1 Introduction

The fluid dynamics of deterministic or stochastic Navier–Stokes (NS) equations has been extensively studied. For example, many properties such as existence, upper semi-continuity, regularity, and fractal dimension of an attractor were studied in the literature [4, 5, 8, 13, 19]. However, we find that most of the above-mentioned studies are given in a two-dimensional situation rather than three-dimensional one, which encourages us to do more in-depth research about the dynamic behavior of Navier–Stokes equations.

The g-NS equations in spatial dimension 2 were introduced by Roh [18] as follows:

$$ \textstyle\begin{cases} \frac{\partial u}{\partial t}-\nu \Delta u+(u\cdot \nabla )u+\nabla p=f(x), \\ \nabla \cdot (gu)=0, \end{cases} $$
(1)

where g is a suitable smooth real-valued function. The uniqueness and existence of solutions for the g-NS equations in \(\mathbb{R}^{n}\) (\(n=2,3\)) were proved by Bae and Roh [3]. When \(g=1\), Eq. (1) becomes the usual 2D Navier–Stokes equations. In the last decade, the limiting behavior of solutions in terms of the existence of attractors for 2D g-NS equations has been studied in both autonomous and non-autonomous cases without the stochastic situations, see [10, 11, 18].

As described in [18], the 2D g-NS equations arise in a natural way when we study the standard 3D Navier–Stokes problem in a 3D thin domain \(\mathcal{O}_{g}=\mathcal{O}\times (0,\varepsilon g)\), \((\mathcal{O} \subset \mathbb{R}^{2})\) which was introduced by [9, 17], and we do not claim that the g-NS equations form a model of any fluid flow. They may, or may not. That they are derived from a standard 3D problem is the basis for our study. However, as we know, there are no results related to the long-time behavior of solutions for the 2D stochastic g-NS equations.

In this paper, we consider both the existence and large-domain stability of a random attractor for the stochastic 2D g-NS equations on an unbounded Poincaré-type domain \(\mathcal{O}_{\infty }\subset \mathbb{R}^{2}\), which is regarded as a limit of the sequence of expanding domains \(\mathcal{O}_{k}=\{x\in \mathcal{O}_{\infty }: |x|< k\}\).

We write the sequence of stochastic 2D g-NS equations on \(\mathcal{O}_{k}\) (\(k\in \overline{\mathbb{N}}:=\mathbb{N}\cup \{\infty \}\)) as a unified form:

$$ \textstyle\begin{cases} du_{k}- ( \nu \Delta u_{k}-(u_{k}\cdot \nabla )u_{k}- \nabla p )\,dt=f(x,t)\,dt+ \varepsilon h(x) \,dW(t),\quad x\in \mathcal{O}_{k}, \\ \nabla \cdot (gu_{k})=0,\quad x\in \mathcal{O}_{k}, \\ u_{k}=0,\quad x\in \partial \mathcal{O}_{k}, \\ u_{k}(\tau ,x)=u_{\tau ,k}(x),\quad x\in \mathcal{O}_{k}, \tau \in \mathbb{R}, \end{cases} $$
(2)

where \(\nu , \varepsilon >0\), p is the pressure, \(u_{k}\) is the velocity vector, W is a scalar Wiener process defined on a probability space \((\varOmega , \mathcal{F}, P)\). \(h(x)\) is a given time-independent two-dimensional vector function belonging to some Sobolev spaces which will be specified later.

The first subject is to show the existence of a random attractor \(\mathcal{A}_{k}\) in \(H_{g}(\mathcal{O}_{k})\) (a special subspace of \(\mathbb{L}^{2}(\mathcal{O}_{k})\)) for each \(k\in \overline{\mathbb{N}}\). Due to both non-autonomy and randomness of model (2), the attractor is actually a bi-parametric set \(\mathcal{A}_{k}=\{\mathcal{A}_{k}(\tau , \omega ): \tau \in \mathbb{R}, \omega \in \varOmega \}\) in \(H_{g}(\mathcal{O}_{k})\) (see [21]). Even for this existence of a pullback attractor, the assumption of small noise (\(\varepsilon \leq \varepsilon _{0}\)) seems to be necessary.

To study problem (2), the real-valued function \(g=g(x)\in W^{1,\infty }(\mathcal{O}_{\infty })\) satisfies the following basic assumption:

$$ 0< m_{0}\leq g(x)\leq M_{0},\quad \forall x=(x_{1},x_{2})\in \mathcal{O}_{\infty }. $$
(3)

Using the famous energy equation method [19], we establish the existence of random attractors. More precisely, for each \(k\in \overline{\mathbb{N}}\), the stochastic g-NS equations (2) have a random attractor \(\mathcal{A}_{k}\) in \(H_{g}(\mathcal{O}_{k})\).

The second subject is to investigate large-domain stability of the attractor, which means that \(\mathcal{A}_{k}\) is stable (upper semi-continuous) at \(\mathcal{A}_{\infty }\) under a suitable Hausdorff semi-distance.

Such an expanding-domain problem is contrary to the thin-domain problem, the latter was extensively investigated in the literature (see [14, 15]) and time-varying domains problem [20]. However, the same difficulty arises from the fact that both \(\mathcal{A}_{k}\) and \(\mathcal{A}_{\infty }\) lie in different phase spaces, compared with the same phase space in time-dependent stability of a pullback attractor [6, 7, 12].

In order to define a distance between two subsets lying in different spaces, we consider the null-expansion \(\widetilde{u_{k}}\) of the solution \(u_{k}\in H_{g}(\mathcal{O}_{k})\) defined by

$$ \widetilde{u_{k}}=u_{k},\quad x\in \mathcal{O}_{k};\qquad \widetilde{u_{k}}=0, \quad x\in \mathcal{O}_{\infty }\setminus \mathcal{O}_{k}. $$

One can show easily that \(\widetilde{u_{k}}\in H_{g}(\mathcal{O}_{\infty })\) if \(u_{k}\in H_{g}(\mathcal{O}_{k})\). However, in general, \(\widetilde{u_{k}}\neq u_{\infty }\). So, the attractor \(\mathcal{A}_{k}\) can be expanded to a bi-parametric set \(\widetilde{\mathcal{A}_{k}}\) in \(H_{g}(\mathcal{O}_{\infty })\), defined by

$$ \widetilde{\mathcal{A}_{k}}(\tau ,\omega )= \bigl\{ u\in H_{g}(\mathcal{O}_{\infty }): \exists v\in \mathcal{A}_{k}(\tau ,\omega ), \text{s.t. } u=\tilde{v} \bigr\} ,\quad \forall \tau \in \mathbb{R},\omega \in \varOmega . $$

In this way, the Hausdorff semi-distance between \(\widetilde{\mathcal{A}_{k}}\) and \(\mathcal{A}_{\infty }\) lies in the same space \(H_{g}(\mathcal{O}_{\infty })\) where the Hausdorff semi-distance can be understood in the following sense:

$$ \operatorname{dist}_{H_{g}(\mathcal{O}_{\infty })} \bigl(\widetilde{\mathcal{A}_{k}}( \tau ,\omega ),\mathcal{A}_{\infty }(\tau ,\omega ) \bigr)=\sup _{u\in \widetilde{\mathcal{A}_{k}}(\tau ,\omega )}\inf_{v\in \mathcal{A}_{\infty }(\tau ,\omega )} \Vert u-v \Vert _{H_{g}(\mathcal{O}_{\infty })}. $$
(4)

Then our aim is to prove

$$ \operatorname{dist}_{H_{g}(\mathcal{O}_{\infty })} \bigl(\widetilde{ \mathcal{A}_{k}}( \tau ,\omega ),\mathcal{A}_{\infty }(\tau , \omega ) \bigr)\to 0 \quad \text{as } k \to \infty . $$
(5)

However, the usual energy equation method is not sufficient to prove the large-domain stability from \(\mathcal{A}_{k}\) to \(\mathcal{A}_{\infty }\) as \(k\to \infty \). We will expand each cocycle \(\varPhi _{k}\) (on \(H_{g}(\mathcal{O}_{k})\)) to the null-expansion cocycle \(\widetilde{\varPhi _{k}}\) on a subspace of \(H_{g}(\mathcal{O}_{\infty })\) and prove that the sequence of expanding cocycles \(\{\widetilde{\varPhi _{k}}\}_{k}\) is equi-asymptotically compact (uniformly in k) in \(H_{g}(\mathcal{O}_{\infty })\).

For this end, we develop the usual energy equation method from a single system to a sequence of systems, and prove weak equi-continuity of expanding cocycles \(\{\widetilde{\varPhi _{k}}\}_{k}\), which together with an energy equality can help us to establish the equi-asymptotic compactness of expanding cocycles \(\{\widetilde{\varPhi _{k}}\}_{k}\).

Finally, by proving the convergence from \(\widetilde{\varPhi _{k}}\) to \(\varPhi _{\infty }\) in \(H_{g}(\mathcal{O}_{\infty })\), we establish the large-domain stability (5) as desired.

This paper is organized as follows. In the next section, the functional spaces and a continuous cocycle for the stochastic g-Navier–Stokes equations are defined. In Sect. 3, we define the expanding cocycles and prove the convergence of the expanding cocycles for stochastic g-Navier–Stokes equations. We derive the uniform estimates and weak equi-continuity of the solution sequence \(\{v_{k}\}\) in Sect. 4, which yields the equi-asymptotic compactness of the sequence \(\{\widetilde{\varPhi _{k}}\}_{k}\) of expanding cocycles in Sect. 5. In the last section, we show the existence and large-domain stability of the attractor when the domain changes from bounded to unbounded.

2 Random attractor on varying domain

2.1 Functional spaces and operators

As pointed out in Sect. 1, the unbounded domain \(\mathcal{O}_{\infty }\) is of Poincaré type, and thus there exists \(\lambda _{\infty }>0\) such that

$$ \int _{\mathcal{O}_{\infty }} \bigl\vert \nabla \zeta (x) \bigr\vert ^{2}\,dx\geq \lambda _{\infty } \int _{\mathcal{O}_{\infty }} \bigl\vert \zeta (x) \bigr\vert ^{2}\,dx, \quad \forall \zeta \in H^{1}_{0}( \mathcal{O}_{\infty }). $$
(6)

Let \(\mathcal{O}_{k}=\{x\in \mathcal{O}_{\infty }: |x|\leq k\}\), and for each \(k\in \overline{\mathbb{N}}\), we use \((L_{g}^{2}(\mathcal{O}_{k}), \|\cdot \|_{g})\) to denote the space \(L^{2}(\mathcal{O}_{k})\) with the following norm:

$$ \Vert \zeta \Vert ^{2}_{g}:= \int _{\mathcal{O}_{k}}g(x) \bigl\vert \zeta (x) \bigr\vert ^{2}\,dx,\quad \forall \zeta \in L^{2}(\mathcal{O}_{k}), k\in \overline{\mathbb{N}}. $$

By (3), one can show that \(m_{0}\|\zeta \|^{2}\leq \|\zeta \|^{2}_{g}\leq M_{0}\|\zeta \|^{2}\). So, both norms \(\|\cdot \|_{g}\) and \(\|\cdot \|\) are indeed equivalent.

Also, we use \((H_{0,g}^{1}(\mathcal{O}_{k}), \|\cdot \|_{H_{0,g}^{1}})\) to denote the space \(H^{1}_{0}(\mathcal{O}_{k})\) with the following norm:

$$ \Vert \zeta \Vert ^{2}_{H_{0,g}^{1}(\mathcal{O}_{k})}:= \int _{\mathcal{O}_{k}}g(x) \bigl\vert \nabla \zeta (x) \bigr\vert ^{2}\,dx,\quad \forall \zeta \in H^{1}_{0}( \mathcal{O}_{k}), k\in \overline{\mathbb{N}}. $$

Then, by [16], there exists \(\lambda _{0}>0\) (independent of k) such that

$$ \Vert \zeta \Vert ^{2}_{H_{0,g}^{1}(\mathcal{O}_{k})}\geq \lambda _{0} \Vert \zeta \Vert ^{2}_{g},\quad \forall \zeta \in H^{1}_{0}(\mathcal{O}_{k}), k\in \overline{\mathbb{N}}, $$
(7)

which implies that the new norm is (uniformly) equivalent to the original \(H^{1}_{0}(\mathcal{O}_{k})\)-norm.

To reformulate system (2), we introduce some function space:

$$\begin{aligned}& \mathcal{V}(\mathcal{O}_{k})= \bigl\{ u\in \mathbb{C}^{\infty }_{0}( \mathcal{O}_{k}): \nabla \cdot (gu)=0 \bigr\} , \\& H_{g}( \mathcal{O}_{k})=\operatorname{cl}_{\mathbb{L}^{2}_{g}( \mathcal{O}_{k})}\mathcal{V},\qquad V_{g}( \mathcal{O}_{k})=\operatorname{cl}_{\mathbb{H}^{1}_{0,g}( \mathcal{O}_{k})}\mathcal{V}, \end{aligned}$$

where \(\operatorname{cl}_{X}\) denotes the closure taken in X and \(\mathbb{C}^{\infty }_{0}(\mathcal{O}_{k})= C^{\infty }_{0}(\mathcal{O}_{k})^{2}\), \(\mathbb{L}^{2}_{g}(\mathcal{O}_{k}):={L}^{2}_{g}(\mathcal{O}_{k})^{2}\), \(\mathbb{H}^{1}_{0,g}(\mathcal{O}_{k})={H}^{1}_{0,g}(\mathcal{O}_{k})^{2}\), respectively.

Then \(H_{g}(\mathcal{O}_{k})\), \(V_{g}(\mathcal{O}_{k})\) are Hilbert spaces with the inner products \((\cdot , \cdot )_{g}\) and \(((\cdot , \cdot ))_{g}\) of \(\mathbb{L}^{2}_{g}(\mathcal{O}_{k})\) given by, for \(u=(u_{1},u_{2})\), \(v=(v_{1},v_{2})\in H_{g}(\mathcal{O}_{k})\),

$$ (u,v)_{g}= \int _{\mathcal{O}_{k}}u\cdot vg\,dx=\sum^{2}_{i=1}(u_{i},v_{i})_{g}\quad \text{and}\quad \Vert u \Vert _{g}=(u,u)_{g}^{1/2}, $$

and for all \(u=(u_{1},u_{2}), v=(v_{1},v_{2})\in V_{g}(\mathcal{O}_{k})\),

$$\begin{aligned} \bigl((u,v) \bigr)_{g}:=(Du,Dv)_{g}=\sum ^{2}_{i,j=1} \int _{\mathcal{O}_{k}} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{j}}{\partial x_{i}}g\,dx \quad \text{and}\quad \Vert u \Vert _{V_{g}}=(Du,Du)_{g}^{1/2}, \end{aligned}$$

where \(Du=((\frac{\partial u_{1}}{\partial x_{1}}, \frac{\partial u_{1}}{\partial x_{2}}),( \frac{\partial u_{2}}{\partial x_{1}}, \frac{\partial u_{2}}{\partial x_{2}}))\).

Now, we can define the g-Laplace operator as follows:

$$ -\Delta _{g}u=-\frac{1}{g}(\nabla \cdot g\nabla )u=- \Delta u- \frac{1}{g}(\nabla g\cdot \nabla ) u. $$

Then, the first equation of (2) can be rewritten as

$$ du_{k}- \biggl(\nu \Delta _{g} u_{k}-\frac{\nu }{g}(\nabla g\cdot \nabla ) u_{k} -(u_{k}\cdot \nabla )u_{k}-\nabla p \biggr)\,dt=f(x,t)\,dt+\varepsilon h(x) \,dW(t). $$
(8)

Consider the g-orthogonal projection \(P_{g,k}:\mathbb{L}^{2}_{g}(\mathcal{O}_{k})\to H_{g}(\mathcal{O}_{k})\) and define the g-Stokes operator[18] by

$$ A_{g,k}u=-P_{g,k} \biggl(\frac{1}{g}(\nabla \cdot g\nabla ) u \biggr) , \qquad \langle A_{g,k}u,v\rangle _{g}=\langle A_{g,k}u,gv\rangle = \bigl((u,v) \bigr)_{g} $$

for all \(u,v\in V_{g}(\mathcal{O}_{k})\). Let \(V^{*}_{g}(\mathcal{O}_{k})\) be the dual space of \(V_{g}(\mathcal{O}_{k})\). Then \(A_{g,k}: V_{g}(\mathcal{O}_{k})\to V^{*}_{g}(\mathcal{O}_{k})\) is a homomorphism with \(\|A_{g,k}\|\leq 1/m_{0}\) (see [16]) and the bound is independent of \(k\in \overline{\mathbb{N}}\).

Furthermore, we consider the uniform bound of operator \(R_{g,k}: V_{g}(\mathcal{O}_{k})\to V^{*}_{g}(\mathcal{O}_{k})\) given by

$$ R_{g,k}u=P_{g,k} \biggl(\frac{1}{g}(\nabla g \cdot \nabla ) u \biggr),\quad \forall u\in V_{g}(\mathcal{O}_{k}). $$

In this case, by [16], we have the following result.

Lemma 2.1

For each\(k\in \overline{\mathbb{N}}\)and\(u\in V_{g}(\mathcal{O}_{k})\), we have the following uniform bounds:

$$ \Vert u \Vert _{H_{g}(\mathcal{O}_{k})}^{2}\leq \frac{1}{\lambda _{0}} \Vert u \Vert ^{2}_{V_{g}( \mathcal{O}_{k})} \quad \textit{and} \quad \Vert R_{g,k}u \Vert _{V^{*}_{g}(\mathcal{O}_{k})} \leq \frac{ \Vert \nabla g \Vert _{\infty }}{m_{0}^{2}\lambda _{0}^{1/2}} \Vert u \Vert _{V_{g}( \mathcal{O}_{k})}, $$
(9)

where\(\lambda _{0}\)is given by (7) and\(\|\cdot \|_{\infty }\)is the norm in\(L^{\infty }(\mathcal{O}_{\infty })\).

In the sequel, we will define the bilinear operator \(B_{g,k}:V_{g}(\mathcal{O}_{k})\times V_{g}(\mathcal{O}_{k})\to V^{*}_{g}( \mathcal{O}_{k})\) and the trilinear form \(b_{g,k}:V_{g}(\mathcal{O}_{k})\times V_{g}(\mathcal{O}_{k})\times V_{g}( \mathcal{O}_{k})\to \mathbb{R}\) by

$$ \bigl\langle B_{g,k}(u,v),w \bigr\rangle _{g}=b_{g,k}(u,v,w)= \sum^{2}_{i,j=1} \int _{\mathcal{O}_{k}}u_{i}\frac{\partial v_{j}}{\partial x_{i}}w_{j}g \,dx, \quad \forall u,v,w\in V_{g}(\mathcal{O}_{k}), $$

and we write \(B_{g,k}(u)=B_{g,k}(u,u)\) without confusion. By Roh [18], we have

$$\begin{aligned}& b_{g,k}(u,v,v)=0,\qquad b_{g,k}(u,v,w)=-b_{g,k}(u,w,v), \end{aligned}$$
(10)
$$\begin{aligned}& \bigl\Vert B_{g,k}(u) \bigr\Vert _{V^{*}_{g}}\leq c \Vert u \Vert _{g} \Vert u \Vert _{V_{g}}, \end{aligned}$$
(11)
$$\begin{aligned}& \bigl\vert b_{g,k}(u,v,w) \bigr\vert \leq c \Vert u \Vert _{g}^{\frac{1}{2}} \Vert u \Vert _{V_{g}}^{\frac{1}{2}} \Vert v \Vert _{V_{g}} \Vert w \Vert _{g}^{\frac{1}{2}} \Vert w \Vert _{V_{g}}^{\frac{1}{2}}. \end{aligned}$$
(12)

Therefore, we can rewrite (8) in the sense of abstract equation

$$ du_{k}+ \bigl(\nu A_{g,k}u_{k}+B_{g,k}(u_{k},u_{k})+ \nu R_{g,k}u_{k} \bigr)\,dt=P_{g,k}f(x,t)|_{ \mathcal{O}_{k}}\,dt+ \varepsilon h(x)\,dW(t). $$
(13)

Definition 2.2

For a function \(u:\mathcal{O}_{k}\to \mathbb{R}^{2}\), its null-expansion \(\tilde{u}:\mathcal{O}_{\infty }\to \mathbb{R}^{2}\) is defined by

$$ \tilde{u}(x)= \textstyle\begin{cases} u(x)& \text{for } x\in \mathcal{O}_{k}, \\ 0& \text{for } x\in \mathcal{O}_{\infty }\setminus \mathcal{O}_{k}. \end{cases} $$
(14)

Conversely, for a function \(v:\mathcal{O}_{\infty }\to \mathbb{R}^{2}\), the restriction \(v|_{\mathcal{O}_{k}}:\mathcal{O}_{k}\to \mathbb{R}^{2}\) is given by

$$ v|_{\mathcal{O}_{k}}(x)=v(x),\quad x\in \mathcal{O}_{k}. $$

We need to estimate the norms of both expansion and restriction in \(H_{g}\), \(V_{g}\), and \(V^{*}_{g}\).

Lemma 2.3

([16])

  1. (1)

    If\(u\in H_{g}(\mathcal{O}_{k})\), then\(\tilde{u}\in H_{g}(\mathcal{O}_{\infty })\)and\(\|\tilde{u}\|_{H_{g}(\mathcal{O}_{\infty })}=\| u\|_{H_{g}(\mathcal{O}_{k})}\).

  2. (2)

    If\(u\in V_{g}(\mathcal{O}_{k})\), then\(\tilde{u}\in V_{g}(\mathcal{O}_{\infty })\)and\(\|\tilde{u}\|_{V_{g}(\mathcal{O}_{\infty })}=\| u\|_{V_{g}(\mathcal{O}_{k})}\).

  3. (3)

    If\(v\in H_{g}(\mathcal{O}_{\infty })\), then\(v_{|\mathcal{O}_{k}}\in H_{g}(\mathcal{O}_{k})\)and\(\|v|_{\mathcal{O}_{k}}\|_{H_{g}(\mathcal{O}_{k})}\leq \| v\|_{H_{g}( \mathcal{O}_{\infty })}\).

  4. (4)

    If\(w\in V^{*}_{g}(\mathcal{O}_{\infty })\), then the restriction\(w|_{\mathcal{O}_{k}}\in V^{*}_{g}(\mathcal{O}_{\infty })\)and\(\|w|_{\mathcal{O}_{k}}\|_{V^{*}_{g}(\mathcal{O}_{k})}\leq \|w\|_{V^{*}_{g}( \mathcal{O}_{\infty })}\).

2.2 Cocycles for stochastic g-NS equations

The standard probability space \((\varOmega ,\mathcal{F},P)\) will be used in this paper where

$$ \varOmega = \bigl\{ \omega \in C(\mathbb{R},\mathbb{R}): \omega (0)=0 \bigr\} \quad \text{and}\quad \lim_{t\to \pm \infty }\frac{\omega (t)}{t}=0, $$
(15)

\(\mathcal{F}\) is the Borel algebra induced by the compact-open topology of Ω, and P is the Wiener measure on \((\varOmega ,\mathcal{F})\). Given \(t\in \mathbb{R}\), define \(\theta _{t}: \varOmega \to \varOmega \) by

$$ \theta _{t}\omega (\cdot )=\omega (\cdot +t)-\omega (t),\quad (\omega , t) \in \varOmega \times \mathbb{R}. $$

Then \((\varOmega ,\mathcal{F},P,\{\theta _{t}\}_{t\in \mathbb{R}})\) is a parametric dynamical system. Let \(z(\theta _{t}\omega )=-\int ^{0}_{-\infty }e^{s}(\theta _{t}\omega )(s)\,ds\), which solves the stochastic Ornstein–Uhlenbeck equation \(dz+z\,dt=dW(t)\). It follows from [1] that there exists a θ-invariant subset \(\tilde{\varOmega }\subset \varOmega \) of full measure such that \(z(\theta _{t}\omega )\) is continuous in t for every \(\omega \in \tilde{\varOmega }\), and we have the following limits:

$$\begin{aligned} &\lim_{t\to \pm \infty }\frac{z(\theta _{t}\omega )}{t}=\lim_{t\to \pm \infty } \frac{1}{t} \int ^{0}_{-t}z(\theta _{s}\omega ) \,ds=\mathbb{E} \bigl(z( \omega ) \bigr)=0, \end{aligned}$$
(16)
$$\begin{aligned} &\lim_{t\to \infty }\frac{1}{t} \int ^{0}_{-t} \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{m} \,ds=\mathbb{E} \bigl( \bigl\vert z(\omega ) \bigr\vert ^{m} \bigr)= \frac{\varGamma (\frac{1+m}{2})}{\sqrt{\pi }},\quad \forall m>0, \end{aligned}$$
(17)

where \(\mathbb{E}\), Γ denote expectation and gamma function, respectively.

Suppose \(h\in H_{g}(\mathcal{O}_{\infty })\), then denote by \(h_{k}(x):=P_{g,k} h|_{\mathcal{O}_{k}}(x)\) for \(x\in \mathcal{O}_{k}\), \(k\in \overline{\mathbb{N}}\) and consider the change of variables:

$$ v_{k}(t,\tau ,\omega ,v_{\tau ,k})= u_{k}(t, \tau ,\omega ,u_{\tau ,k})- \varepsilon z(\theta _{t}\omega )h_{k}, $$

with \(v_{\tau ,k}=u_{\tau ,k}-\varepsilon z(\theta _{\tau }\omega )h_{k}\), where we understand \(h_{\infty }=P_{g,\infty }h=h\).

In this case, system (13) can be rewritten as follows:

$$\begin{aligned} &\frac{dv_{k}}{dt}+\nu A_{g,k}v_{k}+ B_{g,k} \bigl(v_{k}+\varepsilon h_{k}z( \theta _{t}\omega ) \bigr)+\nu R_{g,k} v_{k} \\ &\quad =-\varepsilon \nu z(\theta _{t}\omega ) A_{g,k}h_{k}- \varepsilon \nu z(\theta _{t}\omega )R_{g,k} h_{k}+P_{g,k}f(t)|_{\mathcal{O}_{k}}+ \varepsilon z(\theta _{t}\omega )h_{k} \end{aligned}$$
(18)

with the initial value

$$ v_{k}(\tau ,\tau ,\omega ,v_{\tau ,k})=v_{\tau ,k}=u_{\tau ,k}- \varepsilon z(\theta _{\tau }\omega )h_{k}. $$
(19)

Definition 2.4

The function \(v_{k}(\cdot , \tau ,\omega ,v_{\tau ,k})\) is called a weak solution of Eqs. (18)–(19) if

$$ v_{k}\in C \bigl([\tau ,\infty),H_{g}( \mathcal{O}_{k})\bigr)\cap L^{2}_{\mathrm{loc}} \bigl(( \tau ,\infty ),V_{g}(\mathcal{O}_{k}) \bigr) $$

and, for all \(t\geq \tau \), P-a.s. \(\omega \in \varOmega \), and \(w\in V_{g}(\mathcal{O}_{k})\),

$$\begin{aligned} &\bigl(v_{k}(t),w \bigr)_{g}+\nu \int ^{t}_{\tau }\langle A_{g,k}v_{k},w \rangle _{g} \,ds+\nu \int ^{t}_{\tau }\langle R_{g,k}v_{k},gw \rangle \,ds \\ &\qquad {}+ \int ^{t}_{\tau } \bigl\langle B_{g,k} \bigl(v_{k}+\varepsilon h_{k}z(\theta _{s} \omega ) \bigr),w \bigr\rangle _{g} \,ds+\varepsilon \nu \int ^{t}_{\tau }z(\theta _{s} \omega )\langle A_{g,k}h_{k}+R_{g,k}h_{k},w \rangle _{g} \,ds \\ &\quad =(v_{\tau ,k},w)_{g}+ \int ^{t}_{\tau } \bigl\langle f(s)|_{\mathcal{O}_{k}}+ \varepsilon h_{k}z(\theta _{s}\omega ),gw \bigr\rangle \,ds. \end{aligned}$$
(20)

Lemma 2.5

Assume that\(f\in L^{2}_{\mathrm{loc}}(\mathbb{R},V^{*}_{g}(\mathcal{O}_{\infty }))\). Then, for each\(k\in \overline{\mathbb{N}}\)and\(v_{\tau ,k}\in H_{g}(\mathcal{O}_{k})\), system (18)(19) has a unique weak solution\(v_{k}\)in the sense of Definition 2.4. Moreover, the solution\(v_{k}(t,\tau ,\omega ;v_{\tau ,k})\)is continuous in\(v_{\tau ,k}\)and measurable inω.

Then we can define a family of measurable mappings \(\varPhi _{k}:\mathbb{R}^{+}\times \mathbb{R}\times \varOmega \times H_{g}( \mathcal{O}_{k})\to H_{g}(\mathcal{O}_{k})\) corresponding to system (18). Given \(\tau \in \mathbb{R}\), \(\omega \in \varOmega \), and \(v_{\tau ,k}\in H_{g}(\mathcal{O}_{k})\), we have

$$ \varPhi _{k}(t,\tau ,\omega )v_{\tau ,k}=v_{k}(t+ \tau ,\tau ,\theta _{- \tau }\omega ,v_{\tau ,k}), $$
(21)

where \(t\geq 0\). Then, for each \(k\in \overline{\mathbb{N}}\), \(\varPhi _{k}\) is a continuous cocycle [21] and we have

$$ \varPhi _{k} (0,\tau ,\omega )=I,\qquad \varPhi _{k} (t+s,\tau , \omega )= \varPhi _{k}(t, \tau +s,\theta _{s}\omega ) \varPhi _{k} (s,\tau ,\omega ) $$

for all \(t, s\geq 0\), \(\tau \in \mathbb{R}\), and \(\omega \in \varOmega \).

We now take a universe \(\mathfrak{D}\) on \(H_{g}(\mathcal{O}_{\infty })\), which consists of all set-valued mappings \(D: \mathbb{R} \times \varOmega \rightarrow 2^{H_{g}(\mathcal{O}_{\infty })} \setminus \{\emptyset \}\) satisfying

$$ \lim_{t\to +\infty }e^{-\frac{3}{2}\lambda t} \bigl\Vert D(\tau -t,\theta _{-t} \omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}=0,\quad \tau \in \mathbb{R}, \omega \in \varOmega , $$
(22)

where \(\|D\|\) denotes the supremum of norms of all elements and \(\lambda =\frac{1}{3}\lambda _{0}\nu \).

Denote \(\mathfrak{D}|_{\mathcal{O}_{k}}\) to be the restriction universe of \(\mathfrak{D}\) on \(H_{g}(\mathcal{O}_{k})\). By Lemma 2.3, we have \(D_{k}\in \mathfrak{D}|_{\mathcal{O}_{k}}\) if and only if

$$ \lim_{t\to +\infty }e^{-\frac{3}{2}\lambda t} \bigl\Vert D_{k}(\tau -t,\theta _{-t} \omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{k})}=0\quad \text{for } k\in \mathbb{N}. $$
(23)

It is easy to check that if \(D_{k}\in \mathfrak{D}|_{\mathcal{O}_{k}}\), then \(\widetilde{D_{k}}\in \mathfrak{D}\). Furthermore, \(\widetilde{D|_{\mathcal{O}_{k}}}\neq D\) for \(D\in \mathfrak{D}\).

In order to obtain the \(\mathfrak{D}|_{\mathcal{O}_{k}}\)-pullback attractor \(\mathcal{A}_{k}\) for all \(k\in \overline{\mathbb{N}}\), we make further assumptions.

Assumption G

We further assume \(g\in W^{1,\infty }(\mathcal{O}_{k})\) and

$$ \Vert \nabla g \Vert _{\infty }\leq \frac{1}{4}m_{0}\lambda ^{\frac{1}{2}}_{0},\quad \forall k\in \overline{\mathbb{N}}, $$
(24)

where \(\lambda _{0}\) is given by (7).

Assumption H

We take the function \(h(x)\in (W^{1,\infty }(\mathcal{O}_{k}))^{2}\cap V_{g}(\mathcal{O}_{k}) \cap \mathbb{H}^{2}(\mathcal{O}_{k})\), \(\forall k\in \overline{\mathbb{N}}\).

Assumption F

\(f\in L^{2}_{\mathrm{loc}}(\mathbb{R},V^{*}_{g}(\mathcal{O}_{\infty }))\), we assume that, for \(\lambda =\frac{1}{3}\lambda _{0}\nu \),

$$ \int ^{0}_{-\infty }e^{\lambda s} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O}_{\infty })}\,ds< \infty ,\quad \forall \tau \in \mathbb{R}. $$
(25)

By Lemma 2.3(4) and Assumption F, the restriction \(f|_{\mathcal{O}_{k}}\) is still tempered:

$$ \int ^{0}_{-\infty }e^{\lambda s} \bigl\Vert f|_{\mathcal{O}_{k}}(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O}_{k})}\,ds< \infty ,\quad \forall \tau \in \mathbb{R}, k\in \mathbb{N}. $$
(26)

Assumption S

(Small noise)

The density of noise \(\varepsilon \in (0,\varepsilon _{0}]\) is small enough, where

$$ \varepsilon _{0}=\min \biggl\{ \frac{\sqrt{\pi }\lambda }{4c_{0}},1 \biggr\} \quad \text{and}\quad c_{0}=2M_{0} \bigl( \Vert h \Vert +1 \bigr) \Vert \nabla h \Vert _{\mathbb{L}^{\infty }( \mathcal{O}_{\infty })}. $$

3 Random attractor and convergence of expanding cocycles

3.1 Expanding cocycles

In this section, we need to expand the cocycle \(\varPhi _{k}\) from \(H_{g}(\mathcal{O}_{k})\) to \(H_{g}(\mathcal{O}_{\infty })\). For this end, we define the corresponding null-expansion of an operator \(\varPhi _{k}(t,\tau ,\omega ): H_{g}(\mathcal{O}_{k})\to H_{g}( \mathcal{O}_{k})\) by \(\widetilde{\varPhi _{k}}:H_{g}(\mathcal{O}_{\infty })\to H_{g}(\mathcal{O}_{\infty })\),

$$ (\widetilde{\varPhi _{k}}u) (x)= \bigl(\varPhi _{k} (u|_{\mathcal{O}_{k}}) \bigr) (x),\quad \forall x\in \mathcal{O}_{k},\qquad (\widetilde{\varPhi _{k}}u) (x)=0,\quad \forall x\in \mathcal{O}_{\infty }\setminus \mathcal{O}_{k}. $$
(27)

However, in general, \(\widetilde{u|_{\mathcal{O}_{k}}}\neq u\) for \(u\in H_{g}(\mathcal{O}_{\infty })\) and so \(\widetilde{\varPhi _{k}}(0,\tau ,\omega )\) is not an identical operator on \(H_{g}(\mathcal{O}_{\infty })\). Hence, \(\widetilde{\varPhi _{k}}\) is not a cocycle on the whole space \(H_{g}(\mathcal{O}_{\infty })\).

Fortunately, we can show that the null-expansion \(\widetilde{\varPhi _{k}}\) is a cocycle on the closed linear subspace \(H_{k}(\mathcal{O}_{\infty })\) defined by

$$ H_{k}(\mathcal{O}_{\infty }): = \bigl\{ u\in H_{g}(\mathcal{O}_{\infty }): u(x)=0 \text{ for } x\in \mathcal{O}_{\infty }\setminus \mathcal{O}_{k} \bigr\} , $$

and thus \(H_{k}(\mathcal{O}_{\infty })\) is a Banach space with the same norm as in \(H_{g}(\mathcal{O}_{\infty })\).

A \(\mathfrak{D}\)-pullback random attractor means a bi-parametric set which is measurable, compact, invariant, and \(\mathfrak{D}\)-pullback attracting. For the concept and existence theorem, the reader can refer to[21].

Theorem 3.1

For each\(k\in \overline{\mathbb{N}}\), the null-expansion\(\widetilde{\varPhi _{k}}\)of\(\varPhi _{k}\)is a cocycle on\(H_{k}(\mathcal{O}_{\infty })\)and it has a\(\widetilde{\mathfrak{D}_{k}}\)-pullback random attractor in\(H_{k}(\mathcal{O}_{\infty })\), given by the null-expansion\(\widetilde{\mathcal{A}_{k}}\)of the random attractor\(\mathcal{A}_{k}\).

Proof

By (27), for each \(u\in H_{k}(\mathcal{O}_{\infty })\), we have

$$ \widetilde{\varPhi _{k}}(0,\tau ,\omega )u=\text{expansion of } \varPhi _{k}(0, \tau ,\omega )u|_{\mathcal{O}_{k}}=\widetilde{u|_{\mathcal{O}_{k}}}=u. $$

So, \(\widetilde{\varPhi _{k}}(0,\tau ,\omega )\) is the identical operator on \(H_{k}(\mathcal{O}_{\infty })\). Other properties of cocycle are easily verified.

Next, we prove that \(\widetilde{\mathcal{A}_{k}}\) is a \(\widetilde{\mathfrak{D}_{k}}\)-pullback random attractor for \(\widetilde{\varPhi _{k}}\) in four steps.

Step 1. We show that \(\widetilde{\mathcal{A}_{k}}\) is measurable on \(H_{k}(\mathcal{O}_{\infty })\). Let \(u\in H_{k}(\mathcal{O}_{\infty })\), which means \(u\equiv 0\) on \(\mathcal{O}_{\infty }\setminus \mathcal{O}_{k}\) and thus

$$ \Vert u \Vert ^{2}_{H_{k}(\mathcal{O}_{\infty })}= \int _{\mathcal{O}_{\infty }} \bigl\vert u(x) \bigr\vert ^{2}g \,dx= \int _{\mathcal{O}_{k}} \bigl\vert u(x) \bigr\vert ^{2}g \,dx= \Vert u|_{\mathcal{O}_{k}} \Vert ^{2}_{H_{g}( \mathcal{O}_{k})}. $$

This equality implies that

$$ d_{H_{k}(\mathcal{O}_{\infty })} \bigl(u,\widetilde{\mathcal{A}_{k}}( \tau , \omega ) \bigr)=d_{H_{g}(\mathcal{O}_{k})} \bigl(u|_{\mathcal{O}_{k}}, \mathcal{A}_{k}( \tau ,\omega ) \bigr). $$
(28)

Since \(\mathcal{A}_{k}(\tau ,\omega )\) is measurable on \(H_{g}(\mathcal{O}_{k})\), the above equality implies the measurability of the mapping \(\omega \to d_{H_{k}(\mathcal{O}_{\infty })}(u, \widetilde{\mathcal{A}_{k}}(\tau ,\omega ))\) for each \(u\in H_{k}(\mathcal{O}_{\infty })\), that is, \(\widetilde{\mathcal{A}_{k}}\) is measurable on \(H_{k}(\mathcal{O}_{\infty })\).

Step 2. We show that \(\widetilde{\mathcal{A}_{k}}(\tau ,\omega )\) is a compact set in \(H_{k}(\mathcal{O}_{\infty })\). Let \(\{u_{n}\}\) be a sequence of \(\widetilde{\mathcal{A}_{k}}(\tau ,\omega )\). Then there exists \(v_{n}\in \mathcal{A}_{k}(\tau ,\omega )\) such that \(u_{n}=\widetilde{v_{n}}\). Due to \(\mathcal{A}_{k}(\tau ,\omega )\) is compact in \(H_{g}(\mathcal{O}_{k})\), passing to a subsequence, we have \(v_{n'}\to v\in \mathcal{A}_{k}(\tau ,\omega )\). Denote by the null-expansion of v, then \(\widetilde{v}\in \widetilde{\mathcal{A}_{k}}\). By Lemma 2.3(1),

$$ \Vert u_{n'}-\widetilde{v} \Vert _{H_{g}(\mathcal{O}_{\infty })}= \Vert \widetilde{v_{n'}}-\widetilde{v} \Vert _{H_{g}(\mathcal{O}_{\infty })}= \Vert v_{n'}-v \Vert _{H_{g}(\mathcal{O}_{k})}\to 0 \quad \text{as } n'\to \infty , $$

which implies that \(u_{n'}\to \widetilde{v}\in \widetilde{\mathcal{A}_{k}}(\tau ,\omega )\). Therefore, \(\widetilde{\mathcal{A}_{k}}(\tau ,\omega )\) is compact in \(H_{k}(\mathcal{O}_{\infty })\).

Step 3. We show the invariance. Given \(u\in \widetilde{\mathcal{A}_{k}}(t+\tau ,\theta _{t}\omega )\), there is \(v\in \mathcal{A}_{k}(t+\tau ,\theta _{t}\omega )\) such that the null-expansion \(\widetilde{v}=u\). By the negative invariance of \(\mathcal{A}_{k}(\tau ,\omega )\), there is \(w\in \mathcal{A}_{k}(\tau ,\omega )\) such that

$$ v=\varPhi _{k}(t,\tau ,\omega )w. $$

Let be the null-expansion of w, then \(\widetilde{w}_{|\mathcal{O}_{k}}=w\). It follows from (27) that we have

$$ u=\widetilde{v}=\widetilde{\varPhi _{k}}(t,\tau ,\omega )\widetilde{w} \in \widetilde{\varPhi _{k}}(t,\tau ,\omega ) \widetilde{ \mathcal{A}_{k}}( \tau ,\omega ), $$

which proves the negative invariance of \(\widetilde{\mathcal{A}_{k}}\). Similarly, one can prove the positive invariance.

Step 4. We show that \(\widetilde{\mathcal{A}_{k}}\) is \(\widetilde{\mathfrak{D}_{k}}\)-pullback attracting. Let \(D\in \widetilde{\mathfrak{D}_{k}}\), then there is \(D_{k}\in \mathfrak{D}_{k}\) such that \(D=\widetilde{ D_{k}}\). By the same method as given in (28), we know that

$$\begin{aligned} &\operatorname{dist}_{H_{k}(\mathcal{O}_{\infty })} \bigl(\widetilde{\varPhi _{k}}(t, \tau -t,\theta _{-t}\omega )D(\tau -t,\theta _{-t}\omega ), \widetilde{\mathcal{A}_{k}}(\tau ,\omega ) \bigr) \\ &\quad =\operatorname{dist}_{H_{g}(\mathcal{O}_{k})} \bigl(\varPhi _{k}(t,\tau -t, \theta _{-t} \omega )D_{k}(\tau -t,\theta _{-t}\omega ),\mathcal{A}_{k}(\tau , \omega ) \bigr). \end{aligned}$$

Then the attraction of \(\widetilde{\mathcal{A}_{k}}\) follows from the attraction of \(\mathcal{A}_{k}\). □

3.2 Convergence of expanding cocycles

In this subsection, we prove the convergence of the expanding cocycles as follows.

Lemma 3.2

Let\(v_{0,k}\in H_{g}(\mathcal{O}_{k})\) (\(k\in \overline{\mathbb{N}}\)) such that\(\|\widetilde{v_{0,k}}-v_{0,\infty }\|_{H_{g}(\mathcal{O}_{\infty })}\to 0\)as\(k\to \infty \). Then

$$ \bigl\Vert \widetilde{v_{k}}(t,\tau ,\omega ;v_{0,k})-v_{\infty }(t, \tau , \omega ;v_{0,\infty }) \bigr\Vert _{H_{g}(\mathcal{O}_{\infty })}\to 0, \quad \textit{as } k\to \infty , $$
(29)

uniformly in\(t\in [\tau ,\tau +T]\)for any\(T>0\).

Proof

By considering the expansion, we rewrite Eq. (18) on the domain \(\mathcal{O}_{\infty }\) for all \(t\in [\tau ,\tau +T]\), \(k\in \mathbb{N}\):

$$\begin{aligned} &\frac{d\widetilde{v_{k}}}{dt}+\nu A_{g,\infty } \widetilde{v_{k}}+ \varepsilon \nu z(\theta _{t}\omega ) A_{g,\infty }\widetilde{h_{k}}+ B_{g, \infty } \bigl( \widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z(\theta _{t} \omega ) \bigr) \\ &\quad {}+\nu R_{g,\infty }\widetilde{v_{k}}+\varepsilon \nu z(\theta _{t} \omega ) R_{g,\infty }\widetilde{h_{k}}= \widetilde{f(t)|_{\mathcal{O}_{k}}}+\varepsilon z(\theta _{t}\omega ) \widetilde{h_{k}}, \end{aligned}$$
(30)

where \(\widetilde{v_{\infty }}=v_{\infty }\) and \(\widetilde{f(t)|_{\mathcal{O}_{k}}}\) is regarded as the null-expansion of the restriction of \(f(t)\).

Let \(V_{k}=\widetilde{v_{k}}-v_{\infty }\in H_{g}(O_{\infty })\). Subtracting Eq. (18) for \(k=\infty \) from (30) and multiplying the result by \(gV_{k}\), we have

$$\begin{aligned} \frac{d}{dt} \Vert V_{k} \Vert ^{2}_{g}+2\nu \Vert D V_{k} \Vert ^{2}_{g} =&-2b_{g, \infty } \bigl( \widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z(\theta _{t} \omega ),\widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z(\theta _{t} \omega ),V_{k} \bigr) \\ &{}+2b_{g,\infty } \bigl(v_{\infty }+\varepsilon h z(\theta _{t}\omega ),v_{\infty }+\varepsilon h z(\theta _{t}\omega ),V_{k} \bigr)-2\nu \langle R_{g,k} V_{k},gV_{k}\rangle \\ &{}-\varepsilon \nu z(\theta _{t}\omega ) \bigl\langle (A_{g,\infty }+R_{g, \infty }) (\widetilde{h_{k}}-h),gV_{k} \bigr\rangle \\ &{}+2 \bigl\langle \widetilde{f(t)|_{\mathcal{O}_{k}}}-f(t),gV_{k} \bigr\rangle + \varepsilon z(\theta _{t}\omega ) ( \widetilde{h_{k}}-h, gV_{k}). \end{aligned}$$
(31)

By (10) and the trilinear property of \(b_{g,\infty }\),

$$\begin{aligned} I_{1} :=&-2(b_{g,\infty } \bigl( \widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z(\theta _{t}\omega ),\widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z(\theta _{t}\omega ),V_{k} \bigr) \\ &{}+2b_{g,\infty } \bigl(v_{\infty }+ \varepsilon hz(\theta _{t}\omega ),v_{\infty }+\varepsilon hz(\theta _{t}\omega ),V_{k} \bigr) \\ =&-2b_{g,\infty } \bigl(V_{k}+\varepsilon z(\theta _{t}\omega ) ( \widetilde{h_{k}}-h), \widetilde{v_{k}}+\varepsilon \widetilde{h_{k}}z( \theta _{t}\omega ),V_{k} \bigr) \\ &{}-2b_{g,\infty } \bigl(v_{\infty }+\varepsilon z(\theta _{t}\omega )h, V_{k}+ \varepsilon z(\theta _{t}\omega ) ( \widetilde{h_{k}}-h),V_{k} \bigr) \\ =&-2b_{g,\infty } \bigl(V_{k}+\varepsilon z(\theta _{t}\omega ) ( \widetilde{h_{k}}-h),v_{\infty }+ \varepsilon \widetilde{h_{k}}z(\theta _{t} \omega ),V_{k} \bigr) \\ &-2b_{g,\infty } \bigl(v_{\infty }+\varepsilon z(\theta _{t}\omega )h, \varepsilon z(\theta _{t}\omega ) ( \widetilde{h_{k}}-h),V_{k} \bigr). \end{aligned}$$
(32)

Notice that \(\varepsilon z(\theta _{t}\omega )\) is bounded in \(t\in [\tau ,\tau +T]\), \(\varepsilon \leq \varepsilon _{0}\) and the sequence \(\{\widetilde{h_{k}}: k\in \overline{\mathbb{N}}\}\) is bounded in \(V_{g}(\mathcal{O}_{\infty })\). We infer from (12) and (32) that

$$\begin{aligned} I_{1}&\leq 2 \Vert V_{k} \Vert _{g} \Vert D V_{k} \Vert _{g} \bigl( \Vert D v_{\infty } \Vert _{g}+c \bigr)+c \bigl\Vert D( \widetilde{h_{k}}-h) \bigr\Vert _{g} \bigl( \Vert Dv_{\infty } \Vert _{g}+c \bigr) \Vert D V_{k} \Vert _{g} \\ &\leq \frac{\nu }{2} \Vert D V_{k} \Vert ^{2}_{g}+ c \bigl( \Vert D v_{\infty } \Vert _{g}^{2}+1 \bigr) \Vert V_{k} \Vert _{g}^{2}+c \bigl( \Vert D v_{\infty } \Vert _{g}^{2}+1 \bigr) \bigl\Vert D(\widetilde{h_{k}}-h) \bigr\Vert _{g}^{2}. \end{aligned}$$
(33)

By Assumption G,

$$\begin{aligned} I_{2}&:=-2\nu \langle R_{g,k} V_{k},gV_{k}\rangle \leq 2\nu \biggl\vert \biggl\langle \biggl(\frac{\nabla g}{g}\cdot \nabla \biggr) V_{k},gV_{k} \biggr\rangle \biggr\vert \\ &\leq \frac{2\nu \Vert \nabla g \Vert _{\infty }}{m_{0}\lambda _{0}^{1/2}} \Vert D V_{k} \Vert ^{2}_{g}\leq \frac{\nu }{2} \Vert D V_{k} \Vert ^{2}_{g}. \end{aligned}$$
(34)

Since \(A_{g,\infty }\) and \(R_{g,\infty }\) are bounded linear operators from \(V_{g}(\mathcal{O}_{\infty })\) to \(V_{g}^{*}\), we have

$$\begin{aligned} I_{3}&:=-\varepsilon \nu z(\theta _{t}\omega ) \bigl\langle (A_{g,\infty }+R_{g, \infty }) ( \widetilde{h_{k}}-h),gV_{k} \bigr\rangle \\ &\leq \frac{\nu }{2} \Vert D V_{k} \Vert ^{2}_{g}+ c \bigl\Vert D(\widetilde{h_{k}}-h) \bigr\Vert _{g}^{2}. \end{aligned}$$
(35)

For the forcing term, since \(V_{k}=\widetilde{v_{k}}-v_{\infty }=-v_{\infty }\) on \(\mathcal{O}_{\infty }\setminus \mathcal{O}_{k}\), we have

$$\begin{aligned} I_{4}&:=2 \bigl\vert \bigl\langle \widetilde{f(t)|_{\mathcal{O}_{k}}}-f(t),gV_{k} \bigr\rangle \bigr\vert =2 \biggl\vert \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k}}f(t)v_{\infty }g\,dx \biggr\vert \\ &=2 \biggl\vert \int _{\mathcal{O}_{\infty }}f(t) (v_{\infty }- \widetilde{v_{\infty }|_{\mathcal{O}_{k}}}) g\,dx \biggr\vert \leq 2 \bigl\Vert f(t) \bigr\Vert _{V^{*}_{g}( \mathcal{O}_{\infty })} \Vert v_{\infty }- \widetilde{v_{\infty }|_{\mathcal{O}_{k}}} \Vert _{V_{g}(\mathcal{O}_{\infty })}. \end{aligned}$$
(36)

By the Holder inequality and Poincaré inequality,

$$ I_{5}: =\varepsilon z(\theta _{t} \omega ) (\widetilde{h_{k}}-h, gV_{k}) \leq \Vert V_{k} \Vert _{g}^{2}+c \bigl\Vert D( \widetilde{h_{k}}-h) \bigr\Vert _{g}^{2}. $$
(37)

It follows from (33) to (37) that

$$\begin{aligned} \frac{d}{dt} \Vert V_{k} \Vert ^{2}_{g}\leq{}& c \Vert D v_{\infty } \Vert ^{2}_{g} \Vert V_{k} \Vert ^{2}_{g}+c \bigl\Vert f(t) \bigr\Vert _{V^{*}_{g}(\mathcal{O}_{\infty })} \Vert v_{\infty }- \widetilde{v_{\infty }|_{\mathcal{O}_{k}}} \Vert _{V_{g}(\mathcal{O}_{\infty })} \\ &{} +c \bigl( \Vert D v_{\infty } \Vert _{g}^{2}+1 \bigr) \bigl\Vert D(\widetilde{h_{k}}-h) \bigr\Vert _{g}^{2}. \end{aligned}$$
(38)

By Gronwall’s lemma we get, for all \(t\in [\tau ,\tau +T]\),

$$\begin{aligned} \bigl\Vert V_{k}(t) \bigr\Vert ^{2}\leq {}& Ce^{C\int ^{\tau +T}_{\tau } \Vert v_{\infty }(r) \Vert ^{2}_{V_{g}}\,dr} \biggl( \bigl\Vert V_{k}(\tau ) \bigr\Vert ^{2}+ \int ^{\tau +T}_{\tau } \bigl\Vert f(r) \bigr\Vert _{V^{*}_{g}} \Vert v_{\infty }-\widetilde{v_{\infty }|_{\mathcal{O}_{k}}} \Vert _{V_{g}(\mathcal{O}_{\infty })}\,dr \\ &{} + \bigl\Vert D(\widetilde{h_{k}}-h) \bigr\Vert _{g}^{2} \int ^{\tau +T}_{\tau } \bigl( \bigl\Vert v_{\infty }(r) \bigr\Vert ^{2}_{V_{g}}\,dr+1 \bigr) \,dr \biggr). \end{aligned}$$
(39)

By Lemma 2.5, \(v_{\infty }\in L^{2}(\tau ,\tau +T;V_{g}(\mathcal{O}_{\infty }))\) and thus

$$ \int ^{\tau +T}_{\tau } \int _{\mathcal{O}_{\infty }} \bigl\vert D v_{\infty }(r,x) \bigr\vert ^{2} \,dx\,dr< + \infty . $$
(40)

Since \(f\in L^{2}(\tau ,\tau +T;V^{*}_{g}(\mathcal{O}_{\infty }))\), it follows from the Holder inequality that, as \(k\to \infty \),

$$\begin{aligned} &\int ^{\tau +T}_{\tau } \bigl\Vert f(r) \bigr\Vert _{V^{*}_{g}(\mathcal{O}_{\infty })} \bigl\Vert D \bigl(v_{\infty }(r)- \widetilde{v_{\infty _{|\mathcal{O}_{k}}}}(r) \bigr) \bigr\Vert _{g}\,dr \\ &\quad \leq \biggl( \int ^{\tau +T}_{\tau } \bigl\Vert f(r) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })} \biggr)^{\frac{1}{2}} \bigl( \bigl\Vert D \bigl(v_{\infty }(r)- \widetilde{v_{\infty _{|\mathcal{O}_{k}}}}(r) \bigr) \bigr\Vert ^{2}_{g}\,dr \bigr)^{ \frac{1}{2}} \\ &\quad \leq c \biggl( \int ^{\tau +T}_{\tau } \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k}} \bigl\vert D v_{\infty }(r,x) \bigr\vert ^{2}\,dx\,dr \biggr)^{\frac{1}{2}}\to 0 \end{aligned}$$
(41)

in view of (40) and the Lebesgue controlled convergence theorem. By Assumption H and the absolute continuity of the integrals, by the convergence of the initial value, we have

$$ \bigl\Vert D(\widetilde{h_{k}}-h) \bigr\Vert _{g}^{2}\to 0 \quad \text{as } k\to \infty . $$
(42)

By the assumption that \(\|V_{k}(\tau )\|^{2}_{g}\to 0\) as \(k\to \infty \), we infer from (39)–(42) that \(\|V_{k}(t)\|^{2}_{g}\to 0\) as \(k\to \infty \), uniformly in \(t\in [\tau ,\tau +T]\). □

4 Weak equi-continuity of the sequence of expanding cocycles

4.1 Uniform absorption

Lemma 4.1

There is a random variable \(C_{0}(\omega )\) such that

$$ c_{0}\varepsilon \int ^{0}_{-t} \bigl\vert z(\theta _{r}\omega ) \bigr\vert \,dr\leq \frac{1}{2}\lambda t+C_{0}(\omega ),\quad \forall t\geq 0, \varepsilon \leq \varepsilon _{0}. $$
(43)

Proof

By (17) and the ergodic theorem,

$$ \frac{1}{t} \int ^{0}_{-t} \bigl\vert z(\theta _{r}\omega ) \bigr\vert \,dr\to \mathbb{E} \bigl( \bigl\vert z( \omega ) \bigr\vert \bigr)=\frac{1}{\sqrt{\pi }} \quad \text{as } t\to +\infty. $$

We choose large \(t_{0}(\omega )\geq 0\) and use Assumption S to obtain, for all \(\varepsilon \leq \varepsilon _{0}\),

$$ c_{0}\varepsilon \int ^{0}_{-t} \bigl\vert z(\theta _{r}\omega ) \bigr\vert \,dr\leq c_{0} \varepsilon _{0}\frac{2}{\sqrt{\pi }} t\leq \frac{1}{2}\lambda t,\quad \forall t\geq t_{0}, $$
(44)

while, for all \(t\leq t_{0}\),

$$ c_{0}\varepsilon \int ^{0}_{-t} \bigl\vert z(\theta _{r}\omega ) \bigr\vert \,dr\leq c_{0} \varepsilon _{0}t_{0}\max_{r\in [-t_{0}, 0]} \bigl\vert z(\theta _{r}\omega ) \bigr\vert :=C_{0}( \omega ). $$

Let \(\mathbb{Q}\) be the set of rational numbers, then \([-t_{0}, 0]\cap \mathbb{Q}=\{r_{1}, r_{2}, \ldots \}\) is a countable set. Hence,

$$ \max_{r\in [-t_{0}, 0]} \bigl\vert z(\theta _{r}\omega ) \bigr\vert =\sup_{n\in \mathbb{N}} \bigl\vert z(\theta _{r_{n}}\omega ) \bigr\vert , $$

which is measurable in ω and so is \(C_{0}(\omega )\). Therefore, (43) holds true. □

Lemma 4.2

For each\(\tau \in \mathbb{R}\), \(\omega \in \varOmega \), and\(D\in \mathfrak{D}\), there exists\(T=T(\tau ,\omega ,\sigma , D)>0\)such that, for all\(t\geq T\), \(\sigma \in [\tau -t,\tau ]\), and\(v_{\tau -t,k}\in D|_{\mathcal{O}_{k}}(\tau -t,\theta _{-t}\omega )\),

$$ \sup_{k\in \overline{\mathbb{N}}} \bigl\Vert v_{k}(\sigma ,\tau -t,\theta _{- \tau }\omega ,v_{\tau -t,k}) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{k})}\leq e^{2 \lambda (\tau -\sigma )}\rho (\sigma ,\tau ,\omega ), $$
(45)

where, from AssumptionsF, S,

$$\begin{aligned} \rho (\sigma ,\tau ,\omega )={}&c \int ^{\sigma -\tau }_{-\infty }e^{2 \lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+ \tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })}\,ds \\ &{}+c \int ^{\sigma -\tau }_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4} \bigr) \,ds< +\infty . \end{aligned}$$

Proof

We multiply Eq. (18) by \(gv_{k}\) and integrate over \(\mathcal{O}_{k}\) to obtain

$$\begin{aligned} &\frac{d}{dt} \Vert v_{k} \Vert _{g}^{2}+2\nu \Vert v_{k} \Vert ^{2}_{V_{g}} \\ &\quad =2 \bigl\langle f(t)|_{ \mathcal{O}_{k}},gv_{k} \bigr\rangle +2\varepsilon z(\theta _{t}\omega ) (h_{k},gv_{k})-2 \varepsilon \nu z(\theta _{t}\omega )\langle A_{g,k}h_{k},gv_{k} \rangle \\ &\qquad {}-2\varepsilon \nu z(\theta _{t}\omega )\langle R_{g,k}h_{k},gv_{k} \rangle -2\nu \langle R_{g,k}v_{k},gv_{k} \rangle -2 \bigl\langle B_{g,k} \bigl(v_{k}+ \varepsilon h_{k}z( \theta _{t}\omega ) \bigr),v_{k} \bigr\rangle _{g}. \end{aligned}$$
(46)

For the nonlinear term, by Lemma 2.3(4), we have

$$\begin{aligned} 2\bigl| \bigl\langle f(t) \vert _{\mathcal{O}_{k}},gv_{k} \bigr\rangle \bigr\vert &\leq 2M_{0} \bigl\Vert f(t)|_{ \mathcal{O}_{k}} \bigr\Vert _{V^{*}_{g}(\mathcal{O}_{k})} \Vert v_{k} \Vert _{V_{g}} \\ &\leq \frac{\nu }{2} \Vert v_{k} \Vert ^{2}_{V_{g}}+\frac{2M_{0}^{2}}{\nu } \bigl\Vert f(t)|_{ \mathcal{O}_{k}} \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{k})} \\ &\leq \frac{\nu }{2} \Vert v_{k} \Vert ^{2}_{V_{g}}+\frac{2M_{0}^{2}}{\nu } \bigl\Vert f(t) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })}. \end{aligned}$$
(47)

By Assumption G and Lemma 2.1, we have

$$ -2\nu \langle R_{g,k}v_{k},gv_{k} \rangle \leq \frac{2\nu \Vert \nabla g \Vert _{\infty }}{m_{0}} \Vert v_{k} \Vert _{V_{g}} \Vert v_{k} \Vert _{g} \leq \frac{2\nu \Vert \nabla g \Vert _{\infty }}{m_{0}\lambda _{0}^{1/2}} \Vert v_{k} \Vert ^{2}_{V_{g}}. $$
(48)

By Assumption H and Lemma 2.3,

$$\begin{aligned}& \begin{aligned}[b] 2\varepsilon z(\theta _{t}\omega ) (h_{k},gv_{k})& \leq \frac{\lambda }{4} \Vert v_{k} \Vert ^{2}_{g}+c \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{2} \Vert h_{k} \Vert ^{2}_{H_{g}(\mathcal{O}_{k}} \\ &\leq \frac{\lambda }{4} \Vert v_{k} \Vert ^{2}_{g}+c \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{2}, \end{aligned} \end{aligned}$$
(49)
$$\begin{aligned}& \begin{aligned}[b] -2\varepsilon \nu z(\theta _{t}\omega )\langle A_{g,k}h_{k},gv_{k} \rangle &\leq 2\nu z(\theta _{t}\omega ) \frac{ \Vert \nabla g \Vert _{\infty }}{m_{0}} \Vert \nabla h \Vert _{\mathbb{L}^{\infty }} \Vert v_{k} \Vert _{g} \\ &\leq \frac{\lambda }{4} \Vert v_{k} \Vert ^{2}_{g}+c \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{2}, \end{aligned} \end{aligned}$$
(50)
$$\begin{aligned}& \begin{aligned}[b] -2\varepsilon \nu z(\theta _{t}\omega )\langle R_{g,k}h_{k},gv_{k} \rangle &\leq 2\nu z(\theta _{t}\omega ) \frac{ \Vert \nabla g \Vert _{\infty }}{m_{0}} \Vert \nabla h \Vert _{\mathbb{L}^{\infty }} \Vert v_{k} \Vert _{g} \\ &\leq \frac{\lambda }{4} \Vert v_{k} \Vert ^{2}_{g}+c \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{2}. \end{aligned} \end{aligned}$$
(51)

Using (10), (12), and Assumption H, we have

$$\begin{aligned} &2 \bigl\vert \bigl\langle B_{g,k} \bigl(v_{k}+\varepsilon h_{k}z(\theta _{t} \omega ),v_{k}+ \varepsilon h_{k}z(\theta _{t}\omega ) \bigr),v_{k} \bigr\rangle _{g} \bigr\vert \\ &\quad =2 \bigl\vert b_{g,k} \bigl(v_{k}+ \varepsilon h_{k}z(\theta _{t} \omega ),\varepsilon h_{k}z(\theta _{t} \omega ),v_{k} \bigr) \bigr\vert \\ &\quad \leq 2M_{0}\varepsilon \Vert \nabla h \Vert _{\mathbb{L}^{\infty }} \bigl\vert z(\theta _{t} \omega ) \bigr\vert \Vert v_{k} \Vert ^{2}_{g}+2M_{0} \varepsilon ^{2} \Vert h \Vert \Vert \nabla h \Vert _{ \mathbb{L}^{\infty }} \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{2} \Vert v_{k} \Vert _{g} \\ &\quad \leq c_{0}\varepsilon \bigl( \bigl\vert z(\theta _{t}\omega ) \bigr\vert \Vert v_{k} \Vert ^{2}_{g}+ \bigl\vert z( \theta _{t}\omega ) \bigr\vert ^{2} \Vert v_{k} \Vert _{g} \bigr) \\ &\quad \leq c_{0}\varepsilon \bigl\vert z(\theta _{t} \omega ) \bigr\vert \Vert v_{k} \Vert ^{2}_{g}+ \frac{\lambda }{4} \Vert v_{k} \Vert ^{2}_{g}+c \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{4}, \end{aligned}$$
(52)

where \(c_{0}=2M_{0}(\|h\|+1)\|\nabla h\|_{\mathbb{L}^{\infty }}>0\). It follows from (46) to (52) and the Poincaré inequality in (9)

$$ 2\nu \Vert v_{k} \Vert ^{2}_{V_{g}}\geq \lambda _{0}\nu \Vert v_{k} \Vert ^{2}_{g} + \nu \Vert v_{k} \Vert ^{2}_{V_{g}}=3\lambda \Vert v_{k} \Vert ^{2}_{g} +\nu \Vert v_{k} \Vert ^{2}_{V_{g}}. $$

We obtain that

$$\begin{aligned} &\frac{d}{ds} \Vert v_{k} \Vert _{g}^{2}+ \bigl(2\lambda -c_{0}\varepsilon \bigl\vert z(\theta _{s} \omega ) \bigr\vert \bigr) \Vert v_{k} \Vert ^{2}_{g}+C_{g} \Vert v_{k} \Vert ^{2}_{V_{g}} \\ &\quad \leq c \bigl\Vert f(s) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })}+c \bigl( \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4}+ \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2} \bigr), \end{aligned}$$
(53)

where \(C_{g}:=\frac{\nu }{2} (1- \frac{4\nu \|\nabla g\|_{\infty }}{m_{0}\lambda _{0}^{1/2}} )>0\) in view of Assumption G.

Multiplying (53) by \(e^{\int ^{\tau }_{s}-2\lambda +c_{0}\varepsilon |z(\theta _{r}\omega )|\,dr}\), then integrating the result w.r.t. \(s\in (\tau -t,\sigma )\) and replacing ω by \(\theta _{-\tau }\omega \), we find that

$$\begin{aligned}& \bigl\Vert v_{k}(\sigma ,\tau -t,\theta _{-\tau }\omega ,v_{\tau -t,k}) \bigr\Vert ^{2}_{g}+C_{g} \int ^{\sigma }_{\tau -t} e^{\int ^{\sigma }_{s}-2\lambda +c_{0} \varepsilon \vert z(\theta _{r-\tau }\omega ) \vert \,dr} \bigl\Vert v_{k}(s) \bigr\Vert ^{2}_{V_{g}}\,ds \\& \quad \leq e^{2\lambda (\tau -\sigma )}e^{-2\lambda t+c_{0}\varepsilon \int ^{\sigma -\tau }_{-t} \vert z(\theta _{r}\omega ) \vert \,dr} \Vert v_{\tau -t,k} \Vert ^{2}_{H_{g}( \mathcal{O}_{k})} \\& \qquad {} +ce^{2\lambda (\tau -\sigma )} \int ^{\sigma -\tau }_{-\infty }e^{2 \lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+ \tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })}\,ds \\& \qquad {} +ce^{2\lambda (\tau -\sigma )} \int ^{\sigma -\tau }_{-\infty }e^{2 \lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z( \theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{4} \bigr) \,ds \\& \quad \leq e^{2\lambda (\tau -\sigma )} \bigl(e^{-2\lambda t+c_{0}\varepsilon \int ^{\sigma -\tau }_{-t} \vert z(\theta _{r}\omega ) \vert \,dr} \Vert v_{\tau -t,k} \Vert ^{2}_{H_{g}( \mathcal{O}_{k})}+\rho (\sigma ,\tau ,\omega ) \bigr). \end{aligned}$$
(54)

Using (43), (23), and \(\mathbb{P}\)-a.s. \(\rho (\sigma ,\tau ,\omega )>0\), there is \(T>0\) such that, for all \(t\geq T\) and \(\sigma \in [\tau -t, \tau ]\),

$$\begin{aligned} &e^{-2\lambda t+c_{0}\varepsilon \int ^{\sigma -\tau }_{-t} \vert z(\theta _{r} \omega ) \vert \,dr} \Vert v_{\tau -t,k} \Vert ^{2}_{H_{g}(\mathcal{O}_{k})} \\ &\quad \leq e^{-2\lambda t+c_{0}\varepsilon \int ^{0}_{-t} \vert z(\theta _{r} \omega ) \vert \,dr} \bigl\Vert D(\tau -t,\theta _{-t}\omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })} \\ &\quad \leq e^{C_{0}(\omega )}e^{-\frac{3}{2}\lambda t} \bigl\Vert D(\tau -t,\theta _{-t} \omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}\leq \rho (\sigma ,\tau , \omega ). \end{aligned}$$
(55)

We substitute (55) into (54) to obtain (45) as desired. In addition, by (43),

$$\begin{aligned} \rho (\sigma ,\tau ,\omega )&\leq c \int ^{0}_{-\infty }e^{2\lambda s+c_{0} \varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl( \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O}_{\infty })}+ \bigl\vert z( \theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z( \theta _{s} \omega ) \bigr\vert ^{4} \bigr)\,ds \\ &\leq ce^{C_{0}(\omega )} \int ^{0}_{-\infty } e^{\frac{3}{2}\lambda s} \bigl( \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O}_{\infty })}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{4} \bigr)\,ds, \end{aligned}$$

then both (16) and Assumption F imply \(\rho (\sigma ,\tau ,\omega )<+\infty \). □

4.2 Weak equi-continuity

In this subsection, we show the weak equi-continuity of the solution sequence \(\{v_{k}\}\). This is different from the weak continuity for a single system as given by Rosa [19].

Lemma 4.3

Suppose\(f\in L^{2}_{\mathrm{loc}}(\mathbb{R},V^{*}_{g}(\mathcal{O}_{\infty }))\). Let\(\tau \in \mathbb{R}\), \(\omega \in \varOmega \), and\(v_{\tau ,k}\in H_{g}(\mathcal{O}_{k})\)such that the expansion\(\widetilde{v_{\tau ,k}}\rightharpoonup v_{\tau ,\infty }\)weakly in\(H_{g}(\mathcal{O}_{\infty })\)as\(k\to \infty \). Then the sequence\(\widetilde{v_{k}}\)of expanding solutions satisfies

$$\begin{aligned}& \widetilde{v_{k}}(t,\tau ,\omega ,v_{\tau ,k}) \rightharpoonup v_{\infty }(t,\tau ,\omega ,v_{\tau ,\infty }) \quad \textit{weakly in } H_{g}( \mathcal{O}_{\infty }), \end{aligned}$$
(56)
$$\begin{aligned}& \widetilde{v_{k}}(\cdot ,\tau ,\omega ,v_{\tau ,k}) \rightharpoonup v_{\infty }(\cdot ,\tau ,\omega ,v_{\tau ,\infty })\quad \textit{weakly in } L^{2} \bigl( \tau ,\tau +T; V_{g}( \mathcal{O}_{\infty }) \bigr), \forall T>0. \end{aligned}$$
(57)

Proof

From Lemmas 4.2 and 2.3, we can prove that, for all \(T>0\),

$$ \{\widetilde{v_{k}}\}_{k} \text{ is bounded in } L^{\infty } \bigl(\tau , \tau +T; H_{g}( \mathcal{O}_{\infty }) \bigr)\cap L^{2} \bigl(\tau ,\tau +T; V_{g}( \mathcal{O}_{\infty }) \bigr). $$
(58)

We rewrite (18) as follows:

$$\begin{aligned} \frac{dv_{k}}{dt}={}&{-}\nu A_{g,k}v_{k}-\varepsilon \nu z(\theta _{t} \omega ) A_{g,k}h_{k}- B_{g,k} \bigl(v_{k}+\varepsilon h_{k}z( \theta _{t} \omega ) \bigr) \\ &{}-\nu R_{g,k} v_{k}-\varepsilon \nu z(\theta _{t}\omega )R_{g,k} h_{k}+ \varepsilon z( \theta _{t}\omega )h_{k}+P_{g,k}f(t)|_{\mathcal{O}_{k}}, \end{aligned}$$

where \(h_{k}=P_{g,k} h|_{\mathcal{O}_{k}}\). Since the norms of the operators \(A_{g,k}\), \(B_{g,k}\) are bounded in k and \(R_{g,k}\) satisfies (9), respectively, it follows from Lemma 2.3 and Assumption H that

$$ \biggl\Vert \frac{dv_{k}}{dt} \biggr\Vert _{V^{*}_{g}(\mathcal{O}_{k})}\leq c \bigl(1+ \bigl\vert z( \theta _{t}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{t}\omega ) \bigr\vert ^{4} \bigr) \bigl( \Vert \widetilde{v_{k}} \Vert ^{2}_{V_{g}(\mathcal{O}_{\infty })}+ \bigl\Vert f(t) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O}_{\infty })} \bigr). $$

This together with \(\|\widetilde{v_{k}}'\|_{V^{*}_{g}(\mathcal{O}_{\infty })}=\|{v_{k}}'\|_{V^{*}_{g}( \mathcal{O}_{k})}\) and (58) implies that

$$ \bigl\{ \widetilde{v_{k}}' \bigr\} _{k} \text{ is bounded in } L^{2} \bigl(\tau , \tau +T,V^{*}_{g}( \mathcal{O}_{\infty }) \bigr). $$

For each \(i\in \mathbb{N}\), according to Aubin’s compactness theorem [2] and the compactness of \(V_{g}(\mathcal{O}_{i})\hookrightarrow \mathbb{L}^{2}(\mathcal{O}_{i})\), we obtain that

$$ \{\widetilde{v_{k}}|_{\mathcal{O}_{i}} \}_{k} \text{ is relatively compact in } L^{2} \bigl(\tau ,\tau +T; \mathbb{L}^{2}( \mathcal{O}_{i}) \bigr),\quad \forall T>0. $$
(59)

From (58) and (59), by a diagonal process, we can extract an index subsequence \(k^{*}\) of k such that

$$\begin{aligned} \widetilde{v_{k^{*}}}\to v &\quad \text{weak-star in } L^{\infty } \bigl(\tau , \tau +T; H_{g}(\mathcal{O}_{\infty }) \bigr) \\ &\quad \text{weakly in } L^{2} \bigl(\tau ,\tau +T; V_{g}( \mathcal{O}_{\infty }) \bigr) \\ &\quad \text{strongly in } L^{2} \bigl(\tau ,\tau +T; \mathbb{L}^{2}( \mathcal{O}_{i}) \bigr),\quad \forall T>0, \forall i\in \mathbb{N}, \end{aligned}$$
(60)

for some

$$ v\in L^{\infty } \bigl(\tau ,\tau +T; H_{g}( \mathcal{O}_{\infty }) \bigr)\cap L^{2} \bigl( \tau ,\tau +T; V_{g}(\mathcal{O}_{\infty }) \bigr),\quad \forall T>0. $$

We now show that v is a weak solution of Eq. (18) at \(k=\infty \). Indeed, by the weak formulation (20), the expansion \(\widetilde{v_{k^{*}}}\) satisfies that, for each \(w\in V_{g}(\mathcal{O}_{\infty })\) and \(t>\tau \),

$$\begin{aligned} \bigl(\widetilde{v_{k^{*}}}(t),w \bigr)_{g}={}& \bigl(\widetilde{v_{k^{*}}}(\tau ),w \bigr)_{g}+ \int ^{t}_{\tau } \bigl\langle \widetilde{f(s)|_{\mathcal{O}_{k^{*}}}},gw \bigr\rangle \,ds+\varepsilon \int ^{t}_{\tau }z(\theta _{s}\omega ) (h,g \widetilde{v_{k^{*}}}) \,ds \\ &{}-\nu \int ^{t}_{\tau }\langle A_{g,\infty } \widetilde{v_{k^{*}}},w \rangle _{g} \,ds-\varepsilon \nu \int ^{t}_{\tau }z(\theta _{s}\omega ) \langle A_{g,\infty }h,w\rangle _{g}\,ds \\ &{}- \int ^{t}_{\tau } \bigl\langle B_{g,\infty } \bigl(\widetilde{v_{k^{*}}}+ \varepsilon hz(\theta _{s} \omega ) \bigr),gw \bigr\rangle \,ds-\nu \int ^{t}_{\tau }\langle R_{g,\infty } \widetilde{v_{k^{*}}},gw\rangle \,ds \\ &{}-\varepsilon \nu \int ^{t}_{\tau }z(\theta _{s}\omega ) \langle R_{g, \infty }h,gw\rangle \,ds, \end{aligned}$$
(61)

and we only need to consider the convergence of the forcing term f as \(k^{*}\to \infty \). Since \(f\in L^{2}(\tau ,t; V^{*}_{g}(\mathcal{O}_{\infty }))\) and \(w\in V_{g}(\mathcal{O}_{\infty })\), we have

$$\begin{aligned} \int ^{t}_{\tau } \bigl\langle f(s)- \widetilde{f(s)|_{\mathcal{O}_{k^{*}}}},gw \bigr\rangle \,ds&= \int ^{t}_{\tau } \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k^{*}}}f(s,x)\cdot wg\,dx\,ds \\ &\leq M_{0} \int ^{t}_{\tau } \bigl\Vert f(s) \bigr\Vert _{V^{*}_{g}(\mathcal{O}_{\infty })}\,ds \biggl( \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k^{*}}} \bigl\vert D w(x) \bigr\vert ^{2}g\,dx \biggr)^{\frac{1}{2}} \\ &\leq cM_{0} \biggl( \int ^{t}_{\tau } \bigl\Vert f(s) \bigr\Vert _{V^{*}_{g}(\mathcal{O}_{\infty })}^{2} \,ds \biggr)^{\frac{1}{2}} \biggl( \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k^{*}}} \bigl\vert D w(x) \bigr\vert ^{2}g\,dx \biggr)^{\frac{1}{2}} \\ &\leq c \biggl( \int _{\mathcal{O}_{\infty }\setminus \mathcal{O}_{k^{*}}} \bigl\vert D w(x) \bigr\vert ^{2}g\,dx \biggr)^{\frac{1}{2}}\to 0 \quad \text{as } k^{*}\to \infty . \end{aligned}$$

By taking the limit of (61) as \(k^{*}\to \infty \) and noticing that \(A_{g,\infty }\), \(B_{g,\infty }\), \(R_{g,\infty }\) are continuous operators, we see that v is a weak solution of Eq. (18) with \(k=\infty \). By the uniqueness of the solutions, we have \(v(t)=v_{\infty }(t,\tau ,\omega ,v_{\tau ,\infty })\). Using a standard contradiction argument, we can show that the whole sequence \(\{\widetilde{v_{k}}\}_{k}\) converges to \(v_{\infty }\) in the sense of (60). This proves (57).

In addition, from the strong convergence in (60), we also have

$$ \bigl(\widetilde{v_{k}}(t),\xi \bigr)_{g}\to \bigl({v}_{\infty }(t),\xi \bigr)_{g} \quad \text{for a.e. } t\in [\tau ,+\infty ) \text{ and any } \xi \in \mathcal{V}( \mathcal{O}_{\infty }). $$
(62)

On the other hand, for all \(\xi \in \mathcal{V}(\mathcal{O}_{\infty })\), \(\tau \leq t\leq t+a\leq \tau +T\) with \(T>0\),

$$\begin{aligned} \bigl\vert \bigl(\widetilde{v_{k}}(t+a)- \widetilde{v_{k}}(t),\xi \bigr)_{g} \bigr\vert &= \int ^{t+a}_{t} \bigl\langle \widetilde{v_{k}}'(s),\xi \bigr\rangle _{g} \,ds = \int ^{t+a}_{t} \int _{\mathcal{O}_{\infty }}\widetilde{v_{k}}'(s) \xi g \,dx\,ds \\ &\leq \biggl( \int ^{t+a}_{t}1\,ds \biggr)^{\frac{1}{2}} \biggl( \int ^{t+a}_{t} \biggl( \int _{\mathcal{O}_{\infty }}\widetilde{v_{k}}'(s) \xi g\,dx \biggr)^{2}\,ds \biggr)^{\frac{1}{2}} \\ &\leq a^{\frac{1}{2}}M_{0}^{\frac{1}{2}} \biggl( \int _{\mathcal{O}_{\infty }} \xi ^{2}g\,dx \biggr)^{\frac{1}{2}} \biggl( \int ^{t+a}_{t} \int _{\mathcal{O} \infty }\widetilde{v_{k}}^{\prime 2}(s) \,dx\,ds \biggr)^{\frac{1}{2}} \\ &= a^{\frac{1}{2}}M_{0}^{\frac{1}{2}} \Vert \xi \Vert _{V_{g}(\mathcal{O}_{\infty })} \bigl\Vert \widetilde{v_{k}}' \bigr\Vert _{L^{2}(\tau ,\tau +T; V^{*}_{g}( \mathcal{O}_{\infty }))} \\ &\leq C_{T}a^{\frac{1}{2}} \Vert \xi \Vert _{V_{g}( \mathcal{O}_{\infty })}, \end{aligned}$$
(63)

where \(C_{T}\) is positive and independent of k. Thus, it follows from (58) and (63), we see that \(\{(\widetilde{v_{k}}(t),\chi )\}\) is equi-bounded and equi-continuous on \([\tau ,\tau +T]\) for all \(T>0\). This together with (62) yields

$$ \bigl(\widetilde{v_{k}}(t),\xi \bigr)\to \bigl({v}_{\infty }(t), \xi \bigr),\quad \forall t\in [ \tau ,+\infty ), \forall \xi \in \mathcal{V}( \mathcal{O}_{\infty }). $$
(64)

According to the density of \(\mathcal{V}(\mathcal{O}_{\infty })\) in \(H_{g}(\mathcal{O}_{\infty })\), we show (56). □

By the similar (more simple) method as given in Lemma 4.3, we have weak continuity of each \(v_{k}\).

Corollary 1

For each fixed\(k\in \overline{\mathbb{N}}\), if\(v_{\tau ,n}\rightharpoonup v_{\tau }\)weakly in\(H_{g}(\mathcal{O}_{k})\), then, as\(n\to \infty \),

$$\begin{aligned}& v_{k}(t,\tau ,\omega ,v_{\tau ,n}) \rightharpoonup v_{k}(t,\tau , \omega ,v_{\tau })\quad \textit{weakly in } H_{g}(\mathcal{O}_{k}), \\& v_{k}(\cdot ,\tau ,\omega ,v_{\tau ,n}) \rightharpoonup v_{k}(\cdot , \tau ,\omega ,v_{\tau }) \quad \textit{weakly in } L^{2} \bigl(\tau ,\tau +T; V_{g}( \mathcal{O}_{k}) \bigr)\ \forall T>0. \end{aligned}$$

5 Equi-asymptotic compactness

In this section, we establish an energy equation (as (75) below) for the expanding solution \(\widetilde{v_{k}}\) and then we use this energy equation to verify the equi-asymptotic compactness of the sequence \(\{\widetilde{\varPhi _{k}}\}_{k}\) of expanding cocycles.

Theorem 5.1

Let AssumptionsF, H, Ghold true. Then, for any initial data\(v_{0,k}\in D|_{\mathcal{O}_{k}}(\tau -t_{k},\theta _{-t_{k}}\omega )\)with\(t_{k}\to +\infty \), \(\tau \in \mathbb{R}\), \(\omega \in \varOmega \), and\(D\in \mathfrak{D}\), the sequence of expanded solutions

$$ \bigl\{ \widetilde{\varPhi _{k}}(t_{k},\tau -t_{k},\theta _{-t_{k}}\omega ) \widetilde{v_{0,k}} \bigr\} = \bigl\{ \widetilde{v_{k}}(\tau ,\tau -t_{k}, \theta _{- \tau }\omega ,v_{0,k}) \bigr\} $$

for problem (18) has a convergent subsequence in\(H_{g}(\mathcal{O}_{\infty })\).

Proof

By taking \(\sigma =\tau \) in (45), there is \(k_{0}\in \mathbb{N}\) such that

$$ \sup_{k\geq k_{0}} \bigl\Vert v_{k}(\tau ,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{k})}\leq \rho (\tau ,\tau ,\omega )< + \infty, $$
(65)

and thus, by Lemma 2.3(1), the sequence of expanding solutions

$$ \bigl\{ \widetilde{v_{k}}(\tau ,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr\} _{k} \text{ is bounded in } H_{g}(\mathcal{O}_{\infty }). $$
(66)

Passing to subsequence, there is \(v\in H_{g}(\mathcal{O}_{\infty })\) such that

$$ \widetilde{v_{k}}(\tau ,\tau -t_{k}, \theta _{-\tau }\omega ,v_{0,k}) \rightharpoonup v \quad \text{weakly in } H_{g}(\mathcal{O}_{\infty }). $$
(67)

By the resonance theorem,

$$ \liminf_{k\to \infty } \bigl\Vert \widetilde{v_{k}}(\tau ,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert _{H_{g}(\mathcal{O}_{\infty })}\geq \Vert v \Vert _{H_{g}( \mathcal{O}_{\infty })}. $$
(68)

Hence, in order to prove the weak convergence in (67) is strongly convergent, it suffices to prove that, for a subsequence,

$$ \limsup_{k\to \infty } \bigl\Vert \widetilde{v_{k}}(\tau ,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr\Vert _{H_{g}(\mathcal{O}_{\infty })}\leq \Vert v \Vert _{H_{g}( \mathcal{O}_{\infty })}. $$
(69)

By the cocycle property, we have, for each \(m,k\in \mathbb{N}\),

$$ \widetilde{v_{k}}(\tau ,\tau -t_{k}, \theta _{-\tau }\omega ,v_{0,k})= \widetilde{v_{k}} \bigl(\tau ,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr). $$
(70)

For each \(m\in \mathbb{N}\), by taking \(\sigma =\tau -m\) in (45), there is \(K_{m}\in \mathbb{N}\) such that

$$ \sup_{k\geq K_{m}} \bigl\Vert \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}\leq e^{2 \lambda m} \rho (\tau -m,\tau ,\omega )< +\infty , $$

which means that the sequence \(\{\widetilde{v_{k}}(\tau -m,\tau -t_{k}, \theta _{-\tau }\omega ,v_{0,k})\}_{k}\) is bounded in \(H_{g}(\mathcal{O}_{\infty })\) and thus there are \(v^{m}\in H_{g}(\mathcal{O}_{\infty })\) and an index subsequence \(\{k{(m)}\}\) of \(\{k{(m-1)}\}\) such that

$$ \widetilde{v_{k(m)}}(\tau -m,\tau -t_{k(m)},\theta _{-\tau }\omega ,v_{0,{k(m)}}) \rightharpoonup v^{m}\quad \text{weakly in } H_{g}(\mathcal{O}_{\infty }). $$

We still use \(\{k\}\) to denote the index diagonal subsequence \(\{k(k)\}\). Then, as \(k\to \infty \),

$$ \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \rightharpoonup v^{m} \quad \text{weakly in } H_{g}( \mathcal{O}_{\infty }) \text{ for all } m\in \mathbb{N}. $$
(71)

By (70), (71), and (56), we have

$$ \widetilde{v_{k}}(\tau ,\tau -t_{k}, \theta _{-\tau }\omega ,v_{0,k}) \rightharpoonup v_{\infty } \bigl(\tau ,\tau -m,\theta _{-\tau }\omega , v^{m} \bigr) \quad \text{in } H_{g}( \mathcal{O}_{\infty }). $$
(72)

From (67), (72), and the uniqueness of weak limit, we have

$$ v_{\infty } \bigl(\tau ,\tau -m,\theta _{-\tau } \omega , v^{m} \bigr)= v. $$
(73)

Now, we infer from (46) an energy equation \(\mathcal{O}_{k}\) for all \(k\in \overline{\mathbb{N}}\):

$$\begin{aligned} &\frac{d}{dt} \Vert v_{k} \Vert ^{2}_{g}+2\lambda \Vert v_{k} \Vert ^{2}_{g}+\varPsi (v_{k})+2 \varepsilon \nu z( \theta _{t}\omega )\langle A_{g,k}h_{k},gv_{k} \rangle \\ &\qquad {}+2\varepsilon \nu z(\theta _{t}\omega )\langle R_{g,k}h_{k},gv_{k} \rangle +b_{g,k} \bigl(v_{k}+\varepsilon h_{k}z( \theta _{t}\omega ),v_{k}+ \varepsilon h_{k}z(\theta _{t}\omega ),v_{k} \bigr) \\ &\quad =2 \bigl\langle f(t)|_{\mathcal{O}_{k}},gv_{k} \bigr\rangle +2 \varepsilon z( \theta _{t}\omega ) (h_{k},gv_{k}), \end{aligned}$$
(74)

where \(\varPsi (v_{k})=2\nu \|v_{k}\|^{2}_{V_{g}(\mathcal{O}_{k})}+2\nu \langle R_{g,k}v_{k}, gv_{k}\rangle -2\lambda \|v_{k}\|^{2}_{g}\).

Since the null-expansion does not change the norm, we have

$$ \varPsi (v_{k})=\varPsi (\widetilde{v_{k}}),\quad \text{and}\quad \bigl\langle f(t)|_{ \mathcal{O}_{k}},gv_{k} \bigr\rangle = \bigl\langle f(t), g\widetilde{v_{k}} \bigr\rangle . $$

Hence, we can rewrite (74) on \(\mathcal{O}_{\infty }\) as follows:

$$\begin{aligned} &\frac{d}{dt} \Vert \widetilde{v_{k}} \Vert ^{2}_{g}+2\lambda \Vert \widetilde{v_{k}} \Vert ^{2}_{g}+\varPsi (\widetilde{v_{k}})+2 \varepsilon \nu z(\theta _{t}\omega )\langle \widetilde{A_{g,k}h_{k}},g \widetilde{v_{k}}\rangle +2\varepsilon \nu z(\theta _{t}\omega ) \langle \widetilde{R_{g,k}h_{k}},g \widetilde{v_{k}}\rangle \\ &\quad {}+b_{g,\infty } \bigl(\widetilde{v_{k}}+\varepsilon hz(\theta _{t}\omega ), \widetilde{v_{k}}+\varepsilon hz(\theta _{t}\omega ), \widetilde{v_{k}} \bigr)=2 \bigl\langle f(t),g\widetilde{v_{k}} \bigr\rangle +2 \varepsilon z(\theta _{t}\omega ) (h,g\widetilde{v_{k}}) \end{aligned}$$
(75)

for all \(k\in \overline{\mathbb{N}}\), where we regard \(\widetilde{v_{\infty }}\) as \(v_{\infty }\). Multiplying (75) by \(e^{2\lambda t}\) and then integrating the result over \([s,\tau ]\), we obtain

$$\begin{aligned} \bigl\Vert \widetilde{v_{k}}(\tau ,s,\omega ,v_{s,k}) \bigr\Vert ^{2}_{g}={}&e^{2\lambda (s- \tau )} \Vert \widetilde{v_{s,k}} \Vert ^{2}_{g}- \int ^{\tau }_{s}e^{\lambda (r- \tau )} \varPsi \bigl( \widetilde{v_{k}}(r,s,\omega ,v_{s,k}) \bigr)\,dr \\ &{}-2\nu \varepsilon \int ^{\tau }_{s}e^{2\lambda (r-\tau )}z(\theta _{r} \omega ) \bigl\langle \widetilde{A_{g,k}h_{k}},g \widetilde{v_{k}}(r,s, \omega ,v_{s,k}) \bigr\rangle \,dr \\ &{}-2\nu \varepsilon \int ^{\tau }_{s}e^{2\lambda (r-\tau )}z(\theta _{r} \omega ) \bigl\langle \widetilde{R_{g,k}h_{k}},g \widetilde{v_{k}}(r,s, \omega ,v_{s,k}) \bigr\rangle \,dr \\ &{}-2 \int ^{\tau }_{s}e^{2\lambda (r-\tau )}b_{g,\infty }( \widetilde{v_{k}}(r,s,\omega ,v_{s,k})+\varepsilon hz( \theta _{r} \omega ), \widetilde{v_{k}}(r,s,\omega ,v_{s,k}) \\ &{}+\varepsilon hz( \theta _{r}\omega ), \widetilde{v_{k}}(r,s,\omega ,v_{s,k}))\,dr \\ &{}+2 \int ^{\tau }_{s}e^{2\lambda (r-\tau )} \bigl\langle f(r),g \widetilde{v_{k}}(r,s,\omega ,v_{s,k}) \bigr\rangle \,dr \\ &{}+2\varepsilon \int ^{\tau }_{s}e^{2\lambda (r-\tau )}z(\theta _{r} \omega ) \bigl(h,g\widetilde{v_{k}}(r,s,\omega ,v_{s,k}) \bigr) \,dr. \end{aligned}$$
(76)

Let \(s=\tau -m\) and \(\widetilde{v_{s,k}}=\widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k})\) in (76), we infer from (70) that, for all \(k\in \mathbb{N}\),

$$\begin{aligned} & \bigl\Vert \widetilde{v_{k}}(\tau ,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{g} \\ &\quad = \bigl\Vert \widetilde{v_{k}} \bigl(\tau ,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\Vert ^{2}_{g} \\ &\quad =e^{-2\lambda m} \bigl\Vert \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{g} \\ &\qquad {}- \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \varPsi \bigl( \widetilde{v_{k}} \bigl(r, \tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k}, \theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr)\,dr \\ &\qquad {}-2\nu \varepsilon \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \\ &\qquad {}\times z( \theta _{r-\tau }\omega ) \bigl\langle \widetilde{A_{g,k}h_{k}},g \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\ &\qquad {}-2\nu \varepsilon \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \\ &\qquad {}\times z( \theta _{r-\tau }\omega ) \bigl\langle \widetilde{R_{g,k}h_{k}},g \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\ &\qquad {}-2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}b_{g,k} \bigl( \widetilde{u_{k}}(r,\tau -m), \widetilde{u_{k}}(r, \tau -m), \widetilde{u_{k}}(r,\tau -m)-\varepsilon hz(\theta _{r-\tau }\omega ) \bigr)\,dr \\ &\qquad {}+2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \bigl\langle f(r),g \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau } \omega ,\widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\ &\qquad {}+2\varepsilon \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \\ &\qquad {}\times z(\theta _{r- \tau }\omega ) \bigl(h,g\widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr) \,dr. \end{aligned}$$
(77)

We then consider the limits of the right-hand side of (77) as \(k\to \infty \) one by one. For the first term, by (45) with \(\sigma =\tau -m\) and \(t=t_{k}\), we see that

$$\begin{aligned} &e^{-2\lambda m} \bigl\Vert \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })} \\ &\quad \leq e^{-\frac{3}{2}\lambda t_{k}} \Vert \widetilde{v_{0,k}} \Vert ^{2}_{H_{g}( \mathcal{O}_{\infty })} +c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0} \varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O})}\,ds \\ &\qquad {}+c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4} \bigr) \,ds. \end{aligned}$$

Since \(v_{0,k}\in D|_{\mathcal{O}_{k}}(\tau -t_{k},\theta _{-t_{k}}\omega )\), we have

$$\begin{aligned} e^{-\frac{3}{2}\lambda t_{k}} \Vert \widetilde{v_{0,k}} \Vert ^{2}_{H_{g}( \mathcal{O}_{\infty })}&=e^{-\frac{3}{2}\lambda t_{k}} \Vert v_{0,k} \Vert ^{2}_{H_{g}( \mathcal{O}_{k})}\leq e^{-\frac{3}{2}\lambda t_{k}} \bigl\Vert D_{|\mathcal{O}_{k}}( \tau -t_{k},\theta _{-t_{k}}\omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{k})} \\ &\leq e^{-\frac{3}{2}\lambda t_{k}} \bigl\Vert D(\tau -t_{k},\theta _{-t_{k}} \omega ) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}\to 0 \quad \text{as } k\to \infty . \end{aligned}$$

Hence, we have the following estimate of the limit:

$$\begin{aligned} &\limsup_{k\to \infty } e^{- 2\lambda m} \bigl\Vert \widetilde{v_{k}}(\tau -m, \tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr\Vert ^{2} \\ &\quad \leq c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds \\ &\qquad {}+c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4} \bigr) \,ds. \end{aligned}$$
(78)

For the second term, we claim that \(\varPsi (v_{k})=2\nu \|v_{k}\|^{2}_{V_{g}(\mathcal{O}_{k})}+2\nu \langle R_{g,k}v_{k}, gv_{k}\rangle -2\lambda \|v_{k}\|^{2}_{g}\) defines a norm which is equivalent to the norm in \(V_{g}(\mathcal{O}_{k})\). Indeed, by Lemma 2.1 and Assumption G, we see that

$$\begin{aligned} \varPsi (v_{k})&\leq 2\nu \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}+ \frac{2\nu \Vert \nabla g \Vert _{\infty }}{m_{0}\lambda _{0}^{1/2}} \Vert v_{k} \Vert ^{2}_{V_{g}( \mathcal{O}_{k})} \leq 2\nu \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}+ \frac{\nu }{2} \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})} \\ &=\frac{5\nu }{2} \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}. \end{aligned}$$

On the other hand, by the uniform Poincaré inequality and \(\lambda =\frac{1}{3}\lambda _{0}\nu \),

$$ \varPsi (v_{k})\geq 2\nu \Vert v \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}- \frac{\nu }{2} \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}-2 \lambda \frac{1}{\lambda _{0}} \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})} = \frac{5\nu }{6} \Vert v_{k} \Vert ^{2}_{V_{g}(\mathcal{O}_{k})}. $$

Thus, by the Fatou lemma and weak equi-continuity (57), we obtain

$$\begin{aligned} &\liminf_{k\to \infty } \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \varPsi \bigl( \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr)\,dr \\ &\quad \geq \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}\liminf _{k\to \infty }\varPsi \bigl(\widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr)\,dr \\ &\quad \geq \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}\varPsi \bigl(v_{\infty } \bigl(r, \tau -m,\theta _{-\tau }\omega , v^{m} \bigr) \bigr)\,dr, \end{aligned}$$

which implies

$$\begin{aligned} &\limsup_{k\to \infty }- \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \varPsi \bigl( \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr)\,dr \\ &\quad \leq - \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}\varPsi \bigl(v_{\infty } \bigl(r, \tau -m,\theta _{-\tau }\omega , v^{m} \bigr) \bigr)\,dr. \end{aligned}$$
(79)

Similarly, from Lemma 4.3 and [5], we get

$$\begin{aligned} &\limsup_{k\to \infty }-2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}b_{g,k} \bigl( \widetilde{u_{k}}(r,\tau -m), \widetilde{u_{k}}(r, \tau -m), \widetilde{u_{k}}(r,\tau -m)-\varepsilon hz(\theta _{r-\tau }\omega ) \bigr)\,dr \\ &\quad \leq -2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}b_{g,\infty } \bigl(u_{\infty }(r,\tau -m), u_{\infty }(r,\tau -m),v_{\infty } \bigl(r,\tau -m,\theta _{- \tau }\omega ,v^{m} \bigr) \bigr) \,dr. \end{aligned}$$
(80)

From (50) and the weak equi-continuity (57), we have

$$\begin{aligned} &\limsup_{k\to \infty }- \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \\ &\qquad {}\times z( \theta _{r-\tau }\omega ) \bigl\langle \widetilde{A_{g,k}h_{k}},g \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\ &\quad \leq - \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}z(\theta _{r-\tau } \omega ) \bigl\langle A_{g,\infty }h,gv_{\infty } \bigl(r,\tau -m,\theta _{-\tau } \omega ,v^{m} \bigr) \bigr\rangle \,dr. \end{aligned}$$
(81)

By (51) and the weak equi-continuity (57), we get

$$\begin{aligned} &\limsup_{k\to \infty }- \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \\ &\qquad {}\times z( \theta _{r-\tau }\omega ) \bigl\langle \widetilde{R_{g,k}h_{k}},g \widetilde{v_{k}} \bigl(r,\tau -m,\theta _{-\tau }\omega , \widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\ &\quad \leq - \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}z(\theta _{r-\tau } \omega ) \bigl\langle R_{g,\infty }h,gv_{\infty } \bigl(r,\tau -m,\theta _{-\tau } \omega ,v^{m} \bigr) \bigr\rangle \,dr. \end{aligned}$$
(82)

By the weak equi-continuity (57) again, it follows from (71), on \(L^{2}(\tau -m,\tau ;V_{g}(\mathcal{O}_{\infty }))\), that

$$ \widetilde{v_{k}} \bigl(\cdot ,\tau -m,\theta _{-\tau } \omega , \widetilde{v_{k}}(\tau -m,\tau -t_{k},\theta _{-\tau }\omega ,v_{0,k}) \bigr) \rightharpoonup v_{\infty } \bigl(\cdot ,\tau -m,\theta _{-\tau }\omega , v^{m} \bigr). $$

By \(f\in L^{2}(\tau -m,\tau ;V^{*}_{g}(\mathcal{O}_{\infty }))\) and Assumption H, we know

$$ r\mapsto e^{2\lambda (r-\tau )} \bigl(f(r)+\varepsilon z(\theta _{r-\tau } \omega )h \bigr)g\in L^{2} \bigl(\tau -m,\tau ;V^{*}_{g}( \mathcal{O}_{\infty }) \bigr). $$

Thereby, we have

$$\begin{aligned}& \lim_{k\to \infty }2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \bigl\langle f(r)+ \varepsilon z(\theta _{r-\tau }\omega )h, \\& \qquad g\widetilde{v_{k}} \bigl(r,\tau -m, \theta _{-\tau }\omega ,\widetilde{v_{k}}( \tau -m,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr) \bigr\rangle \,dr \\& \quad = 2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \bigl\langle f(r)+ \varepsilon z(\theta _{r-\tau }\omega )h,gv_{\infty } \bigl(r, \tau -m,\theta _{- \tau }\omega , v^{m} \bigr) \bigr\rangle \,dr. \end{aligned}$$
(83)

Taking the sup-limit of (77) as \(k\to \infty \), from (78) to (83), we obtain

$$\begin{aligned}& \limsup_{k\to \infty } \bigl\Vert \widetilde{v_{k}}(\tau ,\tau -t_{k},\theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert ^{2} \\& \quad \leq c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds \\& \qquad {} +c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4} \bigr) \,ds \\& \qquad {} - \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}\varPsi \bigl(v_{\infty } \bigl(r,\tau -m, \theta _{-\tau }\omega , v^{m} \bigr) \bigr)\,dr \\& \qquad {} -2\nu \varepsilon \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}z( \theta _{r-\tau }\omega ) \bigl\langle A_{g,\infty }h,gv_{\infty } \bigl(r,\tau -m, \theta _{-\tau }\omega ,v^{m} \bigr) \bigr\rangle \,dr \\& \qquad {} -2\varepsilon \nu \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}z( \theta _{r-\tau }\omega ) \bigl\langle R_{g,\infty }h,gv_{\infty } \bigl(r,\tau -m, \theta _{-\tau }\omega ,v^{m} \bigr) \bigr\rangle \,dr \\& \qquad {} -2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )}b_{g,\infty } \bigl(u_{\infty }(r, \tau -m), u_{\infty }(r,\tau -m),v_{\infty } \bigl(r,\tau -m,\theta _{-\tau } \omega ,v^{m} \bigr) \bigr) \,dr \\& \qquad {} +2 \int ^{\tau }_{\tau -m}e^{2\lambda (r-\tau )} \bigl\langle f(r)+ \varepsilon z(\theta _{r-\tau }\omega )h,gv_{\infty } \bigl(r, \tau -m,\theta _{- \tau }\omega , v^{m} \bigr) \bigr\rangle \,dr. \end{aligned}$$
(84)

We denote the sum of last five terms in (84) by \(I(m)\), let \(k=\infty \), \(s=\tau -m\) in (76), and then we obtain

$$ \Vert v \Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}= \bigl\Vert v_{\infty } \bigl(\tau ,\tau -m, \theta _{-\tau }\omega , v^{m} \bigr) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })} =e^{-2 \lambda m} \bigl\Vert v^{m} \bigr\Vert ^{2}_{g}+I(m). $$
(85)

Substituting (85) into (84) yields, for all \(m\in \mathbb{N}\),

$$\begin{aligned} &\limsup_{k\to \infty } \bigl\Vert \widetilde{v_{k}}(\tau ,\tau -t_{k}, \theta _{- \tau }\omega ,v_{0,k}) \bigr\Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })} \\ &\quad \leq \Vert v \Vert ^{2}_{H_{g}(\mathcal{O}_{\infty })}-e^{-2\lambda m} \bigl\Vert v^{m} \bigr\Vert ^{2}_{g}+c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds \\ &\qquad {}+c \int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{4} \bigr) \,ds. \end{aligned}$$
(86)

By Lemma 4.1 and Assumption F, as \(m\to \infty \),

$$\begin{aligned} &\int ^{-m}_{-\infty }e^{2\lambda s+c_{0}\varepsilon \int ^{0}_{s} \vert z( \theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds \\ &\quad \leq e^{C_{0}(\omega )} \int ^{-m}_{-\infty }e^{\frac{3}{2}\lambda s} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds\to 0. \end{aligned}$$

Therefore, letting \(m\to \infty \) in (86), we obtain (69) as desired. □

Corollary 2

Let\(k\in \overline{\mathbb{N}}\)be fixed. Then, for any\(v_{0,n}\in D|_{\mathcal{O}_{k}}(\tau -t_{n},\theta _{-t_{n}}\omega )\)with\(t_{n}\to +\infty \), \(D\in \mathfrak{D}\), \(\tau \in \mathbb{R}\), and\(\omega \in \varOmega \), the sequence\(\{v_{k}(\tau ,\tau -t_{n},\theta _{-\tau }\omega )v_{0,n}\}_{n}\)of solutions of (18) has a convergent subsequence in\(H_{g}(\mathcal{O}_{k})\).

6 Final conclusion

In the last section, we deduce the existence and large-domain stability of the attractor when the domain changes from bounded to unbounded.

Theorem 6.1

For each\(k\in \overline{\mathbb{N}}\), let\(\varPhi _{k}\)be the cocycle associated with theg-NS equation (18) on\(\mathcal{O}_{k}\), and let\(\mathfrak{D}_{k}:=\mathfrak{D}|_{\mathcal{O}_{k}}\)be the restriction of the universe\(\mathfrak{D}\)in (22). Then\(\varPhi _{k}\)has a\(\mathfrak{D}_{k}\)-pullback random attractor\(\mathcal{A}_{k}\)in\(H_{g}(\mathcal{O}_{k})\).

Proof

By taking \(\sigma =\tau \) in (45), we find that \(\varPhi _{k}\) has an absorbing set \(\mathcal{M}_{k}\) given by

$$ \mathcal{M}_{k}(\tau ,\omega )= \bigl\{ u\in H_{g}( \mathcal{O}_{k}): \Vert u \Vert _{H_{g}( \mathcal{O}_{k})}\leq \rho (\tau ,\omega ) \bigr\} ,\quad \forall k\in \overline{\mathbb{N}}, $$

where \(\rho (\tau ,\omega ):= \rho (\tau ,\tau ,\omega )=c(\rho _{1}(\tau , \omega )+\rho _{2}(\tau ,\omega ))\) with

$$\begin{aligned}& \rho _{1}(\tau ,\omega ):= \int ^{0}_{-\infty }e^{2\lambda s+c_{0} \varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O}_{\infty })}\,ds, \\& \rho _{2}(\tau ,\omega ):= \int ^{0}_{-\infty }e^{2\lambda s+c_{0} \varepsilon \int ^{0}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl( \bigl\vert z(\theta _{s} \omega ) \bigr\vert ^{2}+ \bigl\vert z(\theta _{s}\omega ) \bigr\vert ^{4} \bigr) \,ds. \end{aligned}$$

We need to prove that \(\rho _{1}\) and \(\rho _{2}\) are tempered with the growth rate \(\frac{3}{2}\lambda \). Indeed, by Lemma 4.1 and Assumption F,

$$\begin{aligned} &e^{-\frac{3}{2}\lambda t}\rho _{1}(\tau -t,\theta _{-t}\omega) \\ &\quad = e^{-\frac{3}{2}\lambda t} \int ^{0}_{-\infty }e^{2\lambda s+c_{0} \varepsilon \int ^{0}_{s} \vert z(\theta _{r-t}\omega ) \vert \,dr} \bigl\Vert f(s+\tau -t) \bigr\Vert ^{2}_{V^{*}_{g}( \mathcal{O})}\,ds \\ &\quad \leq e^{-\frac{3}{2}\lambda t} \int ^{-t}_{-\infty }e^{\frac{3}{2} \lambda (s+t)+c_{0}\varepsilon \int ^{-t}_{s} \vert z(\theta _{r}\omega ) \vert \,dr} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds \\ &\quad \leq e^{C_{0}(\omega )} \int ^{-t}_{-\infty }e^{\lambda s} \bigl\Vert f(s+\tau ) \bigr\Vert ^{2}_{V^{*}_{g}(\mathcal{O})}\,ds\to 0 \end{aligned}$$

as \(t\to +\infty \). Similarly, the tempered property of \(|z(\theta _{s}\omega )|^{2}+|z(\theta _{s}\omega )|^{4}\) implies that \(\rho _{2}\) is tempered. Therefore, \(\mathcal{M}_{k}\in \mathfrak{D}_{k}\).

On the other hand, by Corollary 2, \(\varPhi _{k}\) is \(\mathfrak{D}_{k}\)-pullback asymptotically compact. Therefore, it follows from the abstract result [21] that \(\varPhi _{k}\) has a unique \(\mathfrak{D}_{k}\)-pullback random attractor denoted by \(\mathcal{A}_{k}=\{\mathcal{A}_{k}(\tau ,\omega )\}\).

In addition, by Theorem 3.1, the expanded cocycle \(\widetilde{\varPhi _{k}}\) has a \(\widetilde{\mathfrak{D}_{k}}\)-pullback random attractor in \(H_{k}(\mathcal{O}_{\infty })\). This expanded attractor is just the null-expansion \(\widetilde{\mathcal{A}_{k}}\) of \(\mathcal{A}_{k}\). □

Finally, we establish the large-domain stability (upper-semicontinuity) of random attractors as \(k\to \infty \).

Theorem 6.2

The sequence\(\{\mathcal{A}_{k}\}_{k}\)of random attractors associated with problem (18) satisfies

$$ \operatorname{dist}_{H_{g}(\mathcal{O}_{\infty })} \bigl(\widetilde{ \mathcal{A}_{k}}( \tau ,\omega ),{\mathcal{A}}_{\infty }(\tau , \omega ) \bigr)\to 0 $$
(87)

as\(k\to \infty \)for all\(\tau \in \mathbb{R}\)and\(\omega \in \varOmega \), where\(\widetilde{\mathcal{A}_{k}}\)is the null-expansion of\({\mathcal{A}}_{k}\).

Proof

The proof is similar to that of [16, Theorem VI.2] and so is omitted here. □