1 Introduction

One of the important topics in mathematics, and especially in mathematical analysis, is fractional calculus. Khusainov and Shuklin [13] applied the delayed exponential function and next matrix sine and a delayed matrix cosine to get the exact solution of a nonhomogeneous fractional delay oscillation equation (in short NH-FDO-E). In [4, 5], Li and Wang used a delayed Mittag-Leffler type matrix to solve a generalization of the mentioned problem.

In this paper, we consider the MVFB-space introduced in [6] and a modern class of MVF control functions based on the Wright functions. Our goal is to obtain an approximation for the NH-FDO-E by a new combined method powered by the Laplace inverse transform and MR approach in the MVFB-space [711]. Next, in Sect. 2, we present the basic definitions and concepts that are necessary to investigate the main results and introduce the matrix-valued fuzzy Wright function as a control function. In the third section, we prove the existence of a unique solution and the Hyers–Ulam–Wright stability for the NH-FDO-E in MVFN-spaces using the alternative FPT. Finally, we provide a numerical example as an application of our main theorem.

2 Preliminaries

In this manuscript, we consider the following NH-FDO-E:

$$\begin{aligned} &{D_{0}^{\kappa} \mathrm{u}(\mathfrak{x})=-\rho \mathrm{u}( \mathfrak{x}-\xi )+\mathrm{k}(\mathfrak{x})+\mathcal{L}^{-1} \bigl( \mathrm{u}(\mathfrak{r})\bigr) (\mathfrak{x}),} \quad \mathfrak{x} \in \mathfrak{L}:=[0, L], \end{aligned}$$
(1)
$$\begin{aligned} &\mathrm{u}(\mathfrak{x})= \Upsilon (\mathfrak{x}), \qquad \mathrm{u}^{ \prime}(\mathfrak{x})=\Upsilon ^{\prime} (\mathfrak{x}), \quad - \xi \leq \mathfrak{x}\leq 0, \end{aligned}$$
(2)

where

  • \(\mathrm{k}: \mathfrak{L}\times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) is an integrable function, \(\mathrm{u}(\mathfrak{x}) \in \mathbb{R}^{n}\), \(\rho \in \mathbb{R}^{n \times n}\) denotes constant matrix, \(\Upsilon \in C^{2}([-\xi ,0], \mathbb{R}^{n})\) for \(\xi >0\) being a fixed time.

  • \(D_{0}^{\kappa}\) is the standard Caputo fractional derivative with \(\kappa \in (1,2)\), defined by

    $$ D_{0}^{\kappa} \mathrm{u}(\mathfrak{x})= \int _{0}^{\mathfrak{x}} \frac{(\mathfrak{x}-\mathit{t})^{1-\kappa}}{\Gamma (2-\kappa )} \mathrm{u}^{\prime \prime}(\mathit{t}) \,\mathrm{d} \mathit{t}, $$

    if the integral exists.

Definition 2.1

([12, 13])

The Wright function is defined by the following series representation:

$$ W_{\kappa , \varsigma}(\mathrm{k})=\sum_{\mathfrak{p}=0}^{+\infty} \frac{\mathrm{k}^{\mathfrak{p}}}{\mathfrak{p} ! \Gamma (\kappa \mathfrak{p}+\varsigma )} $$

for \(\kappa >-1\), \(\varsigma >0\), \(\mathrm{k} \in \mathbb{R}\). It is an entire function of order \(1 /(1+\kappa )\), which has also been known as the generalized Bessel (or Bessel Maitland) function.

Now, we present the Laplace transforms.

Definition 2.2

([2])

The classical Laplace transform is defined by the integral formula

$$ (\mathcal{L} \mathrm{k}) (\mathfrak{r})= \int _{0}^{+\infty} \mathrm{k}( \mathfrak{x}) e^{-\mathfrak{r}\mathfrak{x}} \,d \mathfrak{x}, $$

where \(\mathrm{k}(\mathfrak{x})\) is absolutely integrable on \([0,+\infty )\). Let \(J_{0}^{\kappa}\) denote the Riemann–Liouville fractional integral operator of order \(\kappa \in (1,2)\). Assume that the Laplace transforms of \(J_{0}^{\kappa}\mathrm{k}(\mathfrak{x})\) and \(D_{0}^{\kappa}\mathrm{k}(\mathfrak{x})\) exist for \(\mathfrak{x} \leq 0\) and the Laplace transform of \(\mathrm{k}(\mathfrak{x}-\mathrm{b})\) exists for \(\mathfrak{x} \leq \mathrm{b}\). Then we have

  • \(\mathcal{L} (J_{0}^{\kappa} \mathrm{k}(\mathfrak{x}) )( \mathfrak{r})=\mathfrak{r}^{-\kappa} \mathcal{L}(\mathrm{k}( \mathfrak{x}))(\mathfrak{r}) \),

  • \(\mathcal{L} (D_{0}^{\kappa} \mathrm{k}(\mathfrak{x}) )( \mathfrak{r})=\mathfrak{r}^{\kappa} \mathcal{L}(\mathrm{k}( \mathfrak{x}))(\mathfrak{r})-\mathfrak{r}^{\kappa -1} \mathrm{k}(0)- \mathfrak{r}^{\kappa -2} \mathrm{k}^{\prime}(0) \),

  • \(\mathcal{L} (\mathrm{k}_{1}(\mathfrak{x}) )(\mathfrak{r})=e^{- \mathrm{b} \mathfrak{r}} \int _{-\mathrm{b}}^{0} e^{-\mathfrak{x} \mathfrak{r}} \mathrm{k}(\mathfrak{x}) \,d \mathfrak{x}+e^{-\mathrm{b} \mathfrak{r}} \mathcal{L}(\mathrm{k}(\mathfrak{x}))(\mathfrak{r}) \).

Assuming \(\mathfrak{F}_{1}=[0,p]\), \(\mathfrak{F}_{2}=(0,{+\infty})\), \(\mathfrak{F}_{3}=(0,1]\), \(\mathfrak{F}_{4}=[0,{+\infty}]\), \(\mathfrak{F}_{5}=[0,1]\) (\(\mathfrak{F}_{5}^{\circ}=(0,1)\)), and \(\mathfrak{F}_{6} =[0,{+\infty})\), we consider the set of all matrices \(n \times n\) on \(\mathfrak{F}_{5}\) as follows:

$$ \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})= \left \{ \begin{bmatrix} {\ell}_{1} & & \\ & \ddots & \\ & & {\ell}_{n} \end{bmatrix} =\operatorname{diag} [\ell _{1},\ldots ,\ell _{n}], \ell _{1},\ldots ,\ell _{n}{ \in}\mathfrak{F}_{5} \right\}.$$

For the above set, we have

  • \(\boldsymbol{\ell}=\operatorname{diag} [\ell _{1},\ldots , \ell _{n}]\), \(\boldsymbol{\jmath}=\operatorname{diag} [\jmath _{1},\ldots , \jmath _{n}] \in \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \);

  • \(\boldsymbol{\ell}\preceq \boldsymbol{\jmath} \) if and only if \(\ell _{i} \leq \jmath _{i} \) for every \(i=1, \ldots , n \);

  • \(\boldsymbol{\ell} \prec \boldsymbol{\jmath}\) denotes that \(\boldsymbol{\ell} \preceq \boldsymbol{\jmath}\) and \(\boldsymbol{\ell} \neq \boldsymbol{\jmath}\); \({\ell}_{1} < {\jmath}_{i}\) for every \(i=1, \ldots ,n\);

  • Define \(\boldsymbol{\mathrm{b}}=\operatorname{diag} [\mathrm{b},\ldots ,\mathrm{b}] \) in \(\operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\), where \(\mathrm{b} \in \mathfrak{F}_{5}\). Note that \(\operatorname{diag} [1,\ldots ,1]=\boldsymbol{1}\) and \(\operatorname{diag} [0,\ldots ,0]=\boldsymbol{0}\).

Definition 2.3

([6])

A mapping \(\circledast : \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\times \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \to \operatorname{diag} \mathrm{M}_{n}( \mathfrak{F}_{5})\) is called a GTN if:

  1. (1)

    \(\boldsymbol{\ell} {\circledast} \mathbf{1}=\boldsymbol{\ell} \) for all \(\boldsymbol{\ell} \in \operatorname{diag} \mathrm{M}_{n} ( \mathfrak{F}_{5})\) (boundary condition);

  2. (2)

    \(\boldsymbol{\ell} \circledast \boldsymbol{\jmath} = \boldsymbol{\jmath} \circledast \boldsymbol{\ell} \) for all \((\boldsymbol{\ell},\boldsymbol{\jmath}) \in (\operatorname{diag} \mathrm{M}_{n}( \mathfrak{F}_{5}))^{2}\) (commutativity);

  3. (3)

    \(\boldsymbol{\ell} \circledast (\boldsymbol{\jmath} \circledast \boldsymbol{\imath}) = (\boldsymbol{\ell} \circledast \boldsymbol{\jmath})\circledast \boldsymbol{\imath} \) for all \((\boldsymbol{\ell},\boldsymbol{\jmath}, \boldsymbol{\imath})\in (\operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}))^{3}\) (associativity);

  4. (4)

    \(\boldsymbol{\ell}_{1} \preceq \boldsymbol{\ell}_{2}\) and \(\boldsymbol{\jmath}_{1} \preceq \boldsymbol{\jmath}_{2} \) imply that \(\boldsymbol{\ell}_{1} \circledast \boldsymbol{\jmath}_{1} \preceq \boldsymbol{\ell}_{2}\circledast \boldsymbol{\jmath}_{2} \) for all \((\boldsymbol{\ell}_{1}, \boldsymbol{\jmath}_{2} ,\boldsymbol{\jmath}_{1},\boldsymbol{\jmath}_{2}) \in (\operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}))^{4} \) (monotonicity).

  5. (5)

    If for every \(\boldsymbol{\ell}, \boldsymbol{\jmath} \in \operatorname{diag} \mathrm{M}_{n}( \mathfrak{F}_{5})\) and each of sequences \(\{\boldsymbol{\ell}_{q}\}\) and \(\{\boldsymbol{\jmath}_{q}\}\) converges to and ȷ respectively, we get

    $$ \lim_{q\rightarrow +\infty}(\boldsymbol{\ell}_{q}\circledast \boldsymbol{\jmath}_{q})= \boldsymbol{\ell} \circledast \boldsymbol{ \jmath},$$

    which implies the continuity of ⊛ on \(\operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\) (CGTN).

The following are numerical examples of CGTNs:

(i) Define \(\circledast _{M} : \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \times \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \to \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\) such that

$$ \boldsymbol{\ell}\circledast _{M} \boldsymbol{\jmath}= \operatorname{diag}i [ \ell _{1},\ldots ,\ell _{n}] \circledast _{M} \operatorname{diag}[\jmath _{1}, \ldots , \jmath _{n}] =\operatorname{diag} \bigl[\min \{\ell _{1}, \jmath _{1}\}, \ldots ,\min \{\ell _{n},\jmath _{n} \}\bigr],$$

then \(\circledast _{M}\) is CGTN (minimum CGTN). Here is an example of minimum CGTN:

$$\begin{aligned} & \operatorname{diag} [0.3,0.4,0.2 ]\circledast _{M} \operatorname{diag} [0.7,0.5,0.8 ] =\operatorname{diag} [0.3,0.4,0.2 ] \end{aligned}$$

or

$$\begin{aligned} &\begin{bmatrix} 0.3 & & \\ & 0.4 & \\ && 0.2 \end{bmatrix}\circledast _{M} \begin{bmatrix} 0.7 & & \\ & 0.5 & \\ & &0.8 \end{bmatrix} = \begin{bmatrix} 0.3 & & \\ & 0.4 & \\ & & 0.2 \end{bmatrix}. \end{aligned}$$

(ii) Define \(\circledast _{P} : \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \times \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \to \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\) such that

$$ \boldsymbol{\ell} \circledast _{P} \boldsymbol{\jmath} = \operatorname{diag} [ \ell _{1},\ldots ,\ell _{n}]\circledast _{P} \operatorname{diag}[\jmath _{1}, \ldots ,\jmath _{n}] =\operatorname{diag} [\ell _{1}.\jmath _{1},\ldots ,\ell _{n}. \jmath _{n}],$$

then \(\circledast _{P}\) is CGTN (product CGTN). As an example of product CGTN,

$$\begin{aligned} & \operatorname{diag} [0.1,0.6,0.3 ]\circledast _{P} \operatorname{diag} [0.9,0.4,0.7 ] = \operatorname{diag} [0.09,0.24,0.21 ] \end{aligned}$$

or

$$\begin{aligned} &\begin{bmatrix} 0.1 & & \\ & 0.6 & \\ && 0.3 \end{bmatrix}\circledast _{P} \begin{bmatrix} 0.9 & & \\ & 0.4 & \\ & & 0.7 \end{bmatrix}= \begin{bmatrix} 0.09 & & \\ & 0.24 & \\ & & 0.21 \end{bmatrix}. \end{aligned}$$

(iii) Define \(\circledast _{L} : \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \times \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5}) \to \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{5})\) such that

$$ \begin{aligned} \boldsymbol{\ell} \circledast _{L} \boldsymbol{\jmath} &= \operatorname{diag} [ \ell _{1},\ldots , \ell _{n}] \circledast _{L} \operatorname{diag} [\jmath _{1}, \ldots , \jmath _{n}] \\ &=\operatorname{diag} \bigl[\max \{\ell _{1}+ \jmath _{1}-1,0\}, \ldots ,\max \{\ell _{n} + \jmath _{n}-1,0\}\bigr],\end{aligned} $$

then \(\circledast _{P}\) is CGTN (Lukasiewicz CGTN). A simple example of Lukasiewicz CGTN is

$$\begin{aligned} &\operatorname{diag} [0.2,0.1,0.8 ]\circledast _{L} \operatorname{diag} [0.4,0.5,0.6 ]= \operatorname{diag} [0,0,0.4 ] \end{aligned}$$

or

$$\begin{aligned} &\begin{bmatrix} 0.2 & & \\ & 0.1 & \\ && 0.8 \end{bmatrix}\circledast _{L} \begin{bmatrix} 0.4 & & \\ & 0.5 & \\ & & 0.6 \end{bmatrix}= \begin{bmatrix} 0 & & \\ & 0 & \\ & & 0.4 \end{bmatrix}. \end{aligned}$$

For the CGTNs introduced above, we clearly have the following relation:

$$\begin{aligned} &\operatorname{diag} [\ell _{1},\ldots , \ell _{n} ] \circledast _{M} \operatorname{diag} [\jmath _{1},\ldots , \jmath _{n} ] \\ &\quad \succeq \operatorname{diag} [\ell _{1},\ldots , \ell _{n} ] \circledast _{P} \operatorname{diag} [\jmath _{1},\ldots , \jmath _{n} ] \\ &\quad \succeq \operatorname{diag} [\ell _{1},\ldots , \ell _{n} ] \circledast _{L} \operatorname{diag} [\jmath _{1},\ldots , \jmath _{n} ]. \end{aligned}$$

Consider the matrix-valued fuzzy function (MVFF) \(\mathcal{A}: \mathfrak{F}_{1} \times \mathfrak{F}_{2} \to \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{3})\), then we have

  • It is left continuous and an increasing function.

  • \(\lim_{\eta \to {+\infty}}\mathcal{A}(\mathfrak{x},\eta )= \boldsymbol{1}\) for any \(\mathfrak{x} \in \mathfrak{F}_{1}\) and \(\eta \in \mathfrak{F}_{2}\).

  • For MVFFs \(\mathcal{A}\) and \(\mathcal{W}\), the relation “⪯” is defined as follows:

    $$\begin{aligned} &\mathcal{A} \precsim \mathcal{W}\quad \text{if and only if} \quad \mathcal{A}( \mathfrak{x},\eta ) \preceq \mathcal{W}(\mathfrak{x}, \eta ) \quad \text{for all } \eta \in \mathfrak{F}_{2} \text{ and } \mathfrak{x} \in \mathfrak{F}_{1}. \end{aligned}$$

Definition 2.4

Let ⊛ be a CGTN, \(\mathcal{J}\) be a vector space, and \(\mathcal{A} :\mathcal{J} \times \mathfrak{F}_{2}\to \operatorname{diag} \mathrm{M}_{n}(\mathfrak{F}_{3})\) be a matrix-valued fuzzy set (MVFS). Triple \((\mathcal{J},\mathcal{A},\circledast )\) is called an MVFN-space if

  1. (N1)

    \(\mathcal{A}(\epsilon ,\eta )=\boldsymbol{1}\) if and only if \(\epsilon =0\) and \(\eta \in \mathfrak{F}_{2}\);

  2. (N2)

    \(\mathcal{A}({\varkappa} \epsilon ,\eta )=\mathcal{A}(\epsilon , \frac{\eta}{|\varkappa |})\) for all \(\epsilon \in \mathcal{J}\) and \(\varkappa \in \mathbb{C}\) with \(\varkappa \neq 0\);

  3. (N3)

    \(\mathcal{A}(\epsilon +w,\eta +\mathfrak{z})\succeq \mathcal{A}( \epsilon ,\eta )\circledast \mathcal{A}(w,\mathfrak{z})\) for all \(\epsilon , w \in \mathcal{J}\) and any \(\eta ,\mathfrak{z} \in \mathfrak{F}_{2}\);

  4. (N4)

    \(\lim_{\eta \to {+\infty}}\mathcal{A}(\mathfrak{x},\eta )= \boldsymbol{1}\) for any \(\eta \in \mathfrak{F}_{2}\).

When the MVFN-space is complete, we denote it by MVFB-space.

Using the concept of Wright function [13], we define an MVF Wright function \(\boldsymbol{ W_{\kappa ,\varsigma}}\) (\(\boldsymbol{\kappa ,\varsigma}\in \mathfrak{F}_{2}\)) as a control function in the MVFN-spaces by

$$\begin{aligned} &\boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr)= \operatorname{diag} \biggl[W_{\kappa , \varsigma} \biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta} \biggr),W_{\kappa , \varsigma} \biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta} \biggr), W_{\kappa , \varsigma} \biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \biggr], \end{aligned}$$

where the Wright function \(W_{\kappa ,\varsigma}\) is defined as follows:

$$ W_{\kappa ,\varsigma} \biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta} \biggr)= \sum _{\mathfrak{p}=0}^{+\infty} \frac{ ({\frac{- \vert \mathfrak{x} \vert }{\eta}} )^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}.$$

Then, for the MVF Wright function \(\boldsymbol{ W_{\kappa ,\varsigma}}\), we have

  • It is left continuous and an increasing function for positive values.

  • \(\lim_{\eta \to {+\infty}}\boldsymbol{ W_{\kappa ,\varsigma}}(- \frac{|\mathfrak{x}|}{\eta}) =\boldsymbol{1}\).

  • For \(\boldsymbol{ W_{\kappa ,\varsigma}}\) and the matrix-valued fuzzy function \(\boldsymbol{ \Xi _{\kappa ,\varsigma}}\), we have

    $$ \boldsymbol{ \Xi _{\kappa ,\varsigma}}\precsim \boldsymbol{ W_{\kappa ,\varsigma}} \quad \text{if and only if}\quad \boldsymbol{ \Xi _{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \preceq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr),$$

and we further get

  1. (a)

    \(\boldsymbol{ W_{\kappa ,\varsigma}} (- \frac{|\mathfrak{x}|}{\eta} ) >0\).

  2. (b)

    For \(\eta \in \mathfrak{F}_{2}\), \(\boldsymbol{ W_{\kappa ,\varsigma}} (- \frac{|\mathfrak{x}|}{\eta} )=\boldsymbol{1} \) if and only if \(\mathfrak{x} =0\).

    First, we assume that \(\boldsymbol{ W_{\kappa ,\varsigma}} (- \frac{|\mathfrak{x}|}{\eta} )=\boldsymbol{1}\). Then

    $$\begin{aligned} &\operatorname{diag} \biggl[W_{\kappa ,\varsigma} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr),W_{\kappa ,\varsigma} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr), W_{\kappa ,\varsigma} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \biggr] \\ &\quad = \operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{ ({\frac{- \vert \mathfrak{x} \vert }{\eta}} )^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{ ({\frac{- \vert \mathfrak{x} \vert }{\eta}} )^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{ ({\frac{- \vert \mathfrak{x} \vert }{\eta}} )^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )} \Biggr] = \boldsymbol{1}, \end{aligned}$$

    then \(\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{-|\mathfrak{x}|}{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=1\). We have

    $$\begin{aligned} 1+ \sum_{\mathfrak{p}=1}^{+\infty} \frac{({\frac{- \vert \mathfrak{x} \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=1 \quad \text{implies}\quad \sum_{\mathfrak{p}=1}^{+\infty} \frac{({\frac{- \vert \mathfrak{x} \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=0, \end{aligned}$$

    therefore

    $$ \vert \mathfrak{x} \vert =0 \quad \text{and}\quad \mathfrak{x}=0.$$

    Conversely, suppose that \(\mathfrak{x} =0\), then \(\sum_{\mathfrak{p}=1}^{+\infty} \frac{({\frac{-|\mathfrak{x}}{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=0\). As a result

    $$\begin{aligned} \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \mathfrak{x} \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}= 1+ \sum_{\mathfrak{p}=1}^{+\infty} \frac{({\frac{- \vert \mathfrak{x} \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=1 \end{aligned}$$

    yields

    $$ \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \mathfrak{x} \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}=1.$$
  3. (c)

    We shall deduce

    $$ \boldsymbol{ W_{\kappa ,\varsigma}}\biggl(- \frac{ \vert \alpha (\mathfrak{x}) \vert }{\eta}\biggr) = \boldsymbol{ W_{\kappa ,\varsigma}}\biggl(- \frac{ \vert (\mathfrak{x}) \vert }{\frac{\eta}{ \vert \alpha \vert }}\biggr).$$

    Indeed,

    $$\begin{aligned} &\boldsymbol{ W_{\kappa ,\varsigma}}\biggl(-\frac{ \vert \mathfrak{x}) \vert }{\eta}\biggr) \\ &\quad =\operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )} \Biggr] \\ &\quad =\operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha \vert \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha \vert \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \alpha \vert \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )} \Biggr] \\ &\quad =\operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\frac{\eta}{ \vert \alpha \vert }})^{\mathfrak{p}}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\frac{\eta}{ \vert \alpha \vert }})^{\mathfrak{p}}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\tau +\omega )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\frac{\eta}{ \vert \alpha \vert }}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa +\varsigma )} \Biggr] \\ &\quad=\boldsymbol{ W_{\kappa ,\varsigma}}\biggl(- \frac{ \vert (\mathfrak{x}) \vert }{\frac{\eta}{ \vert \alpha \vert }}\biggr). \end{aligned}$$
  4. (d)

    Finally, we prove

    $$\begin{aligned} &\boldsymbol{ W_{\kappa ,\varsigma}}\biggl(- \frac{ \vert (\mathfrak{x}+ \epsilon ) \vert }{\eta +\zeta}\biggr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}}\biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta}\biggr) \circledast \boldsymbol{ W_{\kappa ,\varsigma}}\biggl(- \frac{ \vert \epsilon \vert }{\zeta}\biggr) . \end{aligned}$$

    Suppose that \(\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{|(\mathfrak{x})|}{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )} \leq \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{|\epsilon |}{\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )} \), then

    $$ \frac{- \vert (\mathfrak{x}) \vert }{\eta} \leq \frac{- \vert \epsilon \vert }{\zeta}$$

    implies

    $$\begin{aligned} &\frac{ \vert (\mathfrak{x}) \vert }{\eta} \geq \frac{ \vert \epsilon \vert }{\zeta}, \\ &\frac{\zeta \vert \mathfrak{x} \vert }{\eta}\geq \vert \epsilon \vert , \\ &\frac{\zeta \vert (\mathfrak{x}) \vert }{\eta} + \bigl\vert (\mathfrak{x}) \bigr\vert \geq \bigl\vert ( \epsilon ) \bigr\vert + \vert \mathfrak{x} \vert , \end{aligned}$$

    then

    $$\begin{aligned} &\frac{\zeta \vert (\mathfrak{x}) \vert }{\eta} + \bigl\vert (\mathfrak{x}) \bigr\vert \geq \bigl\vert ( \mathfrak{x}) +(\epsilon ) \bigr\vert , \\ &\bigl\vert (\mathfrak{x}) \bigr\vert \biggl(\frac{\zeta}{\eta}+1\biggr) \geq \bigl\vert (\mathfrak{x} ) +( \epsilon ) \bigr\vert , \\ &\bigl\vert (\mathfrak{x}) \bigr\vert \biggl(\frac{\zeta +\eta}{\eta}\biggr)\geq \bigl\vert (\mathfrak{x}) +( \epsilon ) \bigr\vert , \\ &\frac{ \vert (\mathfrak{x}) \vert }{\eta}\geq \frac{ \vert (\mathfrak{x}) +(\epsilon ) \vert }{\zeta +\eta}, \\ &\frac{- \vert (\mathfrak{x}) \vert }{\eta}\leq \frac{- \vert (\mathfrak{x} ) +(\epsilon ) \vert }{\zeta +\eta} \end{aligned}$$

    yields

    $$ \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x} ) +(\epsilon ) \vert }{\zeta +\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )} \geq \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}.$$

    Therefore, we have

    $$\begin{aligned} & \operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) +(\epsilon ) \vert }{\eta +\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) +(\epsilon ) \vert }{\eta +\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{ \vert \alpha \vert (- \vert (\mathfrak{x} ) +(\epsilon ) \vert )}{\eta +\zeta})^{\mathfrak{p}}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )} \Biggr] \\ &\quad {} \succeq\operatorname{diag} \Biggl[\sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum_{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum_{\mathfrak{p}=0}^{\infty} \frac{({\frac{- \vert (\mathfrak{x}) \vert }{\eta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa ,\varsigma )} \Biggr] \\ &\qquad {}\circledast\operatorname{diag} \Biggl[\sum _{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \epsilon \vert }{\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum _{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert \epsilon \vert }{\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )}, \sum _{\mathfrak{p}=0}^{+\infty} \frac{({\frac{- \vert (\epsilon ) \vert }{\zeta}})^{\mathfrak{p}}}{\mathfrak{p}! \Gamma (\mathfrak{p}\kappa + \varsigma )} \Biggr]. \end{aligned}$$

Consequently, if

$$\begin{aligned} &\mathcal{A}(\epsilon ,\eta ) \\ &\quad =\operatorname{diag} \biggl[W_{\kappa ,\varsigma}\biggl(-\frac{ \vert \epsilon \vert }{\eta} \biggr),W_{ \kappa ,\varsigma}\biggl(-\frac{ \vert \epsilon \vert }{\eta}\biggr), W_{\kappa ,\varsigma} \biggl(- \frac{ \vert \epsilon \vert }{\eta}\biggr) \biggr] \end{aligned}$$

for \(\eta \in \mathfrak{F}_{2}\), then \((\mathcal{J},\mathcal{A},\circledast _{M})\) is an MVFN-space. From now on, we assume \(\circledast =\circledast _{M}\).

Theorem 2.1

([14])

Consider the \(\mathfrak{F}_{4}\)-valued metric space \((\mathcal{Z},d)\). For \(\mathrm{u}, \mathrm{v} \in \mathcal{Z}\), let Δ be the self mapping on \(\mathcal{Z}\) such that

$$ d(\Delta \mathrm{u}, \Delta \mathrm{v}) \leq \lambda d(\mathrm{v}, \mathrm{u}), $$

where \(0 < \lambda <1\) is a Lipschitz constant. Let \(\mathrm{u} \in \mathcal{Z}\), then we have either

  1. (i)

    \(d (\Delta ^{\mathbf{q}} \mathrm{u}, \Delta ^{\mathbf{q}+1} \mathrm{u} )=+\infty \) for all \(\mathbf{q} \in \mathbb{N}\)

or

  1. (ii)

    we can find \(\mathbf{q}_{0} \in \mathbb{N}\) such that \(d (\Delta ^{\mathbf{q}} \mathrm{u}, \Delta ^{\mathbf{q}+1} \mathrm{u} )<+\infty \) for all \(\mathbf{q} \geq \mathbf{q}_{0} \).

If condition (ii) holds, then we always have

  1. (1)

    the fixed point \(\mathrm{v}^{*}\) of Δ is the convergent point of the sequence \(\{\Delta ^{\mathbf{q}} \mathrm{u} \}\);

  2. (2)

    in the set \(\mathcal{Z}^{*}= \{\mathrm{v} \in \mathcal{Z} \mid d ( \Delta ^{\mathbf{q}_{0}} \mathrm{u}, \mathrm{v} )<+\infty \}, \mathrm{v}^{*}\) is the unique fixed point of Δ;

  3. (3)

    \((1-\lambda ) \,d (\mathrm{v}, \mathrm{v}^{*} ) \leq d( \mathrm{v}, \Delta \mathrm{v})\) for every \(\mathrm{v} \in \mathcal{Z}\).

Definition 2.5

Consider the MVF \(\boldsymbol{ W_{\kappa ,\varsigma}}\). We say (1) has Hyers–Ulam–Wright stability when a given differentiable map \(\mathrm{v}(\mathfrak{x})\) satisfies

$$\begin{aligned} &\mathcal{A} \bigl(D_{0}^{\kappa}\mathrm{v}( \mathfrak{x})+\rho \mathrm{v}(\mathfrak{x}-\xi )-\mathrm{k}(\mathfrak{x})- \mathcal{L}^{-1} \bigl(\mathrm{v}(\mathfrak{r})\bigr) (\mathfrak{x}),\eta \bigr)\succeq \boldsymbol{ W_{\kappa ,\varsigma}}\biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta}\biggr) \end{aligned}$$
(3)

for \(\mathfrak{x}\in \mathfrak{F}_{1}\) and there is a solution \(\mathrm{u}(\mathfrak{x})\) of (1) such that, for some \(\lambda >0\),

$$\begin{aligned} \mathcal{A} \bigl(\mathrm{u}(\mathfrak{x}) -\mathrm{v}(\mathfrak{x}), \eta \bigr) \succeq\boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\lambda}} \biggr). \end{aligned}$$

3 Hyers–Ulam–Wright stability for nonhomogeneous fractional delay oscillation equation

Now, we use a new method, the Laplace–Mihet–Radu method, to show (1) is Hyers–Ulam–Wright stable [12] in MVFB-space \((\mathcal{J},\mathcal{A},\circledast )\) with MVFF \(\boldsymbol{W_{\kappa ,\varsigma}}\).

We choose the set \(\mathcal{Z}\) as follows:

$$ \mathcal{Q}=\bigl\{ \mathrm{u}:\mathfrak{L} \rightarrow \mathbb{R}^{n}, \mathrm{u} \text{ is differentiable}\bigr\} $$

and define the mapping \(d:\mathcal{Q}\times \mathcal{Q}\rightarrow [0,+\infty ]\) as

$$\begin{aligned} d(\mathrm{u},\mathrm{v})=\inf \biggl\{ \wp \in {\mathfrak{F}_{6}} : & \mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}(\mathfrak{x}), \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\wp}} \biggr), \forall\ \mathrm{u},\mathrm{v}\in \mathcal{Z}, \mathfrak{x} \in \mathfrak{F}_{1}, \eta \in \mathfrak{F}_{2} \biggr\} . \end{aligned}$$

Theorem 3.1

The \(\mathfrak{F}_{4}\)-valued metric space \((\mathcal{Q}, d)\) is complete.

Proof

We have \(d(\mathrm{u},\mathrm{v})=0\) iff \(\mathrm{u}=\mathrm{v}\). Assuming that \(d(\mathrm{u},\mathrm{v})=0\), then we come to

$$\begin{aligned} \inf \biggl\{ \wp \in {\mathfrak{F}_{6}} :&\mathcal{A} \bigl( \mathrm{u}( \mathfrak{x})-\mathrm{v}(\mathfrak{x}),\eta \bigr)\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{ \wp}} \biggr), \forall \ \mathrm{u}, \mathrm{v} \in \mathcal{Q}, \mathfrak{x} \in \mathfrak{F}_{1}, \eta \in \mathfrak{F}_{2} \biggr\} =0, \end{aligned}$$

and so

$$\begin{aligned} \mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}( \mathfrak{x}), \eta \bigr)\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{ \wp}} \biggr) \end{aligned}$$
(4)

for all \(\wp \in \mathfrak{F}_{6}\). Let \(\wp \to 0\) in (4), we get

$$ \mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}(\mathfrak{x}), \eta \bigr)= \boldsymbol{1}.$$

Thus \(\mathrm{u}(\mathfrak{x})=\mathrm{v}(\mathfrak{x})\) for every \(\mathfrak{x} \in \mathfrak{F}_{1}\) and vice versa. Also we have \(d(\mathrm{u},\mathrm{v})=d(\mathrm{v},\mathrm{u})\) for every \(\mathrm{u},\mathrm{v}\in \mathcal{Q}\). Assuming \(d(\mathrm{u},\mathrm{v})=\alpha _{1}\in{\mathfrak{F}_{2}}\) and \(d(\mathrm{v},\mathrm{w})=\alpha _{2}\in{\mathfrak{F}_{2}}\), then we have

$$\begin{aligned} \mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}(\mathfrak{x}), \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{ \alpha _{1}}} \biggr) \end{aligned}$$

and

$$\begin{aligned} \mathcal{A} \bigl(\mathrm{v}(\mathfrak{x})-\mathrm{w}(\mathfrak{x}), \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{ \alpha _{2}}} \biggr) \end{aligned}$$

for every \(\eta \in \mathfrak{F}_{2} \). Therefore, we get

$$\begin{aligned} \mathcal{A} (\bigl(\mathrm{u}(\mathfrak{x})-\mathrm{w}(\mathfrak{x}), ( \alpha _{1}+\alpha _{2})\eta \bigr)&\succeq \bigl[ \mathcal{A} ( \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}(\mathfrak{x}), (\alpha _{1}) \eta \bigr)\circledast \mathcal{A} (\bigl(\mathrm{v}(\mathfrak{x})- \mathrm{w}( \mathfrak{x}), (\alpha _{2})\eta \bigr) \bigr] \\ & \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \circledast \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \\ &= \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr). \end{aligned}$$

This infers that \(d(\mathrm{v},\mathrm{w})\le d(\mathrm{u},\mathrm{v})+d(\mathrm{v}, \mathrm{w})\). To show the completeness of \((\mathcal{Q}, d)\), we suppose that \(\{\mathrm{v}_{\mathbf{q}}\}_{k}\) is a Cauchy sequence in \((\mathcal{Q}, d)\). Assume that \(\mathfrak{x} \in \mathfrak{F}_{1}\), \(\tau \in{\mathfrak{F}_{2}}\), \(\Im \in{\mathfrak{F}_{5}}^{\circ}\), and \(\eta \in{\mathfrak{F}_{2}}\) in which \(\boldsymbol{ W_{\kappa ,\varsigma}} (- \frac{|\mathfrak{x}|}{\eta} ) \succ \boldsymbol{ 1-\Im}\). For \(\alpha \eta <\tau \), choose \(\mathbf{q}_{0}\in {\mathbb{N}}\) such that

$$ d(\mathrm{v}_{\mathbf{q}},\mathrm{v}_{\mathbf{p}})< \alpha \quad \text{for all } \mathbf{q},\mathbf{p}\ge \mathbf{q}_{0}.$$

Then

$$\begin{aligned} \mathcal{A} \bigl(\mathrm{v}_{\mathbf{q}}(\mathfrak{x})-\mathrm{v}_{ \mathbf{p}}( \mathfrak{x}), \tau \bigr)&\succeq \mathcal{A} \bigl( \mathrm{v}_{\mathbf{q}}( \mathfrak{x})-\mathrm{v}_{\mathbf{p}}( \mathfrak{x}), \alpha \eta \bigr)\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\eta} \biggr)\succ \boldsymbol{1-\Im}, \end{aligned}$$

and so

$$ \mathcal{A} \bigl( \mathrm{v}_{\mathbf{q}}(\mathfrak{x})-\mathrm{v}( \mathfrak{x})_{\mathbf{p}}, \tau \bigr) \succ \boldsymbol{1-\Im},$$

which implies that the sequence \(\{ \mathrm{v}_{\mathbf{q}}(\mathfrak{x})\}_{k}\) is Cauchy in the complete space \((\mathcal{J},\mathcal{A},\circledast )\) on a compact set \(\mathfrak{F}_{1}\). Then it is uniformly convergent to the mapping \(\mathrm{v}:\mathfrak{F}_{1}\to \mathcal{J}\). By the uniform convergence property we conclude that \(\mathrm{v}\in \mathcal{Q}\), and then \((\mathcal{Q}, d)\) is complete. □

Now, we can investigate Hyers–Ulam–Wright stability and get an approximation for the nonhomogeneous fractional delay oscillation equation (1).

Theorem 3.2

Consider the MVFB-space \((\mathcal{J},\mathcal{A},\circledast )\) and the constant θ such that \(0<\theta <1\). Suppose that the following conditions hold:

▶:

By considering the MVFF as the control function, we have

$$\begin{aligned} & \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( \frac{- \vert \mathcal{L} ((\mathfrak{r}))(\mathfrak{x}) \vert }{\eta} \biggr){ \succeq} \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{ \theta}} \biggr). \end{aligned}$$
(5)

Let \(\mathrm{v}:\mathfrak{F}_{1}\rightarrow \mathcal{J}\) be a differentiable function satisfying

$$\begin{aligned} &\mathcal{A} \bigl(D_{0}^{\kappa} \mathrm{v}( \mathfrak{x})+\rho \mathrm{v}(\mathfrak{x}-\xi )-\mathfrak{k}(\mathfrak{x})- \mathcal{L}^{-1} \bigl(\mathrm{v}(\mathfrak{r})\bigr) (\mathfrak{x}), \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\varpi}} \biggr). \end{aligned}$$
(6)

Then we can find a unique solution \(\mathrm{u}:\mathfrak{F}_{1}\rightarrow \mathcal{J}\) for equation (1) such that

$$\begin{aligned} &\mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}( \mathfrak{x}), \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta }{\digamma \varpi}} \biggr), \end{aligned}$$

where \(\digamma =\frac{\theta}{1-\theta}\), and for every \(\mathfrak{x} \in \mathfrak{F}_{1}\) and \(\eta \in{\mathfrak{F}_{2}}\).

Proof

Consider complete \({\mathfrak{F}_{4}}\)-valued metric space \((\mathcal{Q}, d)\) defined in Theorem 3.1.

Step 1. According to the main equation, we define the mapping \(\Delta : \mathcal{Q}\rightarrow \mathcal{Q}\) as follows:

$$\begin{aligned} \Delta \bigl(\mathrm{u}(\mathfrak{x})\bigr)&= \mathcal{L} \bigl(D_{0}^{\kappa} \mathrm{u}(\mathfrak{x})+\rho \mathrm{u}(\mathfrak{x}-\xi )- \mathrm{k}( \mathfrak{x})\bigr) (\mathfrak{r})= \bigl(\mathfrak{r}^{\kappa}+\rho e^{- \mathfrak{r}\xi}\bigr)\mathcal{L}\mathrm{u}(\mathfrak{x})) (\mathfrak{r})- \mathfrak{r}^{\kappa -1} \Upsilon (0) \\ &\quad{}-\mathfrak{r}^{\kappa -2}\Upsilon ^{\prime}(0)+\rho e^{-\mathfrak{r} \xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi}\Upsilon ( \mathfrak{x}) \,\mathrm{d}\mathfrak{x} - \mathcal{L}\bigl(\mathrm{k}(\mathfrak{x}) \bigr) ( \mathfrak{r}) \end{aligned}$$
(7)

for \(\mathfrak{x} \in \mathfrak{F}_{1} \), and we show that Δ is a strictly contractive mapping.

Let \(\mathrm{u},\mathrm{v}\in \mathcal{Q}\) and consider the coefficient \(B_{\mathrm{u}\mathrm{v}}\in \mathfrak{F}_{4}\) with \(d(\mathrm{u},\mathrm{v})\leq {B}_{\mathrm{u}\mathrm{v}}\), thus

$$\begin{aligned} &\mathcal{A} \bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}(\mathfrak{x}),B_{ \mathrm{u}\mathrm{v}} \eta \bigr) \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl(-\frac{ \vert \mathfrak{x} \vert }{\eta} \biggr) \end{aligned}$$

for all \(\mathrm{u},\mathrm{v} \in \mathcal{Q}\), \(\mathfrak{x} \in \mathfrak{F}_{1}\), and \(\eta \in {\mathfrak{F}_{2}}\). Applying (N2) and (N3), we have

$$\begin{aligned} \mathcal{A} \bigl(\Delta \mathrm{u}(\mathfrak{x})-\Delta \mathrm{v}( \mathfrak{x}), {B}_{\mathrm{u}\mathrm{v}} \eta \bigr) &=\mathcal{A} ( \bigl( \mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}\bigr)\mathcal{L}\biggl( \mathrm{u}(\mathfrak{x}) (\mathfrak{r})-\mathfrak{r}^{\kappa -1} \Upsilon (0) \\ &\quad{}-\mathfrak{r}^{\kappa -2}\Upsilon ^{\prime}(0)+\rho e^{-\mathfrak{r} \xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi}\Upsilon ( \mathfrak{x}) \,\mathrm{d}\mathfrak{x} - \mathcal{L}\bigl(\mathrm{k}(\mathfrak{x}) \bigr) ( \mathfrak{r}) \\ &\quad{}- \bigl(\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}\bigr) \mathcal{L}\bigl( \mathrm{v}(\mathfrak{x})\bigr) (\mathfrak{r})+ \mathfrak{r}^{\kappa -1} \Upsilon (0) \\ &\quad{}+\mathfrak{r}^{\kappa -2}\Upsilon ^{\prime}(0)_{\rho }e^{- \mathfrak{r}\xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi}\Upsilon ( \mathfrak{x})\,\mathrm{d}\mathfrak{x} + \mathcal{L}\bigl(\mathrm{k}( \mathfrak{x}) \bigr) (\mathfrak{r}), \eta \biggr) \\ &=\mathcal{A} \bigl(\bigl(\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}\bigr) \mathcal{L}\bigl(\mathrm{u}(\mathfrak{x})\bigr) ( \mathfrak{r})- \bigl(\mathfrak{r}^{ \kappa}+\rho e^{-\mathfrak{r}\xi}\bigr) \mathcal{L}\bigl(\mathrm{v}( \mathfrak{x})\bigr) (\mathfrak{r}), \eta \bigr) \\ &=\mathcal{A} \bigl(\bigl(\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}\bigr) \mathcal{L}\bigl(\mathrm{u}(\mathfrak{x})-\mathrm{v}( \mathfrak{x})\bigr) ( \mathfrak{r}), \eta \bigr) \\ &=\mathcal{A} \biggl( \mathcal{L}\bigl( \bigl\vert \mathrm{u}( \mathfrak{x})-\mathrm{v}( \mathfrak{x}) \bigr\vert \bigr) (\mathfrak{r}), \frac{\eta}{ \vert (\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}) \vert } \biggr) \\ &\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( \frac{-\mathcal{L}(\mathfrak{x})(\mathfrak{r})|}{\frac{\eta}{{B}_{\mathrm{u}\mathrm{v}} \vert (\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}) \vert }} \biggr) \\ &\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( \frac{- \vert \mathfrak{x} \vert }{\frac{\eta}{{B}_{\mathrm{u}\mathrm{v}}\theta \vert (\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}) \vert }} \biggr) \\ &\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( \frac{- \vert \mathfrak{x} \vert }{\frac{\eta}{{B}_{\mathrm{u}\mathrm{v}}\theta}} \biggr), \end{aligned}$$
(8)

which implies that

$$ d(\Delta \mathrm{u},\Delta \mathrm{v}) \leq \theta {B}_{\mathrm{u} \mathrm{v}},$$

and so

$$ d(\Delta \mathrm{u},\Delta \mathrm{v})\leq \theta d(\mathrm{u}, \mathrm{v}),$$

where \(0< \theta <1\), therefore Δ is a contractive mapping.

Step 2. We will show that \(d(\Delta (\mathrm{v}),\mathrm{v})<+\infty \).

Let \(\mathrm{v}\in \mathfrak{L}\), we have

$$\begin{aligned} &\mathcal{A} \bigl(\Delta \bigl(\mathrm{v}(\mathfrak{x})\bigr)- \mathrm{v}( \mathfrak{x}),\eta \bigr) \\ &\quad=\mathcal{A} (\mathcal{L}\bigl( D_{0}^{\kappa} \mathrm{v}( \mathfrak{x})+\rho \mathrm{v}(\mathfrak{x}-\xi )-\mathrm{k}( \mathfrak{x})-\mathcal{L}^{-1}\bigl(\mathrm{v}(\mathfrak{r})\bigr) ( \mathfrak{x}), \eta \bigr) \\ &\quad=\mathcal{A} \biggl( \bigl(\mathfrak{r}^{\kappa}+\rho e^{-\mathfrak{r}\xi}\bigr) \mathcal{L}\bigl(\mathrm{v}(\mathfrak{x})\bigr) ( \mathfrak{r})-\mathfrak{r}^{ \kappa -1} \Upsilon (0) -\mathfrak{r}^{\kappa -2} \Upsilon ^{\prime}(0)\\ & \qquad {}+ \rho e^{-\mathfrak{r}\xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi} \Upsilon ( \mathfrak{x})\,\mathrm{d}\mathfrak{x} - \mathcal{L}\bigl( \mathrm{k}(\mathfrak{x}) \bigr) (\mathfrak{r}) -\mathrm{v}(\mathfrak{x}), \eta \biggr) \\ &\quad\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( - \frac{\mathcal{L}( \vert \mathfrak{r} \vert )(\mathfrak{x})}{\frac{\eta}{\varpi}} \biggr) \\ &\quad\succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( - \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\varpi \theta}} \biggr). \end{aligned}$$
(9)

Consequently,

$$\begin{aligned} d(\Delta \mathrm{v},\mathrm{v}) \leq \varpi \theta < {+\infty }, \quad \theta < 1, \end{aligned}$$
(10)

for every \(\eta \in{\mathfrak{F}_{2}}\). Then we have \(d(\Delta \mathrm{v},\mathrm{v})<{+\infty}\).

Therefore, all the conditions in (ii) of Theorem 2.1 hold. Then we have

  1. (1)

    The sequence \(\{\Delta ^{\mathbf{q}} \mathrm{v}\}\) converges to a fixed point such as v.

  2. (2)

    The unique element v is in the set \(\mathcal{Q}^{\ast}=\{ \mathrm{v}\in \mathcal{Q}: d(\Delta \mathrm{v}, \mathrm{v})<+\infty \}\) and is the unique fixed point of Δ, it means that \(\Delta \mathrm{v}=\mathrm{v}\) or equivalently

    $$\begin{aligned} \mathrm{v}(\mathfrak{x})&= \bigl(\mathfrak{r}^{\kappa}+\rho e^{- \mathfrak{r}\xi}\bigr)\mathcal{L}\bigl(\mathrm{u}(\mathfrak{x})\bigr) ( \mathfrak{r})- \mathfrak{r}^{\kappa -1} \Upsilon (0) \\ &\quad{}-\mathfrak{r}^{\kappa -2}\Upsilon ^{\prime}(0)+\rho e^{-\mathfrak{r} \xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi}\Upsilon ( \mathfrak{x}) \,\mathrm{d}\mathfrak{x} - \mathcal{L}\bigl(\mathrm{k}(\mathfrak{x}) \bigr) ( \mathfrak{r}). \end{aligned}$$
    (11)

Since u is a differentiable function, by the NH-FDO-E and according to equation (11), we have

(12)
  1. (3)

    Using inequality (10), we get

    $$\begin{aligned} d(\mathrm{u},\mathrm{v}) \leq \frac{1}{1-\theta}d(\Delta \mathrm{v}, \mathrm{v}) \leq \frac{\varpi \theta}{1-\theta}, \end{aligned}$$

    thus, equation (1) has the Hyers–Ulam–Wright stability property.

Now, we show the uniqueness of the obtained point. For convenience, we consider

and let h be another differentiable function satisfying equation (12), and this means that the following equation holds:

(13)

We are ready to prove that h is a fixed point of Δ and \(\mathrm{h}\in \mathcal{Q}^{\ast}\). Using equation (13), we get \(\Delta \mathrm{h}= \mathrm{h}\). Now, we show that \(d(\Delta \mathrm{v}, \mathrm{h})<+\infty \). Let \(\mathrm{v}\in \mathcal{Q}\), , and using equation (13), we get

then

 □

4 Example

Now, we provide a numerical example to demonstrate the main results obtained.

Example 4.1

Consider the following the NH-FDO-E:

$$\begin{aligned} &D_{0}^{\frac{1}{2}}\mathrm{u}(\mathfrak{x})=-\rho \mathrm{u}\biggl( \mathfrak{x}-\frac{1}{7}\biggr)+ \frac{(\mathfrak{x}-1)^{-\frac{1}{4}} \sin (\mathfrak{x}-1)}{64(1+\sqrt{\mathfrak{x}-1})(1+ \vert \mathfrak{x} \vert )}+ \mathcal{L}^{-1}\bigl( \mathrm{u}(\mathfrak{r})\bigr) (\mathfrak{x}), \end{aligned}$$
(14)
$$\begin{aligned} & \mathrm{u}(\mathfrak{x})=\bigl[\mathrm{u}_{1}(\mathfrak{x}), \mathrm{u}_{2}( \mathfrak{x})\bigr]^{T}, \qquad \Upsilon ( \mathfrak{x})=\bigl[3 \mathfrak{x}, 4 \mathfrak{x}^{2} \bigr]^{T}, \quad -\xi \leq \mathfrak{x} \leq 0, \end{aligned}$$
(15)

where \(\kappa =\frac{1}{2}\), \(\xi =\frac{1}{7}\), and ρ= [ 3 5 0 0 2 5 ] . Assume that the following condition is true for the given continuous function:

▶:
$$\begin{aligned} & \boldsymbol{ W_{\frac{1}{2},\varsigma}} \biggl( - \frac{ \vert \mathcal{L} ((s))(\mathfrak{x}) \vert }{\eta} \biggr)\succeq \boldsymbol{ W_{\frac{1}{2},\varsigma}} \biggl(- \frac{ \vert \mathfrak{x} \vert }{4\eta} \biggr). \end{aligned}$$

Let be a differentiable function such that

$$\begin{aligned} &{{\mathcal{A}} { \biggl( D_{0}^{\frac{1}{2}} \mathrm{v}({\mathfrak{x}})+ \rho \mathrm{v}\biggl({\mathfrak{x}}- \frac{1}{7}\biggr)- \frac{({\mathfrak{x}}-1)^{-\frac{1}{4}} \sin ({\mathfrak{x}}-1)}{64(1+\sqrt{{\mathfrak{x}}-1})(1+ \vert {\mathfrak{x}} \vert )}-{ \mathcal{L}}^{-1}\bigl({ \mathrm{u}}(s)\bigr) ({\mathfrak{x}}), \eta \biggr)}} \end{aligned}$$
(16)
$$\begin{aligned} &\quad =\operatorname{diag} \biggl[ {{W}_{\frac{1}{2},\varsigma}} \biggl(- \frac {- \vert D_{0}^{\frac{1}{2}} \mathrm{v}(\mathfrak{x})+\rho \mathrm{v}(\mathfrak{x}-\frac{1}{7})-\frac{(\mathfrak{x}-1)^{-\frac{1}{4}} \sin (\mathfrak{x}-1)}{64(1+\sqrt{\mathfrak{x}-1})(1+ \vert \mathfrak{x} \vert )}-\mathcal{L}^{-1}(\mathrm{u}(\mathfrak{r}))(\mathfrak{x}) \vert }{\eta} \biggr), \\ &\qquad W_{\frac{1}{2},\varsigma} \biggl(- \frac {- \vert D_{0}^{\frac{1}{2}} \mathrm{v}(\mathfrak{x})+\rho \mathrm{v}(\mathfrak{x}-\frac{1}{7})-\frac{(\mathfrak{x}-1)^{-\frac{1}{4}} \sin (\mathfrak{x}-1)}{64(1+\sqrt{\mathfrak{x}-1})(1+ \vert \mathfrak{x} \vert )}-\mathcal{L}^{-1}(\mathrm{v}(\mathfrak{r}))(\mathfrak{x}) \vert }{\eta} \biggr) \biggr] \\ &\quad \succeq W_{\frac{1}{2},\varsigma} \biggl(- \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\varpi}} \biggr) , \end{aligned}$$
(17)

then v is a solution of the inequality

A ( v ( x ) ( r κ + ρ e r ξ ) L ( v ( x ) ) ( r ) r κ 1 ϒ ( 0 ) s κ 2 ϒ ( 0 ) + ρ e r ξ ξ 0 e r ξ ϒ ( x ) d x L ( ( x 1 ) 1 4 sin ( x 1 ) 64 ( 1 + x 1 ) ( 1 + | x | ) ) ( r ) , η ) = diag [ W 1 2 , ς ( ( | v ( x ) ( r κ + ρ e r ξ ) L ( v ( x ) ) ( r ) r κ 1 ϒ ( 0 ) r κ 2 ϒ ( 0 ) + η e r ξ ξ 0 e r ξ ϒ ( x ) d x £ ( ( x 1 ) 1 4 sin ( x 1 ) 64 ( 1 + x 1 ) ( 1 + | x | ) ) ( r ) | ) / η ) , W 1 2 , ς ( ( | v ( x ) ( r κ + ρ e r ξ ) L ( v ( x ) ) ( r ) r κ 1 ϒ ( 0 ) r κ 2 ϒ ( 0 ) + ρ e r ξ ξ 0 e r ξ ϒ ( x ) d x L ( ( x 1 ) 1 4 sin ( x 1 ) 64 ( 1 + x 1 ) ( 1 + | x | ) ) ( r ) | ) / η ) ] W 1 2 , ς ( | L ( r ) ( x ) | η ϖ ) W κ , ς ( | x | 4 η ϖ ) ,

where \(\Upsilon (\mathfrak{x})=[3 \mathfrak{x}, 4 \mathfrak{x}^{2}]^{T}\). Thus we can find a unique differentiable function from (14) such that for each \(\varrho \in [1,2]\) we have

$$\begin{aligned} \Delta \bigl(\mathrm{u}(\mathfrak{x})\bigr)&= \bigl(\mathfrak{r}^{\kappa}+ \rho e^{- \mathfrak{r}\xi}\bigr)\mathcal{L}\bigl(\mathrm{u}(\mathfrak{x})\bigr) ( \mathfrak{r})- \mathfrak{r}^{\kappa -1} \Upsilon (0) \\ &\quad{}-\mathfrak{r}^{\kappa -2}\Upsilon ^{\prime}(0)+\rho e^{-\mathfrak{r} \xi} \int _{-\xi}^{0} e^{-\mathfrak{r}\xi}\Upsilon ( \mathfrak{x}) \,\mathrm{d}\mathfrak{x} - \mathcal{L}\biggl( \frac{(\mathfrak{x}-1)^{-\frac{1}{4}} \sin (\mathfrak{x}-1)}{64(1+\sqrt{\mathfrak{x}-1})(1+ \vert \mathfrak{x} \vert )} \biggr) ( \mathfrak{r}). \end{aligned}$$

Therefore,

$$\begin{aligned} d(\mathrm{u},\mathrm{v}) \leq \digamma \varpi \end{aligned}$$

and

$$\begin{aligned} & \mathcal{A} \bigl( \mathrm{v}(\mathfrak{x})-\mathrm{u}(\mathfrak{x}), \eta \bigr)\\ &\quad \succeq \operatorname{diag} \biggl[W_{\kappa ,\varsigma}\biggl(- \frac{ \vert \mathrm{v}(\mathfrak{x})-\mathrm{u}(\mathfrak{x}) \vert }{\eta}\biggr), W_{ \kappa ,\varsigma}\biggl(- \frac{ \vert \mathrm{v}(\mathfrak{x})-\mathrm{u}(\mathfrak{x}) \vert }{\eta}\biggr), W_{ \kappa ,\varsigma}\biggl(- \frac{ \vert \mathrm{v}(\mathfrak{x})-\mathrm{u}(\mathfrak{x}) \vert }{\eta}\biggr) \biggr] \\ &\quad \succeq \boldsymbol{ W_{\kappa ,\varsigma}} \biggl( - \frac{ \vert \mathfrak{x} \vert }{\frac{\eta}{\digamma \varpi}} \biggr), \end{aligned}$$

where in \(\digamma =\frac{1}{3}\). See Fig. 1.

Figure 1
figure 1

Graphs related to the exact solution of the NH-FDO-E (14) for \(\xi =\frac{1}{7}\), \(\kappa =\frac{1}{2}\)