q,\psi}, \end{aligned}$$
(46)
$$\begin{aligned} &\Vert T_{1}G_{0} \Vert _{q,\varphi ^{1 - q}} < \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \Vert G_{n} \Vert _{q,\psi}. \end{aligned}$$
(47)

Moreover, \(\lambda _{1} + \lambda _{2} = \lambda \) if and only if the constant factor

$$\begin{aligned} \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B^{\frac{1}{p}}(\lambda _{2} + n,\lambda - \lambda _{2})B^{\frac{1}{q}}(\lambda _{1},\lambda + n - \lambda _{1}) \end{aligned}$$

in (44) and (45) is the best possible, namely,

$$\begin{aligned} \Vert T_{1} \Vert = \frac{\Gamma (\lambda + n)}{\Gamma (\lambda )}B(\lambda _{1}, \lambda _{2} + n). \end{aligned}$$