1 Introduction and motivations

The seminal work of Obata [30] has become a basic tool of investigation in geometric analysis. Obata [30] provided a characterization theorem for the standard sphere in terms of a differential equation, nowadays famous as Obata equation. If \((\Omega ^{n}, g)\) is a complete manifold, then the function ω is nonconstant and satisfying the ODE

$$ \mathit{Hess}(\omega )+c\omega g=0 $$
(1.1)

if and only if there is an isometry between \((\Omega ^{n}, g)\) and the sphere \(\mathbb{S}^{n}(c)\), where c denotes the sectional curvature. If \(c=1\), then \((\Omega ^{n}, g)\) and the unit sphere \(\mathbb{S}^{n}\) are congruent. Many investigations have been dedicated to this subject, and therefore, characterization of the Euclidean space \(\mathbb{R}^{n}\), the Euclidean sphere \(\mathbb{S}^{n}\), and the complex projective space \(\mathbb{C}P^{n}\) are recognized fields in differential geometry and studied in some researches, e.g., [110, 1315, 2025]. In particular, the Euclidean space \(\mathbb{R}^{n}\) is designated through the differential equation \(\nabla ^{2}\omega =cg\), where c is a positive constant, which was proven by Tashiro [32]. In [27], Lichnerowicz established that if the first nonzero eigenvalue \(\mu _{1}\) of Laplace operator of the compact manifold \((\Omega ^{n}, g)\) with \(\mathit{Ric}\geq n-1\) is \(\mu _{1}=n\), then \((\Omega ^{n}, g)\) is isometric to the sphere \(\mathbb{S}^{n}\). Hence, Obata’s theorem can be utilized to address the equality condition of Lichnerowicz’s eigenvalue. Deshmukh–Al-Solamy [25] proved that an n-dimensional Riemannian manifold \((\Omega ^{n}, g)\) satisfying \(0<\mathit{Ric}\leq (n-1)(2-\frac{nc}{\mu _{1}}c)\) for a constant c, where \(\mu _{1}\) is the first eigenvalue of the Laplacian, is isometric to \(\mathbb{S}^{n}(c)\) if \(\Omega ^{n}\) admits a nonzero conformal gradient vector field. They also proved that if \(\Omega ^{n}\) is an Einstein manifold such that Einstein constant is \(\mu =(n-1)c\), then \(\Omega ^{n}\) is isometric to \(\mathbb{S}^{n}(c)\) with \(c>0\) if it admits a conformal gradient vector field. Taking account of ODE (1.1), Barros et al. [11] showed that the gradient almost Ricci soliton \((\Omega ^{n}, g, \nabla \omega , \lambda )\) that is compact is isometric to the Euclidean sphere with Codazzi–Ricci tensor and constant sectional curvature. For more terminology of Obata equation, see [30]. Motivated by the previous studies, we will establish the following results:

Theorem 1.1

Let \(\Upsilon :\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2} \longrightarrow \mathbb{M}^{2m+1}(\epsilon )\) be a C-totally real isometric embedding of the warped product submanifold \(\Omega ^{n}\) into a cosymplectic space form \(\mathbb{M}^{2m+1}(\epsilon )\) with nonnegative Ricci curvature. Then, the compact and minimal base \(\mathbb{N}_{1}\) is isometric to the Euclidean sphere \(\mathbb{S}^{m_{1}}(\sqrt{\frac{\lambda _{1}}{m_{1}}})\) if the following equality holds:

$$ \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}=\frac{\lambda _{1}}{m_{1}m_{2}} \bigl\{ \epsilon (1-n-m_{1}m_{2} )-n^{2} \vert \mathbb{H} \vert ^{2} \bigr\} , $$
(1.2)

where \(\lambda _{1}>0\) is the eigenvalue connected to the eigenfunction \(\omega =\ln f\) and \(\mathit{Hess}(\omega )\) is a Hessian tensor for the function ω. Moreover, here the constant curvature c is equal to \(\sqrt{\frac{\lambda _{1}}{m_{1}}}\). In particular, if \(\lambda _{1}=m_{1}\) satisfies the condition

$$ \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}=\frac{1}{m_{2}} \bigl\{ \epsilon (1-n- \lambda _{1}m_{2} )-n^{2} \vert \mathbb{H} \vert ^{2} \bigr\} , $$
(1.3)

then the base \(\mathbb{N}_{1}\) is isometric to the standard sphere \(\mathbb{S}^{m_{1}}\).

From the Bochner formula, we are able to prove the following result:

Theorem 1.2

Let \(\Upsilon :\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2} \longrightarrow \mathbb{M}^{2m+1}(\epsilon )\) be a C-totally real isometric embedding for the warped product submanifold \(\Omega ^{n}\) to the cosymplectic space form \(\mathbb{M}^{2m+1}(\epsilon )\) with base \(\mathbb{N}_{1}\) being minimal and compact. If the Ricci curvature of \(\Omega ^{n}\) is nonnegative, then \(\mathbb{N}_{1}\) is isometric to the sphere \(\mathbb{S}^{m_{1}}(c)\) with constant curvature equal to \(c=\sqrt{\frac{\lambda _{1}}{m_{1}}}\) if the following equality holds:

$$ \vert \mathbb{H} \vert ^{2}= \frac{\epsilon (1-m_{1}m_{2}-n)}{n^{2}}, $$
(1.4)

where \(\lambda _{1}>0\) is an eigenvalue associated with the eigenfunction \(\omega =\ln f\). Moreover, \(n=\dim \Omega \), \(m_{1}=\dim \mathbb{N}_{1}\), and \(m_{2}=\dim \mathbb{N}_{2}\).

Remark 1.1

For examples of C-totally real isometric immersions from warped product manifolds, see [31, 34].

2 Preliminaries and notations

Let \((\widetilde{\mathbb{M}}, g)\) be an odd-dimensional \(C^{\infty }\)-manifold equipped with an almost contact structure \((\varphi ,\kappa ,\eta )\) such that

$$\begin{aligned}& \varphi ^{2} =-I+\eta \otimes \kappa , \qquad \eta (\kappa )=1, \\& \varphi (\kappa ) =0, \qquad \eta \circ \varphi =0, \end{aligned}$$
(2.1)
$$\begin{aligned}& g(\varphi \mathbb{W}_{1}, \varphi \mathbb{W}_{2}) =g( \mathbb{W}_{1}, \mathbb{W}_{2})-\eta ( \mathbb{W}_{1})\eta (\mathbb{W}_{2}), \\& \eta (\mathbb{W}_{1}) =g(\mathbb{W}_{1}, \kappa ) \end{aligned}$$
(2.2)

for any \(\mathbb{W}_{1}, \mathbb{W}_{2}\in \Gamma (T\widetilde{\mathbb{M}})\). Of course, the notations are well known: κ is a structure vector field, \((1, 1)\)-type tensor field is denoted by φ, and η is the dual 1-form. Moreover, the tonsorial equation for a cosymplectic manifold [7] with the structure \((\varphi ,\kappa ,\eta )\) is given by

$$ (\widetilde{\nabla }_{\mathbb{W}_{1}}\varphi ) \mathbb{W}_{2}=0 $$
(2.3)

if we choose two vector fields \(\mathbb{W}_{1}\), \(\mathbb{W}_{2}\) over \(\widetilde{\mathbb{M}}\) such that ∇̃ is the Riemannian connection corresponding to g. Assume that \(\mathbb{\widetilde{M}}^{2m+1}(\epsilon )\) is a cosymplectic space form with constant φ-sectional curvature ϵ, then its curvature tensor is

$$\begin{aligned} \widetilde{R}(\mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4})={}& \frac{\epsilon }{4} \bigl\{ g(\mathbb{W}_{2}, \mathbb{W}_{3})g( \mathbb{W}_{1}, \mathbb{W}_{4})-g(\mathbb{W}_{1}, \mathbb{W}_{3})g(\mathbb{W}_{2}, \mathbb{W}_{4}) \\ &{}+\eta (\mathbb{W}_{1})\eta (\mathbb{W}_{3})g( \mathbb{W}_{2}, \mathbb{W}_{4})+\eta ( \mathbb{W}_{4})\eta (\mathbb{W}_{2})g( \mathbb{W}_{1}, \mathbb{W}_{3}) \\ &{}-\eta (\mathbb{W}_{2})\eta (\mathbb{W}_{3})g( \mathbb{W}_{1}, \mathbb{W}_{4})-\eta ( \mathbb{W}_{1})g(\mathbb{W}_{2}, \mathbb{W}_{3}) \eta (\mathbb{W}_{4}) \\ &{}+g(\varphi \mathbb{W}_{2}, \mathbb{W}_{3})g(\varphi \mathbb{W}_{1}, \mathbb{W}_{4})-g(\varphi \mathbb{W}_{1}, \mathbb{W}_{3})g(\varphi \mathbb{W}_{2}, \mathbb{W}_{4}) \\ &{}+2g(\mathbb{W}_{1}, \varphi \mathbb{W}_{2})g(\varphi \mathbb{W}_{3}, \mathbb{W}_{4}) \bigr\} \end{aligned}$$
(2.4)

for all \(\mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4}\in \Gamma (T\widetilde{\mathbb{M}})\). Moreover, if the structure vector field κ belongs to the normal space of \(\Omega ^{n}\), then \(\Omega ^{n}\) is said to be a C-totally real submanifold; for more details, see [7, 26, 28, 32, 33]. It should be noted that the curvature tensor for \(\Omega ^{n}\) in cosymplectic space form \(\mathbb{\widetilde{M}}^{2m+1}(\epsilon )\) is defined as

$$ \widetilde{R}(\mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4})= \frac{\epsilon }{4} \bigl\{ g(\mathbb{W}_{2}, \mathbb{W}_{3})g( \mathbb{W}_{1}, \mathbb{W}_{4})-g(\mathbb{W}_{1}, \mathbb{W}_{3})g(\mathbb{W}_{2}, \mathbb{W}_{4}) \bigr\} . $$
(2.5)

Suppose \(\Omega ^{n}\) is a Riemannian submanifold of a Riemannian manifold \(\widetilde{\mathbb{M}}^{2m+1}\) considering induced metric g, ∇ and \(\nabla ^{\perp }\) are connections along TΩ and \(T^{\perp }\Omega \) of \(\Omega ^{n}\), where TΩ is a tangent bundle and \(T^{\perp }\Omega \) is the normal bundle of \(\Omega ^{n}\). Therefore, the Gauss and Weingarten formulae are written as \(\widetilde{\nabla }_{\mathbb{W}_{1}}\mathbb{W}_{2}=\nabla _{\mathbb{W}_{1}} \mathbb{W}_{2}+\boldsymbol{\zeta }(\mathbb{W}_{1},\mathbb{W}_{2})\) and \(\widetilde{\nabla }_{\mathbb{W}_{1}}\xi =-A_{\xi }\mathbb{W}_{1}+ \nabla ^{\perp }_{\mathbb{W}_{1}}\xi \), respectively, for \(\mathbb{W}_{1}, \mathbb{W}_{2}\in \mathfrak{X}(T\Omega )\) and \(\xi \in \mathfrak{X}(T^{\perp }\Omega )\). Note that ζ and \(A_{\xi }\) denote the second fundamental form and shape operator, respectively, for the embedding of \(\Omega ^{n}\) to \(\mathbb{M}^{2m+1}\), and they are governed by the relation \(g(\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{2}), \xi )=g(A_{\xi }\mathbb{W}_{1}, \mathbb{W}_{2})\). The Gauss equation is

$$\begin{aligned} R(\mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4})={}&\widetilde{R}( \mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4})+g \bigl(\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{4}), \boldsymbol{\zeta }( \mathbb{W}_{2}, \mathbb{W}_{3}) \bigr) \\ &{}-g \bigl(\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{3}), \boldsymbol{\zeta }(\mathbb{W}_{2}, \mathbb{W}_{4}) \bigr) \end{aligned}$$
(2.6)

for any \(\mathbb{W}_{1}, \mathbb{W}_{2}, \mathbb{W}_{3}, \mathbb{W}_{4}\in \mathfrak{X}(\widetilde{\mathbb{M}})\), where the curvature tensors of \(\widetilde{\mathbb{M}}^{2m+1}\) and \(\Omega ^{n}\) are represented by and R. Also, the mean curvature \(\mathbb{H}\) of \(\Omega ^{n}\) is calculated as \(\mathbb{H}=\frac{1}{n}\mathit{trace}(\boldsymbol{\zeta })\), and \(\Omega ^{n}\) is totally umbilical if \(\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{2})=g(\mathbb{W}_{1}, \mathbb{W}_{2})\mathbb{H}\) and totally geodesic if \(\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{2})=0\), for any \(\mathbb{W}_{1}, \mathbb{W}_{2}\in \mathfrak{X}(\Omega )\). Furthermore, \(\Omega ^{n}\) is minimal if \(\mathbb{H}=0\). Here,

$$ \mathscr {N}_{x}= \bigl\{ X\in T_{x} \Omega |\boldsymbol{\zeta }(\mathbb{W}_{1}, \mathbb{W}_{2})=0 \text{ for all } \mathbb{W}_{2}\in T_{x}\Omega \bigr\} $$
(2.7)

gives the second fundamental form kernel of \(\Omega ^{n}\) over x. If the plane section is spanned by \(e_{\ell }\) and \(e_{\gamma }\) over x in \(\widetilde{\mathbb{M}}^{2m+1}\) then such a curvature is called sectional curvature and it is denoted by \(\widetilde{\mathbb{K}}_{\ell \gamma }=\widetilde{\mathbb{K}} (e_{\ell }\wedge e_{\gamma } )\). The relation between the scalar curvature \(\widetilde{\tau }(T_{x}\widetilde{\mathbb{M}})\) of \(\widetilde{\mathbb{M}}^{2m+1}\) and \(\widetilde{\mathbb{K}} (e_{\ell }\wedge e_{\gamma } )\) at some x in \(\widetilde{\mathbb{M}}^{2m+1}\) is represented by

$$ \widetilde{\tau }(T_{x}\widetilde{\mathbb{M}})= \sum_{1\leq \ell < \gamma \leq 2m+1}\widetilde{\mathbb{K}}_{\ell \gamma }. $$
(2.8)

The equality in (2.8) is equivalent to the following:

$$ 2\widetilde{\tau }(T_{x}\widetilde{\mathbb{M}})= \sum_{1\leq \ell < \gamma \leq n}\widetilde{\mathbb{K}}_{\ell \gamma },\quad 1 \leq \ell , \gamma \leq n. $$
(2.9)

The latter relation will be utilized in the subsequent proofs. Similarly, the scalar curvature \(\widetilde{\tau }(L_{x})\) of an L-plane is expressed as

$$ \widetilde{\tau }(L_{x})=\sum _{1\leq \ell < \gamma \leq m} \widetilde{\mathbb{K}}_{\ell \gamma }. $$
(2.10)

Let \(\{e_{1},\dots , e_{n}\}\) be an orthonormal frame of the tangent space \(T_{x}\Omega \) and \(e_{r}=(e_{n+1},\dots , e_{2m+1})\) be an orthonormal frame of the normal space \(T^{\perp }\Omega \). Hence we have

$$\begin{aligned}& \boldsymbol{\zeta }_{\ell \gamma }^{r}= g\bigl( \boldsymbol{\zeta }(e_{\ell }, e_{\gamma }), e_{r}\bigr) \quad \text{and} \\& \Vert \boldsymbol{\zeta } \Vert ^{2}= \sum _{\ell , \gamma =1}^{n}g \bigl( \boldsymbol{\zeta }(e_{\ell }, e_{\gamma }), \boldsymbol{\zeta }(e_{\ell }, e_{\gamma }) \bigr)=\sum_{\ell , \gamma =1}^{n} \bigl(\boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}. \end{aligned}$$
(2.11)

Let \(\mathbb{K}_{\ell \gamma }\) and \(\widetilde{\mathbb{K}}_{\ell \gamma }\) be the sectional curvature of a submanifold \(\Omega ^{n}\) and \(\widetilde{\mathbb{M}}^{2m+1}\), respectively, then we have following relation due to the Gauss equation (2.6):

$$\begin{aligned} 2{\tau }\bigl(T_{x}{\Omega }^{n} \bigr)&=\mathbb{K}_{\ell \gamma }=2 \widetilde{\tau }\bigl(T_{x}{ \Omega }^{n}\bigr)+\sum_{r=n+1}^{2m+1} \bigl( \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r}-\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2} \bigr) \\ &=\widetilde{\mathbb{K}}_{\ell \gamma }+\sum_{r=n+1}^{2m+1} \bigl( \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r}-\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2} \bigr). \end{aligned}$$
(2.12)

Furthermore, the Ricci tensor is defined for an orthonormal basis \(\{e_{1},\dots ,e_{n}\}\) of \(\Omega ^{n}\) as

$$ \widetilde{S}(\mathbb{W}_{1}, \mathbb{W}_{2})=\sum_{i=1}^{n} \bigl\{ \widetilde{g}\bigl(\widetilde{R}(e_{\ell }, \mathbb{W}_{1})\mathbb{W}_{2}, e_{\ell }\bigr) \bigr\} , \quad \mathbb{W}_{1}, \mathbb{W}_{2}\in \Gamma \bigl( T_{x} \Omega ^{n}\bigr). $$
(2.13)

Using the distinct indices for vector fields \(\{e_{1},\dots ,e_{n}\}\) on \(\Omega ^{n}\) from \(e_{u}\), which is governed by W, then the Ricci curvature is given as

$$ \mathscr {R}ic(\mathbb{W})=\sum_{\substack{\ell =1\\ \ell \neq u}}^{n} \mathbb{K}(e_{\ell }\wedge e_{u}). $$
(2.14)

Therefore, equation (2.9) can be written as

$$ \widetilde{\tau }\bigl(T_{x}\Omega ^{n}\bigr)=\sum_{1\leq \ell < \gamma \leq n} \mathbb{K}(e_{\ell }\wedge e_{\gamma })=\frac{1}{2}\sum _{A=1}^{n} \mathscr {R}ic(e_{u}). $$
(2.15)

Hence,

$$ 2\widetilde{\tau }\bigl(T_{x}\Omega ^{n}\bigr)=\sum_{1\leq \ell < \gamma \leq n} \mathbb{K}(e_{\ell }\wedge e_{\gamma })=\frac{1}{2}\sum _{u=1}^{n} \mathscr {R}ic(e_{u}), $$
(2.16)

which will be frequently used in the following study. For a k-plane \(L_{k}\) of \(T_{x}\Omega ^{n}\), suppose \(\{e_{1},\dots , e_{k}\}\) is an orthonormal frame of \(L_{k}\), thus for a fixed \(u\in \{1,\dots ,k\}\), the k-Ricci curvature \(\widetilde{R}ic_{L_{k}}(e_{u})\) of \(L_{k}\) is defined by

$$ \widetilde{R}_{L_{k}}(e_{u})=\sum _{\substack{\ell =1\\ \ell \neq u}}^{k} \mathbb{K}(e_{\ell } \wedge e_{u}). $$
(2.17)

The gradient squared-norm of the positive smooth function ω of the orthonormal basis \(\{e_{1},\dots , e_{n}\}\) is given by

$$ \Vert \nabla \omega \Vert ^{2}=\sum _{i=1}^{n} \bigl(e_{i}(\omega ) \bigr)^{2}. $$
(2.18)

Assume that \(\mathbb{N}_{1}\) and \(\mathbb{N}_{2}\) are Riemannian manifolds with Riemannian metrics \(g_{1}\) and \(g_{2}\), respectively. Suppose f is a differentiable function in \(\mathbb{N}_{1}\). Then, the manifold \(\mathbb{N}_{1}\times \mathbb{N}_{2}\) equipped with the Riemannian metric \(g=g_{1}+f^{2}g_{2}\) is referred to as the warped product manifold and defined as \(\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2}\) (for details, see [17]). Assume that \(\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2}\) is a nontrivial warped product, then ∀ \(\mathbb{W}_{1}\in \Gamma (\mathbb{N}_{1})\) and \(\mathbb{W}_{2}\in \Gamma (\mathbb{N}_{2})\), we have

$$ \nabla _{\mathbb{W}_{2}}\mathbb{W}_{1}=\nabla _{\mathbb{W}_{1}} \mathbb{W}_{2}=(\mathbb{W}_{1}\ln f) \mathbb{W}_{2}. $$
(2.19)

The following relation was proved in (see (3.3) in [17]) as follows:

$$ \sum_{\ell =1}^{m_{1}}\sum _{\gamma =1}^{m_{2}}K(e_{\ell }\wedge e_{\gamma })=\frac{m_{2}\Delta (f)}{f}=m_{2} \bigl(\Delta (\ln f)- \bigl\Vert \nabla ( \ln f) \bigr\Vert ^{2} \bigr). $$
(2.20)

Remark 2.1

\(\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2}\) is a Riemannian product manifold if f is a constant.

Lemma 2.1

Suppose \(\Upsilon :\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2} \longrightarrow \mathbb{M}^{2m+1}(\epsilon )\) is a C-totally real warped product immersed submanifold into a cosymplectic space form \(\widetilde{\mathbb{M}}^{2m+1}\) whose base \(\mathbb{N}_{1}\) is minimal. Then, for all unit vectors \(\mathbb{W}\in T_{x}\Omega ^{n}\), the Ricci inequality

$$ \mathscr {R}ic(\mathbb{W})+m_{2}\Delta \ln f\leq \frac{n^{2}}{4} \Vert \mathbb{H} \Vert ^{2}+m_{2} \Vert \nabla \ln f \Vert ^{2}+\frac{\epsilon }{4} \{m_{1}m_{2}+n-1 \}, $$
(2.21)

holds, where \(m_{1}=\dim \mathbb{N}_{1}\) and \(m_{2}=\dim \mathbb{N}_{2}\). Furthermore,

  1. (1)

    In case that \(H(x)=0\), for \(x\in \Omega ^{n}\) there exists a unit vector \(\mathbb{W}\) satisfying the equality in (2.21) if and only if \(\Omega ^{n}\) is mixed totally geodesic and \(\mathbb{W}\) lies in \(\mathscr {N}_{x}\) at x.

    If \(\Omega ^{n}\) is \(\mathbb{N}_{1}\)-minimal, then

    1. (a)

      The equality in (2.21) remains true for any unit tangent vectors at \(\mathbb{N}_{1}\) and any \(x\in \Omega ^{n}\)\(\Omega ^{n}\) is totally geodesic and \(\mathbb{N}_{1}\)-totally geodesic WP in \(\widetilde{\mathbb{M}}^{2m+1}\).

    2. (b)

      The equality in (2.21) remains true for any unit tangent vectors at \(\mathbb{N}_{2}\) and any \(x\in \Omega ^{n} \iff \Omega ^{n}\) is totally geodesic, and either an \(\mathbb{N}_{2}\)-totally geodesic WPS, or an \(\mathbb{N}_{2}\)-totally umbilical WPS in \(x\in \widetilde{\mathbb{M}}^{2m+1}\) such that \(\dim \mathbb{N}_{2}=2\).

  2. (2)

    The equality in (2.21) is satisfied for any unit tangent vectors at \(\Omega ^{n}\) and any \(x\in \Omega ^{n} \iff \Omega ^{n}\) is either totally geodesic or totally umbilical, mixed totally geodesic and \(\mathbb{N}_{1}\)-totally geodesic WPS such that \(\dim \mathbb{N}_{2}=2\).

Proof

Assume that \(\Omega ^{n}\) is \(\mathbb{N}_{1}\)-minimal C-totally real warped product. An analogous technique will be used for similar cases. Utilizing Gauss equation (2.6), we derive

$$ n^{2} \Vert \mathbb{H} \Vert ^{2}=2 \tau \bigl(T_{x}\Omega ^{n}\bigr)+ \Vert \boldsymbol{\zeta } \Vert ^{2}-2 \widetilde{\tau }\bigl(T_{x}\Omega ^{n}\bigr). $$
(2.22)

Assume \(\{ e_{1},\dots ,e_{m_{1}}, e_{m_{1}+1},\dots ,e_{n}\}\) are the local orthonormal frame fields of \(\mathfrak{X}(\widetilde{\mathbb{M}}^{2m+1})\) in which \(\{ e_{1},\dots , e_{m_{1}}\}\) are tangent to \(\mathbb{N}_{1}\) and \(\{e_{m_{1}+1},\dots , e_{n}\}\) are tangent to \(\mathbb{N}_{2}\). Hence, for the unit tangent vector \(\mathbb{W}=e_{u}\in \{ e_{1},\dots ,e_{n}\}\), we can expand (2.22) as follows:

$$\begin{aligned} n^{2} \Vert \mathbb{H} \Vert ^{2}={}&2\tau \bigl(T_{x}\Omega ^{n}\bigr)+\frac{1}{2}\sum _{r=n+1}^{2m+1} \bigl\{ \bigl(\boldsymbol{\zeta }_{11}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r}- \boldsymbol{\zeta }_{uu}^{r} \bigr)^{2}+ \bigl( \boldsymbol{\zeta }_{uu}^{r} \bigr)^{2} \bigr\} \\ &{}-\sum_{r=n+1}^{2m+1}\sum _{1\leq \ell \neq\gamma \leq n} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}-2 \widetilde{\tau } \bigl(T_{x}\Omega ^{n}\bigr). \end{aligned}$$

It is equivalent to

$$\begin{aligned} n^{2} \Vert \mathbb{H} \Vert ^{2}={}&2\tau \bigl(T_{x}\Omega ^{n}\bigr)+\sum _{r=n+1}^{2m+1} \bigl\{ \bigl(\boldsymbol{\zeta }_{11}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2}+ \bigl(2\boldsymbol{\zeta }_{uu}^{r}- \bigl(\boldsymbol{\zeta }_{11}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r}\bigr) \bigr)^{2} \bigr\} \\ &{}+2\sum_{r=n+1}^{2m+1}\sum _{1\leq \ell < \gamma \leq n}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-2\sum_{r=n+1}^{2m+1} \sum_{1 \leq \ell < \gamma \leq n}\boldsymbol{\zeta }_{\ell }^{r} \boldsymbol{\zeta }_{ \gamma }^{r}-\frac{\epsilon }{4}n(n-1). \end{aligned}$$

As we assumed the warped product submanifold \(\Omega ^{n}\) to be \(\mathbb{N}_{1}\)-minimal, we derive

$$\begin{aligned} &n^{2} \Vert \mathbb{H} \Vert ^{2}+ \frac{\epsilon }{4}n(n-1) \\ &\quad =\sum_{r=n+1}^{2m+1} \bigl\{ \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots + \boldsymbol{ \zeta }_{nn}^{r} \bigr)^{2}+ \bigl(2\boldsymbol{ \zeta }_{uu}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r}\bigr) \bigr)^{2} \bigr\} \\ &\qquad {}+2\tau \bigl(T_{x}\Omega ^{n}\bigr)+\sum _{r=n+1}^{2m+1}\sum_{1\leq \ell < \gamma \leq n} \bigl(\boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}-\sum _{r=n+1}^{2m+1} \sum _{1\leq \ell < \gamma \leq n}\boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r} \\ &\qquad {}+\sum_{r=n+1}^{2m+1}\sum _{\substack{a=1\\ a\neq u}}\bigl( \boldsymbol{\zeta }_{a{u}}^{r} \bigr)^{2}+\sum_{r=n+1}^{2m} \sum_{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-\sum_{r=n+1}^{2m+1}\sum _{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}. \end{aligned}$$
(2.23)

In view of (2.12), we obtain

$$ \sum_{r=n+1}^{2m+1}\sum _{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-\sum_{r=n+1}^{2m+1}\sum _{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}= \sum _{\substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq A}} \widetilde{\mathbb{K}}_{\ell \gamma }-\sum _{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq A}} \mathbb{K}_{\ell \gamma }. $$
(2.24)

From fact that the base \(\mathbb{N}_{1}\) is minimal, and putting (2.24) in (2.23), we deduce

$$\begin{aligned} \frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}+\frac{\epsilon }{4}n(n-1)={}&2\tau \bigl(T_{x} \Omega ^{n}\bigr)+\frac{1}{2}\sum _{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{uu}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r}\bigr) \bigr)^{2} \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{1\leq \ell < \gamma \leq n}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-\sum_{r=n+1}^{m} \sum_{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r} \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{\substack{a=1,\\ a\neq u}}\bigl( \boldsymbol{\zeta }_{a{u}}^{r} \bigr)^{2}+\sum_{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \widetilde{ \mathbb{K}}_{\ell \gamma }-\sum_{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \mathbb{K}_{\ell \gamma }. \end{aligned}$$
(2.25)

On the other hand, using (2.8), we define

$$\begin{aligned} {\tau }\bigl(T_{x}\Omega ^{n}\bigr)={}& \sum_{1\leq \ell < \gamma \leq n}\mathbb{K}(e_{\ell }\wedge e_{\gamma }) \\ ={}&\sum_{i=1}^{m_{1}}\sum _{j=m_{1}+1}^{n}\mathbb{K}(e_{i}\wedge e_{j})+ \sum_{1\leq i< k\leq m_{1}} \mathbb{K}(e_{i}\wedge e_{k}) \\ &{}+\sum_{m_{1}+1\leq l< o\leq n}\mathbb{K}(e_{l}\wedge e_{o}). \end{aligned}$$
(2.26)

From (2.20) and (2.8), we get

$$ {\tau }\bigl(T_{x}\Omega ^{n}\bigr)= \frac{m_{2}\Delta f}{f}+{\tau }\bigl(T_{x} \mathbb{N}_{1}^{m_{1}} \bigr)+{\tau }\bigl(T_{x}\mathbb{N}_{2}^{m_{2}} \bigr). $$
(2.27)

Now it suffices to combine (2.25), (2.26), (2.27), and use (2.11) to arrive at the following result:

$$\begin{aligned} \frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}+\frac{\epsilon }{4}n(n-1)={}& \frac{m_{2}\Delta f}{f}-2 \widetilde{\tau }\bigl(T_{x}\Omega ^{n}\bigr)+\sum _{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \widetilde{\mathbb{K}}_{\ell \gamma }+ \widetilde{\tau }\bigl(T_{x}\mathbb{N}_{1}^{m_{1}} \bigr)+ \widetilde{\tau }\bigl(T_{x}\mathbb{N}_{2}^{m_{2}} \bigr) \\ &{}+\sum_{r=n+1}^{2m+1} \biggl\{ \sum _{1\leq \ell < \gamma \leq n}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-\sum_{ \substack{1\leq \ell < \gamma \leq n\\ \ell ,\gamma \neq u}} \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r} \biggr\} \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{\substack{a=1,\\ a\neq u}}\bigl( \boldsymbol{\zeta }_{a{u}}^{r} \bigr)^{2}+\sum_{r=n+1}^{m} \sum_{1\leq i\neq j \leq p} \bigl(\boldsymbol{\zeta }_{ii}^{r} \boldsymbol{\zeta }_{jj}^{r}-\bigl( \boldsymbol{\zeta }_{ij}^{r}\bigr)^{2} \bigr) \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{m_{1}+1\leq s\neq t\leq n} \bigl( \boldsymbol{\zeta }_{ss}^{r} \boldsymbol{\zeta }_{tt}^{r}-\bigl(\boldsymbol{\zeta }_{st}^{r}\bigr)^{2} \bigr) \\ &{}+\frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{uu}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2}. \end{aligned}$$
(2.28)

Now we note that \(e_{u}\) is either tangent to base \(\mathbb{N}_{1}\) or to fiber \(\mathbb{N}_{2}\). We show this by considering two cases.

Case I. Let \(e_{u}\) be tangent to \(\mathbb{N}_{1}\). Fix the unit tangent vector from \(\{e_{1},\dots , e_{m_{1}}\}\) to be \(e_{u}\), and consider \(\mathbb{W}=e_{u}=e_{1}\). Then, from (2.14) and (2.28), we get

$$\begin{aligned} &\frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}+\frac{\epsilon }{4}n(n-1) \\ &\quad \geq \mathscr {R}ic( \mathbb{W})+\frac{m_{2}\Delta f}{f}-2\widetilde{\tau }\bigl(T_{x} \Omega ^{n}\bigr)+\widetilde{\tau }\bigl(T_{x} \mathbb{N}_{1}^{m_{1}}\bigr)+ \widetilde{\tau } \bigl(T_{x}\mathbb{N}_{2}^{m_{2}}\bigr) \\ &\qquad {}+\sum_{2\leq \ell < \gamma \leq n}\widetilde{K}_{\ell \gamma }+ \frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{11}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2} \\ &\qquad {}+\sum_{r=n+1}^{2m+1}\sum _{1\leq \ell < \gamma \leq n}\bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r} \bigr)^{2}-\sum_{r=n+1}^{2m+1} \biggl\{ \sum_{1 \leq i< j\leq m_{1}}\bigl(\boldsymbol{\zeta }_{ij}^{r}\bigr)^{2}+\sum _{m_{1}+1\leq s< t \leq n}\bigl(\boldsymbol{\zeta }_{st}^{r} \bigr)^{2} \biggr\} \\ &\qquad {}+\sum_{r=n+1}^{2m+1} \Biggl\{ \sum _{1\leq i< j\leq m_{1}} \boldsymbol{\zeta }_{ii}^{r} \boldsymbol{\zeta }_{jj}^{r}+\sum _{r=n+1}^{2m+1} \sum_{m_{1}+1\leq s\neq t\leq n} \boldsymbol{\zeta }_{ss}^{r} \boldsymbol{\zeta }_{tt}^{r}-\sum_{2\leq \ell < \gamma \leq n} \boldsymbol{\zeta }_{\ell \ell }^{r}h_{\gamma \gamma }^{r} \Biggr\} . \end{aligned}$$
(2.29)

Substituting \(\mathbb{W}_{1}=\mathbb{W}_{2}=e_{\ell }\) and \(\mathbb{W}_{2}=\mathbb{W}_{2}=e_{\gamma }\) for \(1\leq \ell \), \(\gamma \leq n\) in (2.6), and summing up, we obtain

$$ \sum_{\ell , \gamma =1}^{n} \widetilde{R}(e_{\ell }, e_{\gamma }, e_{\ell }, e_{\gamma })=\frac{\epsilon }{4}n(n-1). $$
(2.30)

Therefore, using (2.30) in (2.29), we obtain

$$\begin{aligned} \mathscr {R}ic(\mathbb{W})\leq{}& \frac{n^{2}}{2} \Vert H \Vert ^{2}- \frac{m_{2}\Delta f}{f}+\frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \\ &{}-\frac{1}{2}\sum_{r=n+1}^{m} \bigl(2\boldsymbol{\zeta }_{11}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2} \\ &{}+\sum_{r=n+1}^{2m+1} \biggl\{ \sum _{1\leq i< j\leq m_{1}}\bigl( \boldsymbol{\zeta }_{ij}^{r} \bigr)^{2}+\sum_{m_{1}+1\leq s< t\leq n}\bigl( \boldsymbol{ \zeta }_{st}^{r}\bigr)^{2} \biggr\} \\ &{}-\sum_{r=n+1}^{2m+1} \Biggl\{ \sum _{1\leq i< j\leq m_{1}} \boldsymbol{\zeta }_{ii}^{r} \boldsymbol{\zeta }_{jj}^{r}+\sum _{r=n+1}^{2m+1} \sum_{m_{1}+1\leq s\neq t\leq n} \boldsymbol{\zeta }_{ss}^{r} \boldsymbol{\zeta }_{tt}^{r} \Biggr\} \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{2\leq \ell < \gamma \leq n}\boldsymbol{\zeta }_{ \ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}-\sum _{r=n+1}^{2m+1} \sum_{1\leq \ell < \gamma \leq n} \bigl(\boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}. \end{aligned}$$
(2.31)

The calculation of the last two terms of (2.31) implies

$$\begin{aligned} &\sum_{r=n+1}^{2m+1} \biggl\{ \sum_{1\leq i< j\leq m_{1}}\bigl(\boldsymbol{\zeta }_{ij}^{r} \bigr)^{2}+ \sum_{m_{1}+1\leq s< t\leq n}\bigl(\boldsymbol{ \zeta }_{st}^{r}\bigr)^{2} \biggr\} - \sum _{r=n+1}^{2m+1}\sum _{1\leq \ell < \gamma \leq n}\bigl(\boldsymbol{\zeta }_{ \ell \gamma }^{r} \bigr)^{2} \\ &\quad =\sum_{r=n+1}^{2m+1}\sum _{\ell =1}^{m_{1}}\sum_{\gamma =m_{1}+1}^{n} \bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}. \end{aligned}$$
(2.32)

In a similar way, we obtain

$$\begin{aligned} & \sum_{r=n+1}^{2m+1} \Biggl\{ \sum_{1\leq i< j\leq m_{1}}\boldsymbol{\zeta }_{ii}^{r} \boldsymbol{\zeta }_{jj}^{r}+\sum _{r=n+1}^{m}\sum_{m_{1}+1\leq s\neq t \leq n} \boldsymbol{\zeta }_{ss}^{r}\boldsymbol{\zeta }_{tt}^{r}- \sum_{2\leq \ell < \gamma \leq n}\boldsymbol{\zeta }_{\ell }^{r} \boldsymbol{\zeta }_{\gamma }^{r} \Biggr\} \\ &\quad =\sum_{r=n+1}^{2m+1} \Biggl(\sum _{j=2}^{m_{1}}\boldsymbol{\zeta }_{11}^{r} \boldsymbol{\zeta }_{jj}^{r}-\sum _{\ell =2}^{m_{1}}\sum_{\gamma =m_{1}+1}^{n} \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r} \Biggr). \end{aligned}$$
(2.33)

Using (2.33) in (2.29) leads to

$$\begin{aligned} \mathscr {R}ic(\mathbb{W})\leq {}&\frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}- \frac{m_{2}\Delta f}{f}+ \frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \\ &{}-\sum_{r=n+1}^{2m+1} \Biggl(\sum _{\ell =1}^{m_{1}}\sum_{\gamma =m_{1}+1}^{n} \bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}+\sum _{t=2}^{m_{1}} \boldsymbol{\zeta }_{11}^{r}\boldsymbol{\zeta }_{tt}^{2}- \sum_{\ell =2}^{m_{1}} \sum _{\gamma =m_{1}+1}^{n}\boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r} \Biggr) \\ &{}-\frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{11}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2}. \end{aligned}$$
(2.34)

As for the warped product submanifold \(\Omega ^{n}\) such that the base is minimal in \(\Omega ^{n}\), we compute the following simplification:

$$ \sum_{r=n+1}^{2m+1}\sum _{\ell =2}^{m_{1}}\sum _{\gamma =m_{1}+1}^{n} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r} = - \sum _{r=n+1}^{2m+1}\sum_{\gamma =m_{1}+1}^{n} \boldsymbol{\zeta }_{11}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}. $$
(2.35)

Similarly, we have

$$ \sum_{r=n+1}^{2m+1}\sum _{t=2}^{m_{1}}\boldsymbol{\zeta }_{11}^{r} \boldsymbol{\zeta }_{tt}^{r}=- \sum_{r=n+1}^{2m+1}\bigl(\boldsymbol{\zeta }_{11}^{r}\bigr)^{2}. $$
(2.36)

At the same time, utilizing the minimality of the base manifold \(\mathbb{N}_{1}\), we deduce that

$$\begin{aligned} &\frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{11}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2}+\sum_{r=n+1}^{2m+1} \sum_{\gamma =m_{1}+1}^{n} \boldsymbol{\zeta }_{11}^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r} \\ &\quad =2\sum_{r=n+1}^{2m+1}\bigl(\boldsymbol{\zeta }_{11}^{r}\bigr)^{2}+\frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}. \end{aligned}$$
(2.37)

Utilizing (2.35), (2.36) and (2.37), (2.34), will lead to

$$ \mathscr {R}ic(\mathbb{W}) \leq \frac{\epsilon }{4} (m_{1}m_{2}+n-1 )-\frac{m_{2}\Delta f}{f}+\sum _{r=n+1}^{2m+1} \Biggl\{ \sum _{ \gamma =m_{1}+1}^{n}\boldsymbol{\zeta }_{11}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}-(\boldsymbol{\zeta }_{11})^{2} \Biggr\} . $$
(2.38)

The above inequality is equivalent to the following:

$$ \mathscr {R}ic(\mathbb{W}) \leq \frac{\epsilon }{4} (m_{1}m_{2}+n-1 )-\frac{m_{2}\Delta f}{f}+\sum_{r=n+1}^{2m+1} \sum_{\gamma =2}^{n} \boldsymbol{\zeta }_{11}^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r}. $$
(2.39)

Using (2.20) gives inequality (2.21).

Case II. Assume that \(e_{u}\) is tangent \(\mathbb{N}_{2}\). Fix a unit tangent vector field from \(e_{m_{1}+1},\dots ,e_{n}\) in which \(\mathbb{W}=e_{u}=e_{n}\). Utilizing (2.14)–(2.29) and following a similar technique as in Case I implies

$$\begin{aligned} \frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}\geq{}& \mathscr {R}ic(\mathbb{W})+ \frac{m_{2}\Delta f}{f}-2 \widetilde{\tau }\bigl(T_{x}\Omega ^{n}\bigr)+ \widetilde{\tau }\bigl(T_{x}\mathbb{N}_{1}^{m_{1}} \bigr)+\widetilde{\tau }\bigl(T_{x} \mathbb{N}_{2}^{m_{2}} \bigr) \\ &{}+\sum_{1\leq \ell < \gamma \leq n-1}\widetilde{\mathbb{K}}_{\ell \gamma }+ \frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{nn}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2} \\ &{}+\sum_{r=n+1}^{2m+1}\sum _{\gamma =1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}+\sum _{r=n+1}^{m}\sum_{\ell =1}^{m_{1}} \sum_{\gamma =m_{1}+1}^{n}\bigl(\boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}- \sum _{r=n+1}^{2m+1}\sum_{\ell =1}^{m_{1}} \sum_{\gamma =m_{1}+1}^{n-1} \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r}. \end{aligned}$$

Using (2.30), we obtain

$$\begin{aligned} \mathscr {R}ic(\mathbb{W})\leq {}&\frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}- \frac{m_{2}\Delta f}{f}+ \frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \\ &{}-\frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{nn}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2}-\sum_{r=n+1}^{2m+1} \sum_{\gamma =1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r} \\ &{}-\sum_{r=n+1}^{2m+1}\sum _{\ell =1}^{m_{1}}\sum_{\gamma =m_{1}+1}^{n} \bigl( \boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}+\sum _{r=n+1}^{2m+1}\sum _{ \ell =1}^{m_{1}}\sum_{\gamma =m_{1}+1}^{n-1} \boldsymbol{\zeta }_{\ell \ell }^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r}. \end{aligned}$$
(2.40)

As the base of \(\Omega ^{n}\) is minimal,

$$ \sum_{r=n+1}^{2m+1}\sum _{\ell =1}^{m_{1}}\sum _{\gamma =m_{1}+1}^{n-1} \boldsymbol{\zeta }_{\ell \ell }^{r} \boldsymbol{\zeta }_{\ell \gamma }^{r}=0. $$
(2.41)

By a similar technique from first case, using (2.41) in (2.40), we get

$$\begin{aligned} \mathscr {R}ic(\mathbb{W})+\frac{m_{2}\Delta f}{f}\leq{}& \frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}+\frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \\ &{}-\frac{1}{2}\sum_{r=n+1}^{2m+1} \bigl(2\boldsymbol{\zeta }_{nn}^{r}-\bigl( \boldsymbol{\zeta }_{m_{1}+1{q+1}}^{r}+\cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr) \bigr)^{2} \\ &{}-\sum_{r=n+1}^{2m+1}\sum _{\gamma =1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}-\sum _{r=n+1}^{m}\sum_{\ell =1}^{m_{1}} \sum_{\gamma =m_{1}+1}^{n}\bigl(\boldsymbol{\zeta }_{\ell \gamma }^{r}\bigr)^{2}. \end{aligned}$$
(2.42)

After some calculations, we obtain

$$\begin{aligned} &\sum_{r=n+1}^{2m+1} \Biggl\{ \frac{1}{2} \bigl( \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)-2\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2}+ \sum _{\gamma =n+1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{ \gamma \gamma } \Biggr\} \\ &\quad =\sum_{r=n+1}^{2m+1}\frac{1}{2} \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2}+2\sum _{r=n+1}^{2m+1} \bigl( \boldsymbol{\zeta }_{n{n}}^{r} \bigr)^{2} \\ &\qquad {}-\sum_{r=n+1}^{2m+1}\sum _{\gamma =m_{1}+1}^{n}\boldsymbol{\zeta }_{n{n}}^{r} \boldsymbol{\zeta }_{\gamma \gamma }^{r}+\sum _{r=n+1}^{m}\sum_{\gamma =n+1}^{n-1} \boldsymbol{\zeta }_{nn}^{r}\boldsymbol{\zeta }_{\gamma \gamma }- \sum_{r=n+1}^{2m+1} \sum _{\gamma =m_{1}+1}^{n}\boldsymbol{\zeta }_{n{n}}^{r} \boldsymbol{\zeta }_{ \gamma \gamma }^{r}. \end{aligned}$$
(2.43)

Performing more calculations on the last two terms gives

$$ \sum_{r=n+1}^{2m+1}\sum _{\gamma =n+1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{\gamma \gamma } -\sum_{r=n+1}^{2m+1} \sum_{\gamma =m_{1}+1}^{n} \boldsymbol{\zeta }_{n{n}}^{r}\boldsymbol{\zeta }_{\gamma \gamma }^{r} =-\sum_{r=n+1}^{2m+1}\bigl( \boldsymbol{\zeta }_{nn}^{r}\bigr)^{2}. $$

Thus (2.43) can be reduced, using the above relation, to

$$\begin{aligned} &\sum_{r=n+1}^{2m+1} \Biggl\{ \frac{1}{2} \bigl( \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)-2\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2}+ \sum _{\gamma =m_{1}+1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{ \gamma \gamma } \Biggr\} \\ &\quad =\sum_{r=n+1}^{2m+1} \Biggl\{ \frac{1}{2} \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2}+ \bigl(\boldsymbol{\zeta }_{nn}^{r}\bigr)^{2}- \sum _{\gamma =m_{1}+1}^{n-1}\boldsymbol{\zeta }_{nn}^{r}\boldsymbol{\zeta }_{ \gamma \gamma } \Biggr\} . \end{aligned}$$
(2.44)

Therefore, using (2.44) in inequality (2.42), we deduce that

$$\begin{aligned} \mathscr {R}ic(\mathbb{W})\leq{}& \frac{1}{2}n^{2} \Vert \mathbb{H} \Vert ^{2}+ \frac{\epsilon }{4} (m_{1}m_{2}+n-1 )-\frac{m_{2}\Delta f}{f}- \frac{1}{4}\sum_{r=n+1}^{2m+1} \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+ \cdots +\boldsymbol{\zeta }_{nn}^{r} \bigr)^{2} \\ &{}-\sum_{r=n+1}^{2m+1} \Biggl\{ \bigl(\boldsymbol{ \zeta }_{nn}^{r}\bigr)^{2}-\sum _{ \gamma =m_{1}+1}^{n-1}\boldsymbol{\zeta }_{nn}^{r} \boldsymbol{\zeta }_{\gamma \gamma }+\frac{1}{4} \bigl(\boldsymbol{\zeta }_{m_{1}+1{m_{1}+1}}^{r}+\cdots + \boldsymbol{\zeta }_{nn}^{r} \bigr)^{2} \Biggr\} . \end{aligned}$$

From the minimality of the base of the warped product submanifold \(\Omega ^{n}\), we get

$$ \mathscr {R}ic(X) \leq \frac{\epsilon }{4} (m_{1}m_{2}+n-1 )- \frac{m_{2}\Delta f}{f}-\sum _{r=n+1}^{2m+1} \Biggl(\boldsymbol{\zeta }_{nn}^{r}- \sum_{\gamma =m_{1}+1}^{n-1} \boldsymbol{\zeta }_{nn}^{r}\boldsymbol{\zeta }_{ \gamma \gamma } \Biggr). $$
(2.45)

This gives the proof of inequality (2.21). We will use the technique adopted for case (1) to get inequality (2.21) when \(\Omega ^{n}\) is \(\mathbb{N}_{2}\)-minimal. Now equality (2.21) can be verified similarly as in [3, 4, 29]. □

For completely minimal submanifolds, Lemma 2.1 will lead to the following result.

Lemma 2.2

Assume \(\omega :\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2} \longrightarrow \widetilde{\mathbb{M}}^{2m+1}\) is a C-totally real minimal isometric embedding of a warped product \(\Omega ^{n}\) to the cosymplectic space form \(\widetilde{\mathbb{M}}^{2m+1}\). Then, for any unit vector \(\mathbb{W}\in T_{x}\Omega ^{n}\), the following Ricci inequality is satisfied:

$$ \mathscr {R}ic(\mathbb{W})+m_{2}\Delta \ln f\leq m_{2} \Vert \nabla \ln f \Vert ^{2}+ \frac{\epsilon }{4} \{m_{1}m_{2}+n-1 \}, $$
(2.46)

where \(m_{1}=\dim \mathbb{N}_{1}\) and \(m_{2}=\dim \mathbb{N}_{2}\).

3 Proof of the main results

3.1 Proof of Theorem 1.1

Consider the following equation with \(\omega =\ln f\):

$$ \bigl\vert \mathit{Hess}(\omega )+t\omega I \bigr\vert ^{2}= \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}+t^{2}( \omega )^{2} \vert I \vert ^{2}+2t\omega g\bigl( \mathit{Hess}(\omega ), I\bigr). $$

But we know that \(|I |^{2}=\mathit{trace}(\mathit{II}^{*})=m_{1}\) and \(g(\mathit{Hess}(\omega ), I^{*})=\mathit{tr}(\mathit{Hess}(\omega )I^{*}) =\mathit{trHess}(\omega )\). Then the preceding equation takes the form

$$ \bigl\vert \mathit{Hess}(\omega )+t\omega I \bigr\vert ^{2}= \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}+m_{1}t^{2}( \omega )^{2}-2t\omega \Delta \omega . $$
(3.1)

If \(\lambda _{1}\) is an eigenvalue of the eigenfunction ω, then \(\Delta \omega =\lambda _{1}\omega \). Thus we get

$$ \bigl\vert \mathit{Hess}(\omega )+t\omega I \bigr\vert ^{2}= \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}+ \bigl(m_{1}t^{2}-2t\lambda _{1} \bigr) (\omega )^{2}. $$
(3.2)

On the other hand, we obtain

$$ \Delta \frac{\omega ^{2}}{2}=\omega \Delta \omega - \vert \nabla \omega \vert ^{2}. $$

Again using \(\Delta \omega =\lambda _{1}\omega \), with integration, we arrive at

$$ \frac{\Delta \omega ^{2}}{2}=\omega \lambda _{1}\omega - \vert \nabla \omega \vert ^{2}, $$

which implies that

$$ \int _{\Omega ^{n}}\omega ^{2}\,dV=\frac{1}{\lambda _{1}} \int _{\Omega ^{n}} \vert \nabla \omega \vert ^{2}\,dV. $$
(3.3)

It follows from (3.2) and (3.3) that

$$ \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega )+t\omega I \bigr\vert ^{2}\,dV= \int _{ \Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV+ \int _{\Omega ^{n}} \biggl( \frac{m_{1}t^{2}}{\lambda _{1}}-2t \biggr) \vert \nabla \omega \vert ^{2}. $$
(3.4)

In particular, taking \(t=\frac{\lambda _{1}}{m_{1}}\) in (3.4) and integrating, we get

$$ \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV= \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV- \frac{\lambda _{1}}{m_{1}} \int _{\Omega ^{n}} \vert \nabla \omega \vert ^{2}\,dV. $$
(3.5)

Again integrating (2.21) and involving the Green lemma, we have

$$\begin{aligned} \int _{\Omega ^{n}}\mathscr {R}ic_{M}(\mathbb{W})\,dV\leq{}& \frac{n^{2}}{4} \int _{\Omega ^{n}} \vert \mathbb{H} \vert ^{2}\,dV+m_{2} \int _{\Omega ^{n}} \vert \nabla \omega \vert ^{2}\,dV \\ &{}+ \int _{\Omega ^{n}}\frac{\epsilon }{4} (m_{1}m_{2}+n-1 )\,dV. \end{aligned}$$
(3.6)

From (3.5) and (3.6), we derive

$$\begin{aligned} \frac{1}{q} \int _{\Omega ^{n}}\mathscr {R}ic_{M}(\mathbb{W})\,dV\leq{}& \frac{n^{2}}{4m_{2}} \int _{\Omega ^{n}} \vert \mathbb{H} \vert ^{2}\,dV- \frac{m_{1}}{\lambda _{1}} \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{n}\omega I \biggr\vert ^{2}\,dV \\ &{}+\frac{m_{1}}{\lambda _{1}} \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV+ \int _{\Omega ^{n}}\frac{\epsilon }{4} \biggl(m_{1}+1+ \frac{m_{1}-1}{m_{2}} \biggr)\,dV. \end{aligned}$$

Under the assumption that the Ricci curvature is greater than or equal to zero, i.e., \(\mathscr {R}ic(\mathbb{W})\geq 0\), the latter equation implies

$$\begin{aligned} \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV\leq{}& \frac{n^{2}\lambda _{1}}{4m_{1}m_{2}} \int _{ \Omega ^{n}} \vert \mathbb{H} \vert ^{2}\,dV+ \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}( \omega ) \bigr\vert ^{2}\,dV \\ &{}+\frac{\lambda _{1}}{m_{1}} \int _{\Omega ^{n}}\frac{\epsilon }{4} \biggl(m_{1}+1+ \frac{m_{1}-1}{m_{2}} \biggr)\,dV, \end{aligned}$$

which is equivalent to the following:

$$\begin{aligned} \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV\leq{}& \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV \\ &{}+\frac{\lambda _{1}}{4m_{1}} \int _{\Omega ^{n}} \biggl\{ \frac{n^{2}}{m_{2}} \vert \mathbb{H} \vert ^{2}+\epsilon \biggl(m_{1}+1+ \frac{m_{1}-1}{m_{2}} \biggr) \biggr\} \,dV. \end{aligned}$$
(3.7)

If the following equality holds by assumption

$$ \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV= \frac{\lambda _{1}}{4m_{1}m_{2}} \int _{\Omega ^{n}} \bigl\{ \epsilon (1-n-m_{1}m_{2} )-n^{2} \vert \mathbb{H} \vert ^{2} \bigr\} \,dV, $$
(3.8)

then equations (3.7) and (3.8) imply that

$$ \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV\leq 0. $$
(3.9)

But it is clear that

$$ \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV\geq 0. $$
(3.10)

Combining Eqs. (3.9) and (3.10), we get

$$ \biggl\vert \mathit{Hess}(\omega )+\frac{\lambda _{1}}{n} \omega I \biggr\vert ^{2}=0\quad \implies\quad \mathit{Hess}( \omega )=- \frac{\lambda _{1}}{m_{1}}\omega I. $$
(3.11)

Since the WF \(\omega =\ln f\) of the nontrivial WPS \(\Omega ^{n}\) is nonconstant, Eq. (3.11) reduces to Obata’s differential equation where \(c=\sqrt{\frac{\lambda _{1}}{m_{1}}}>0\) with \(\lambda _{1}>0\). Hence, \(\mathbb{N}_{1}\) is isometric to \(\mathbb{S}^{p}(\sqrt{\frac{\lambda _{1}}{m_{1}}})\). This completes the proof of the first part. On the other hand, if we have \(\lambda _{1}=m_{1}\), then from (3.11) we get

$$ \mathit{Hess}(\omega ) (\mathbb{W}_{1}, \mathbb{W}_{2})=- \omega g(\mathbb{W}_{1}, \mathbb{W}_{2}), $$
(3.12)

for any \(\mathbb{W}_{1}, \mathbb{W}_{2}\in \Gamma (\mathbb{N}_{1})\). The proof of this theorem is now complete.

3.2 Proof of Theorem 1.2

If ω is a positive differentiable function on a Riemannian manifold \(\mathbb{N}_{1}\), then Bochner formula is given as

$$ \frac{1}{2}\Delta \vert \nabla \omega \vert ^{2}= \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}+ \mathscr {R}ic( \nabla \omega , \nabla \omega )+g(\nabla \omega , \nabla \Delta \omega ). $$

Integrating along the volume element and using Stokes’ theorem, we get

$$ \int _{\Omega ^{n}} \bigl\{ \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}+\mathscr {R}ic( \nabla \omega , \nabla \omega )+g(\nabla \omega , \nabla \Delta \omega ) \bigr\} \,dV=0. $$

Assuming that \(\lambda _{1}\) is an eigenvalue of the eigenfunction ω with \(\Delta \omega =\lambda _{1}\omega \), we can conclude that

$$ \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}=- \int _{\Omega ^{n}} \mathscr {R}ic(\nabla \omega , \nabla \omega ) \,dV- \lambda _{1} \int _{ \Omega ^{n}} \vert \nabla \omega \vert ^{2}\,dV. $$

Inserting the above equation into (3.5), we achieve

$$ \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV= - \int _{\Omega ^{n}}\mathscr {R}ic(\nabla \omega , \nabla \omega )\,dV- \lambda _{1} \biggl(\frac{m_{1}+1}{m_{1}} \biggr) \int _{ \Omega ^{n}} \vert \nabla \omega \vert ^{2}\,dV. $$

Utilizing (3.6) in the above equality, we arrive at

$$\begin{aligned} &\frac{1}{q} \int _{\Omega ^{n}}\mathit{Ric}(\mathbb{W})\,dV + \frac{m_{1}}{\lambda _{1}(m_{1}+1)} \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}( \omega )+ \frac{\lambda _{1}}{m_{1}}\omega I \biggr\vert ^{2}\,dV \\ &\qquad {}+ \frac{m_{1}}{\lambda _{1}(m_{1}+1)} \int _{\Omega ^{n}}\mathscr {R}ic( \nabla \omega , \nabla \omega )\,dV \\ &\quad \leq \frac{n^{2}}{4m_{2}} \int _{\Omega ^{n}} \vert \mathbb{H} \vert ^{2}\,dV+ \frac{ (m_{1}m_{2}+n-1 )}{m_{2}} \int _{\Omega ^{n}} \frac{\epsilon }{4}\,dV. \end{aligned}$$

It can be simplified as

$$\begin{aligned} &\int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV+ \frac{\lambda _{1}(m_{1}+1)}{m_{1}m_{2}} \int _{ \Omega ^{n}}\mathscr {R}ic(\mathbb{W})\,dV+ \int _{\Omega ^{n}} \mathscr {R}ic(\nabla \omega , \nabla \omega )\,dV \\ &\quad \leq \frac{\lambda _{1}n^{2}(m_{1}+1)}{4m_{1}m_{2}} \int _{\Omega ^{n}} \vert \mathbb{H} \vert ^{2}\,dV \\ &\qquad {}+\frac{\lambda _{1} (m_{1}m_{2}+n-1 )(m_{1}+1)}{m_{1}m_{2}} \int _{\Omega ^{n}}\frac{\epsilon }{4}\,dV. \end{aligned}$$
(3.13)

Following our assumption that the Ricci curvature is nonnegative, i.e., \(\mathit{Ric}\geq 0\), we derive

$$ \int _{\Omega ^{n}} \biggl\vert \mathit{Hess}(\omega )+ \frac{\lambda _{1}}{m_{1}} \omega I \biggr\vert ^{2}\,dV\leq \frac{\lambda _{1}(m_{1}+1)}{4m_{1}m_{2}} \int _{\Omega ^{n}} \bigl\{ n^{2} \vert \mathbb{H} \vert ^{2}+\epsilon (m_{1}m_{2}+n-1) \bigr\} \,dV. $$
(3.14)

By the hypothesis, the extrinsic condition (1.4) holds, thus

$$ \mathit{Hess}(\omega ) (\mathbb{W}_{1}, \mathbb{W}_{2})=- \frac{\lambda _{1}}{m_{1}}\omega g(\mathbb{W}_{1}, \mathbb{W}_{2}), $$
(3.15)

for any \(\mathbb{W}_{1}, \mathbb{W}_{2}\in \Gamma (\mathbb{N}_{1})\). This is again Obata’s ODE [30] which implies that the base \(\mathbb{N}_{1}\) is isometric to the Euclidean sphere \(\mathbb{S}^{m_{1}}(\sqrt{\frac{\lambda _{1}}{m_{1}}})\). The proof is completed.

Using the fact that the warped product submanifold \(\Omega ^{n}\) is minimal, we give the following corollary of Theorem 1.1.

Corollary 3.1

Let \(\mathbb{M}^{2m+1}(\epsilon )\) be a cosymplectic space form and \(\Upsilon :\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2} \longrightarrow \mathbb{M}^{2m+1}(\epsilon )\) be a C-totally real minimal isometric embedding of the warped product submanifold \(\Omega ^{n}\) into \(\mathbb{M}^{2m+1}(\epsilon )\) with a nonnegative Ricci curvature. Then, there is an isometry between the compact base \(\mathbb{N}_{1}\) and the sphere \(\mathbb{S}^{m_{1}}\) if the following is true:

$$ \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}=\frac{1}{2m_{2}} \bigl\{ \epsilon (1-n- \lambda _{1}m_{2} ) \bigr\} . $$
(3.16)

Proof

Assuming ϒ is minimal and \(\lambda _{1}=m_{1}\), from (3.7), we get

$$\begin{aligned} \int _{\Omega ^{n}} \bigl\vert \mathit{Hess}(\omega )+\omega I \bigr\vert ^{2}\,dV\leq{}& \int _{ \Omega ^{n}} \bigl\vert \mathit{Hess}(\omega ) \bigr\vert ^{2}\,dV \\ &{}+\frac{1}{2} \int _{\Omega ^{n}}\epsilon \biggl(\lambda _{1}+1+ \frac{\lambda _{1}-1}{m_{2}} \biggr)\,dV. \end{aligned}$$
(3.17)

If the assumption (3.16) holds, we get the following from (3.17):

$$ \mathit{Hess}(\omega ) (\mathbb{W}_{1}, \mathbb{W}_{2})=- \omega g(\mathbb{W}_{1}, \mathbb{W}_{2}), $$

for a nonconstant function \(\omega =\ln f\). Hence, using the arguments as in [30] completes the proof of the corollary. □

4 Some physical applications

In this section, we investigate the Dirichlet energy that satisfies the following for a compact submanifold Ω and differentiable function \(\theta :\Omega \longrightarrow \mathbb{R}\):

$$ E(\theta )=\frac{1}{2} \int _{\Omega } \Vert \nabla \theta \Vert ^{2}\,dV, $$
(4.1)

where dV is a volume element. From this motivation, we give the following corollary by combining (2.21) and (4.1).

Corollary 4.1

Let \(\Omega ^{n}=\mathbb{N}_{1}\times _{f}\mathbb{N}_{2}\) be a compact C-totally real warped product submanifold embedded into a cosymplectic space form \(\mathbb{M}^{2m+1}(\epsilon )\). Then

  1. (i)

    The following inequality holds:

    $$ E(\ln f)\geq \frac{1}{2m_{2}} \int _{\Omega ^{n}} \biggl\{ \mathscr {R}ic( \mathbb{W})- \frac{n^{2}}{4} \Vert \mathbb{H} \Vert ^{2}- \frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \biggr\} . $$
    (4.2)
  2. (ii)

    If \(\Omega ^{n}\) is minimal then we have

    $$ E(\ln f)\geq \frac{1}{2m_{2}} \int _{\Omega ^{n}} \biggl\{ \mathscr {R}ic( \mathbb{W})- \frac{\epsilon }{4} (m_{1}m_{2}+n-1 ) \biggr\} , $$
    (4.3)

where \(E(\ln f)\) is the Dirichlet energy of the warping function lnf.

5 Conclusions

In brief, it is well known that a cosmological model of the universe consisting of a perfect fluid whose molecules are galaxies is a Robertson–Walker spacetime. For example, if \(\mathbb{S}^{3}\) indicates a three-dimensional manifold with constant curvature \(\kappa =-1, 0, 1\) and \(\mathbb{I}\) denotes an open interval in the real line \(\mathbb{R}\), then a warped product of the form \(\Omega (\kappa , f)=\mathbb{I}\times _{f}\mathbb{S}^{3}\) with its metric \(ds^{2}=-dt^{2}+f^{2}\, ds^{2}_{\mathbb{S}}\) is a Robertson–Walker spacetime. Therefore, the concept of a warped product submanifold is useful because of its importance in mathematical physics [5, 6, 12, 16, 18, 19]. In the present work, we have combined the ordinary differential equation with warped product submanifolds. Therefore, the paper presents excellent combinations of ordinary differential equation with Riemannian geometry.