1 Introduction

A multivalued weakly Picard operator (in short, MWP) has been introduced as a connection with the successive approximation method and the data dependence problem in fixed point theory for multivalued operators by Rus et al. [25].

Given a metric space \((X,d)\). Let \(P(X)\) be the class of nonempty subsets of X. Denote by \(C(X)\) (resp. \(\mathit{CB}(X)\)) the class of nonempty closed (resp. all nonempty bounded and closed) subsets of X. For \(A, B\in \mathit{CB}(X)\), consider the Pompeiu–Hausdorff functional

$$H(A,B):=\max\Bigl\{ \sup_{a\in A} \inf_{b\in B}d(a,b), \sup_{b\in B} \inf_{a\in A}d(a,b)\Bigr\} . $$

For \(\eta\in X\), define \(D(\eta,B)=\inf_{\mu\in B}d(\eta,\mu)\).

Lemma 1.1

([22])

Given a metric space \((X,d)\). Let \(B\subseteq X\)and \(\alpha> 1\). For \(\eta\in X\), there is \(\xi\in B\)such that \(d(\eta,\xi) \leq\alpha D(\eta, B)\).

Berinde [14] introduced the following notion which was later named from ‘weak contraction’ to ‘almost contraction’ by Berinde [15].

Definition 1.1

Given a metric space \((X,d)\). A mapping \(F: X\to X\) is said to be an almost contraction or an \((\delta ,L)\)-contraction if there are \(\delta\in(0,1)\) and \(L\geq0\) such that, for \(\zeta,\theta\in X\),

$$ d(F\zeta,F\theta)\leq\delta d(\zeta,\theta)+Ld(\theta,F\zeta). $$
(1)

Nadler [22] used the notion of the Pompeiu–Hausdorff metric to ensure the existence of fixed points for multivalued contraction mappings.

M. Berinde and V. Berinde [13] initiated the notion of multivalued almost contractions as follows:

A mapping \(F: X\to \mathit{CB}(X)\) is an almost contraction if there are \(\delta\in(0,1)\) and \(L\geq0\) such that, for \(\zeta,\theta\in X\), the following inequality holds:

$$ H(F\zeta,F\theta)\leq\delta d(\zeta,\theta)+LD(\theta,F\zeta). $$
(2)

Berinde [13] established the Nadler fixed point theorem in [22].

Theorem 1.1

Let \(F: X\to \mathit{CB}(X)\)be an almost contraction mapping on a complete metric space. ThenFhas a fixed point.

Definition 1.2

([25])

A mapping \(T: X \to \mathit{CB}(X)\) is called an MWP operator if, for all \(\zeta\in X\) and \(\theta\in T \zeta\), there is \(\{\zeta _{n}\}\) in X such that the following statements hold:

  1. (i)

    \(\zeta_{0} = \zeta\) and \(\zeta_{1} = \theta\);

  2. (ii)

    \(\zeta_{n+1} \in T\zeta_{n}\) for all \(n \geq0\);

  3. (iii)

    \(\{\zeta_{n}\}\) converges to a fixed point of T.

Popescu [27] introduced the concept of \((s,r)\)-contractive multivalued operators and obtained some (strict) fixed point results.

Definition 1.3

([27])

Let \(T: X \to \mathit{CB}(X)\) be a multivalued operator on a complete metric space \((X,d)\). Such T is an \((s,r)\)-contraction if \(r \in[0, 1)\), \(s \geq r\), and \(\zeta,\theta\in X\)

$$ D(\theta,T\zeta)\leq sd(\theta,\zeta)\quad \text{implies}\quad H(T\zeta,T \theta )\leq r P(\zeta,\theta), $$
(3)

where

$$P(\zeta,\theta) = \max\biggl\{ d(\zeta,\theta), D(\zeta,T\zeta), D(\theta ,T \theta), \frac{D(\zeta,T\theta)+D(\theta,T\zeta)}{2}\biggr\} . $$

Theorem 1.2

([27])

Let \(T: X \to \mathit{CB}(X)\)be an \((s,r)\)-contractive multivalued operator (with \(s > r\)) on a complete metric space. ThenTis an MWP operator.

Theorem 1.3

([27])

Let \(T: X \to \mathit{CB}(X)\)be an \((s,r)\)-contractive multivalued operator on a complete metric space. ThenThas a fixed point. Moreover, if \(s \geq1\), such a fixed point is unique.

Kamran [17] improved the results of Popescu [27] to weakly \((s, r)\)-contractive multivalued operators.

Definition 1.4

([17])

Let \(T: X \to \mathit{CB}(X)\) be a multivalued operator on a metric space \((X,d)\). Such T is a weakly \((s,r)\)-contraction if there are \(r \in[0, 1)\), \(s \geq r\), and \(L \geq0\) such that

$$D(\theta,T\zeta)\leq sd(\theta,\zeta)\quad \text{implies}\quad H(T\zeta,T\theta) \leq r N( \zeta,\theta), $$

where

$$\begin{aligned} N(\zeta,\theta) ={}& \max\biggl\{ d(\zeta,\theta), D(\zeta,T\zeta), D(\theta ,T \theta), \frac{D(\zeta,T\theta)+D(\theta,T\zeta)}{2}\biggr\} \\ &+ L \min \bigl\{ d(\zeta,\theta), D(\theta,T\zeta)\bigr\} .\end{aligned} $$

Theorem 1.4

([17])

Let \(T: X \to \mathit{CB}(X)\)be a weakly \((s,r)\)-contraction (with \(s > r\)and \(L \geq0\)) on a complete metric space. ThenTis an MWP operator.

On the other hand, Wardowski [34] introduced a generalized version of contraction mappings, called \(\mathcal{F}\)-contractions, i.e., a mapping \(T: X\to X\) satisfying

$$\tau+ \mathcal{F}\bigl(d(T\zeta, T\theta)\bigr)\leq\mathcal{F}\bigl(d(\zeta, \theta)\bigr) $$

for all \(\zeta,\theta\in X\) with \(T\zeta\neq T\theta\), where \(\tau>0\) and \(\mathcal{F}:(0, \infty)\to\mathbb{R}\) is a function verifying the following conditions:

(\(\mathcal{F}_{1}\)):

\(\mathcal{F}\) is strictly increasing;

(\(\mathcal{F}_{2}\)):

for each \(\{a_{n}\}\subseteq\mathbb{R}^{+}\), \(\lim_{n\to\infty}a_{n}=0\) iff \(\lim_{n\to\infty}\mathcal{F}(a_{n})= -\infty\);

(\(\mathcal{F}_{3}\)):

there is \(0< k<1\) such that \(\lim_{a\to 0^{+}}a^{k}\mathcal{F}(a)=0\).

It was proved that every \(\mathcal{F}\)-contraction on a complete metric space possesses a unique fixed point.

In 2014, Piri and Kumam [26] combined the notion of \(\mathcal {F}\)-contractions with a Suzuki type contraction as follows:

$$\begin{aligned} \frac{1}{2}d(\zeta,T\zeta)< d(\zeta,\theta) \quad\text{implies}\quad \tau + \mathcal{F}\bigl(d(T\zeta,T\theta)\bigr)\leq\mathcal{F}\bigl(d(\zeta,\theta) \bigr). \end{aligned}$$

Recently, Turinici in [33] relaxed condition (\(\mathcal{F}_{2}\)) by

(\(\mathcal{F}^{\prime}_{2}\)):

for each \(\{a_{n}\}\subseteq\mathbb {R}^{+}\), \(\lim_{n\to\infty}a_{n}=0\), then \(\lim_{n\to\infty }\mathcal{F}(a_{n})= -\infty\).

Then the following

(\(\mathcal{F}^{\prime\prime}_{2}\)):

\(\mathcal{F}(a_{n})\to-\infty\) implies \(a_{n}\to0\)

can be derived from (\(\mathcal{F}_{1}\)).

Recently, Wardowski [35] considered the class of \(\mathcal {F}\)-contractions in a generalized way by replacing τ by a function \(\varphi:(0,\infty)\rightarrow(0,\infty)\) and defined \((\varphi, \mathcal{F})\)-contractions (nonlinear contractions) on a metric space \((X,d)\) so that

(\(\mathcal{H}_{1}\)):

\(\mathcal{F}\) verifies (\(\mathcal{F}_{1}\)) and (\(\mathcal{F}^{\prime}_{2}\));

(\(\mathcal{H}_{2}\)):

\(\lim \inf_{q\to p^{+}}\varphi(q)>0\) for \(p\geq0\);

(\(\mathcal{H}_{3}\)):

\(\varphi(d(\zeta,\theta)) + \mathcal {F}(d(T\zeta, T\theta))\leq\mathcal{F}(d(\zeta,\theta))\) for all \(\zeta ,\theta\in X\) so that \(T\zeta\neq T\theta\).

Wardowski [35] proved a fixed point result for such nonlinear contractions by omitting (\(\mathcal{F}_{3}\)).

Altun et al. [6] used an extra condition on \(\mathcal{F}\):

(\(\mathcal{F}_{4}\)):

\(\mathcal{F}(\inf(P))=\inf\mathcal{F}(P)\) for \(P\subset(0, \infty)\) such that \(\inf(P) >0\).

Define:

(\(\mathcal{H}^{\prime}_{1}\)):

\(\mathcal{F}\) satisfies (\(\mathcal {F}_{1}\)), (\(\mathcal{F}^{\prime}_{2}\)), and (\(\mathcal{F}_{4}\)).

(\(\mathcal{H}^{\prime}_{3}\)):

There are \(s\geq0\) and \(\mathcal {L}\geq0\) such that, for \(\zeta,\theta\in X\) with \(H(T\zeta, T\theta) >0\), we have

$$ D(\theta,T\zeta)\leq sd(\theta,\zeta)\quad \text{implies}\quad \varphi \bigl(d(\zeta,\theta)\bigr)+\mathcal{F}\bigl(H(T\zeta,T\theta)\bigr) \leq\mathcal {F}\bigl(M(\zeta,\theta)\bigr), $$
(4)

where

$$\begin{aligned} M(\zeta,\theta) =& \max \biggl\{ d(\zeta,\theta), D(\zeta, T\zeta), D(\theta,T \theta), \frac{D(\zeta,T\theta)+D(\theta,T\zeta)}{2} \biggr\} \\ &{} +\mathcal{L} \min\bigl\{ d(\zeta,\theta), D(\theta,T\zeta), D(\zeta,T\zeta ) \bigr\} . \end{aligned}$$
(\(\mathcal{H}^{\prime\prime}_{3}\)):

There are \(r,s\in[0,1)\) with \(r< s\) such that, for \(\zeta,\theta\in X\) with \(H(T\zeta, T\theta) >0\),

$$\frac{1}{1+r}D(\zeta,T\zeta)\leq d(\zeta,\theta) \leq\frac {1}{1-s}D( \zeta, T\zeta) $$

implies

$$\varphi\bigl(d(\zeta,\theta)\bigr) + \mathcal{F}\bigl(H(T\zeta,T\theta)\bigr) \leq\mathcal {F}\bigl(M(\zeta,\theta)\bigr). $$

For more works concerning \(\mathcal{F}\)-contractions, we refer to [1,2,3, 5, 7,8,9,10,11,12, 18,19,20,21, 23, 24, 28, 32] and the references therein.

The graph of \(T:X\rightarrow2^{X}\) is given as

$$\operatorname{Gr}(T) = \bigl\{ (\mu, \nu)\in X^{2}, \nu\in T\mu\bigr\} . $$

The mapping T is said to be upper semi-continuous if the inverse image of closed sets is closed.

Here, we introduce the concept of \((\mathcal{F}_{s}, \mathcal {L})\)-contractive multivalued operators. We will extend the results of Kamran [17] and Popescu [27]. For more details, see [4, 16, 29,30,31]. An example is given to show the validity of our results.

2 Main results

We begin with the following definition.

Definition 2.1

Let \((X,d)\) be a metric space. The multivalued operator \(T: X\to \mathit{CB}(X)\) is an \((\mathcal{F}_{s}, \mathcal{L})\)-contraction if conditions (\(\mathcal{H}^{\prime}_{1}\)), (\(\mathcal{H}_{2}\)), and (\(\mathcal {H}^{\prime}_{3}\)) are satisfied.

Our first result is as follows.

Theorem 2.1

Let \(T: X\to \mathit{CB}(X)\)be an \((\mathcal{F}_{s}, \mathcal {L})\)-contractive multivalued operator on a complete metric space. Assume that \(\operatorname{Gr}(T)\)is a closed subset of \(X^{2}\). ThenTis an MWP operator.

Proof

Let \(\zeta_{0}\in X\) and \(\zeta_{1}\in T\zeta_{0}\), then \(D(\zeta_{1},T\zeta _{0})=0\). In the case that \(\zeta_{0} = \zeta_{1}\), then \(\zeta_{1}\) is a fixed point of T, and so the proof is done.

Assume that \(\zeta_{0} \neq\zeta_{1}\). If \(\zeta_{1}\in T\zeta_{1}\), the proof is completed. Otherwise, if \(\zeta_{1}\notin T\zeta_{1}\), then since \(T\zeta _{1}\) is closed, we have \(D(\zeta_{1},T\zeta_{1})>0\). Therefore, \(H(T\zeta _{0},T\zeta_{1})\geq D(\zeta_{1},T\zeta_{1})>0\), we also have \(D(\zeta_{1},T\zeta_{0})\le sd(\zeta_{1},\zeta_{0})\). Since T is an \((\mathcal{F}_{s}, \mathcal{L})\)-contractive multivalued operator, we have

$$\varphi\bigl(d(\zeta_{0}, \zeta_{1})\bigr) + F\bigl(H(T \zeta_{0},T\zeta_{1})\bigr)\leq F\bigl(M(\zeta _{0},\zeta_{1})\bigr), $$

where

$$\begin{aligned} M(\zeta_{0}, \zeta_{1})&=\max \biggl\{ d( \zeta_{0},\zeta_{1}),D(\zeta_{0}, T\zeta _{0}),D(\zeta_{1},T\zeta_{1}), \frac{D(\zeta_{0},T\zeta_{1})+D(\zeta_{1},T\zeta _{0})}{2} \biggr\} \\ &\quad+L \min\bigl\{ d(\zeta_{0}, \zeta_{1}),D( \zeta_{1},T\zeta_{0}),D(\zeta_{0},T\zeta _{0})\bigr\} \\ &\leq\max \biggl\{ d(\zeta_{0},\zeta_{1}),D( \zeta_{1},T\zeta_{1}), \frac{d(\zeta _{0},\zeta_{1})+D(\zeta_{1},T\zeta_{1})}{2} \biggr\} \\ &= d(\zeta_{0},\zeta_{1}). \end{aligned}$$

So

$$ \varphi\bigl(d(\zeta_{0}, \zeta_{1})\bigr) + F\bigl(H(T\zeta_{0},T\zeta_{1})\bigr) \le F\bigl(d(\zeta _{0},\zeta_{1})\bigr). $$
(5)

Since \(D(\zeta_{1}, T\zeta_{1}) \leq H(T\zeta_{0}, T\zeta_{1})\), from (\(\mathcal {F}_{1}\)) and (5), we have

$$ F\bigl(D(\zeta_{1},T\zeta_{1})\bigr)\leq F \bigl(H(T\zeta_{0},T\zeta_{1})\bigr)\le F\bigl(d(\zeta _{0},\zeta_{1})\bigr)- \varphi\bigl(d(\zeta_{0}, \zeta_{1})\bigr). $$
(6)

Recall that \(D(\zeta_{1}, T\zeta_{1})>0\), so from (\(\mathcal{F}_{4}\)) we obtain

$$F\bigl(D(\zeta_{1},T\zeta_{1})\bigr)= \inf _{y\in T\zeta_{1}}F\bigl(d(\zeta_{1},y)\bigr). $$

By (6), we have

$$ \inf_{y\in T\zeta_{1}}F\bigl(d(\zeta_{1},y)\bigr) \le F\bigl(d(\zeta_{0},\zeta _{1})\bigr)-\varphi\bigl(d( \zeta_{0}, \zeta_{1})\bigr). $$
(7)

There is \(\zeta_{2}\in T\zeta_{1}\) such that

$$F\bigl(d(\zeta_{1},\zeta_{2})\bigr)\le F\bigl(d( \zeta_{0},\zeta_{1})\bigr)-\varphi\bigl(d( \zeta_{0}, \zeta_{1})\bigr). $$

Continuing in this manner, we get \(\{\zeta_{n}\}\) such that \(\zeta _{n+1}\in T\zeta_{n}\) and

$$ F\bigl(d(\zeta_{n},\zeta_{n+1})\bigr)\leq F \bigl(d(\zeta_{n-1},\zeta_{n})\bigr)-\varphi\bigl(d(\zeta _{n-1}, \zeta_{n})\bigr) $$
(8)

for all \(n\geq1\). Let \(\alpha_{n}=d(\zeta_{n-1},\zeta_{n})\) for all \(n\geq 0\). We suppose that \(\alpha_{n}>0\) for each \(n \in\mathbb{N}\). From (8), there is \(c>0\) such that

$$\mathcal{F}(\alpha_{n+1}) \leq\mathcal{F}(\alpha_{n})- \varphi(\alpha _{n})\quad\text{for each } n \in\mathbb{N}. $$

By (\(\mathcal{F}_{1}\)), \((\alpha_{n})\) is decreasing, and so \(\alpha_{n} \searrow t\geq0\). By (\(\mathcal{H}_{2}\)) there are \(c > 0\) and \(n_{0}\in \mathbb{N}\) such that \(\varphi(\alpha_{n})>0\) for each \(n \geq n_{0}\). Thus,

$$\begin{aligned} \mathcal{F}(\alpha_{n}) \leq& \mathcal{F}(\alpha_{n-1})- \varphi(\alpha _{n-1})\leq\cdots\leq\mathcal{F}(\alpha_{1})- \sum_{i=1}^{n-1}\varphi (\alpha_{i}) \\ =&\mathcal{F}(\alpha_{1})-\sum_{i=1}^{n_{0}-1} \varphi(\alpha_{i})-\sum_{i=n_{0}}^{n-1} \varphi(\alpha_{i})< \mathcal{F}(\alpha_{1})-(n-n_{0})c,\quad n>n_{0}. \end{aligned}$$

Taking \(n \to\infty\), \(\mathcal{F}(\alpha_{n}) \to-\infty\), so using (\(\mathcal{F}^{\prime\prime}_{2}\)), \(\alpha_{n} \to0\).

Suppose that \((\zeta_{n})\) is not a Cauchy sequence. Using (\(\mathcal {F}_{1}\)), the set ∇ of all discontinuity elements of \(\mathcal{F}\) is at most countable. There is \(\gamma>0\), \(\gamma\notin\nabla\) in order that for each \(k \geq0\) there are \(m_{k}, n_{k} \in\mathbb{N}\) such that

$$ k \leq m_{k} < n_{k} \quad\text{and}\quad d( \zeta_{m_{k}}, \zeta_{n_{k}})> \gamma,\qquad d(\zeta_{m_{k}}, \zeta_{n_{k}-1})< \gamma,\qquad d(\zeta_{n_{k}}, \zeta_{m_{k}+1})< \gamma. $$
(9)

Denote by \(\bar{m}_{k}\) the least of \(m_{k}\) satisfying (9) and by \(\bar{n}_{k}\) the least of \(n_{k}\) so that \(\bar{m}_{k}< n_{k}\) and \(d(\zeta_{\bar{m}_{k}}, \zeta_{n_{k}})>\gamma\). Naturally, one writes that

$$ d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}})> \gamma,\qquad d( \zeta_{\bar {m}_{k}}, \zeta_{\bar{n}_{k}-1})< \gamma,\qquad d(\zeta_{\bar{n}_{k}}, \zeta_{\bar{m}_{k}+1})< \gamma. $$
(10)

Taking \(k_{0} \in\mathbb{N}\) such that for \(\alpha_{k}< \gamma\) for each \(k \geq k_{0}\), we have

$$ \gamma< d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}}) \leq d( \zeta_{\bar {m}_{k}}, \zeta_{\bar{n}_{k}-1})+d(\zeta_{\bar{n}_{k}-1}, \zeta_{\bar {n}_{k}}) \leq\gamma+\alpha_{\bar{n}_{k}}\quad \text{for each } k \geq k_{0}. $$

Therefore,

$$ \lim_{k \to\infty}d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}})= \gamma. $$
(11)

Thus, we conclude that

$$\begin{aligned} D(\zeta_{\bar{n}_{k}}, T\zeta_{\bar{m}_{k}})\leq d( \zeta_{\bar {n}_{k}}, \zeta_{\bar{m}_{k}+1}) < \gamma< d(\zeta_{\bar{n}_{k}}, \zeta_{\bar{m}_{k}}) \leq s d(\zeta _{\bar{n}_{k}}, \zeta_{\bar{m}_{k}}). \end{aligned}$$
(12)

From (\(\mathcal{H}^{\prime}_{3}\)), we get

$$ \varphi\bigl(d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}})\bigr) \leq\mathcal {F}\bigl(d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}})\bigr)- \mathcal{F}\bigl(d(\zeta _{\bar{m}_{k}+1}, \zeta_{\bar{n}_{k}+1})\bigr), $$
(13)

\(k \geq0\). Now, using (10)–(13) and by the continuity of \(\mathcal{F}\) at γ, we get

$$\begin{aligned} \liminf_{s\to\gamma^{+}}\varphi(s)&\leq\liminf_{k \to\infty} \varphi \bigl(d(\zeta_{\bar{m}_{k}}, \zeta_{\bar{n}_{k}})\bigr) \\ &\leq\lim_{k \to\infty}\bigl(\mathcal{F}\bigl(d(\zeta_{\bar{m}_{k}}, \zeta_{\bar {n}_{k}})\bigr)-\mathcal{F}\bigl(d(\zeta_{\bar{m}_{k}+1}, \zeta_{\bar{n}_{k}+1})\bigr)\bigr)=0, \end{aligned}$$

which is a contradiction to (\(\mathcal{H}_{2}\)). Therefore \((\zeta_{n})\) is a Cauchy sequence. Hence, \(\zeta_{n}\to z\in X\) as \(n\to\infty\).

Since \(\operatorname{Gr}(T)\) is closed, at the limit \(n\rightarrow\infty\), \((\zeta_{n}, \zeta_{n+1}) \to(z, z)\) with \((z, z) \in \operatorname{Gr}(T)\). Thus, \(z \in Tz\), i.e., z is a fixed point of T. □

The upper semi-continuity condition is stronger than the closedness of \(\operatorname{Gr}(T)\). Consequently, we have the following result.

Theorem 2.2

Let \(T: X\to \mathit{CB}(X)\)be an \((\mathcal{F}_{s}, \mathcal {L})\)-contractive multivalued operator on a complete metric space. Assume thatTis upper semi-continuous. ThenTis an MWP operator.

Remark 2.1

Taking \(T: X \to K(X)\) in Theorem 2.1 and \(s\geq1\), we may omit condition (\(\mathcal{F}_{4}\)). In fact, let \(\zeta_{0} \in X\) and \(\zeta_{1}\in T\zeta_{0}\). If \(\zeta_{1}\in T\zeta_{1}\), then the proof is complete. Let \(\zeta_{1} \notin T\zeta_{1}\). Then, as \(T\zeta_{1}\) is closed, \(D(\zeta_{1}, T\zeta_{1}) > 0\). On the other hand, as \(D(\zeta_{1}, T\zeta_{1}) \leq H(T\zeta_{0}, T\zeta_{1})\), from (\(\mathcal{F}_{1}\)) we have

$$\mathcal{F}\bigl(D(\zeta_{1}, T\zeta_{1})\bigr) \leq \mathcal{F}\bigl(H(T\zeta_{0}, T\zeta_{1})\bigr). $$

We also have \(D(\zeta_{1},T\zeta_{0})\le sd(\zeta_{1},\zeta_{0})\). Using (\(\mathcal{H}^{\prime}_{3}\)), we have

$$\begin{aligned} \mathcal{F}\bigl(D(\zeta_{1}, T\zeta_{1}) \bigr) &\leq\mathcal{F}\bigl(H(T\zeta_{0}, T\zeta _{1}) \bigr) \\ &\leq\mathcal{F}\bigl(M(\zeta_{0}, \zeta_{1})\bigr) - \varphi\bigl(d(\zeta_{0}, \zeta_{1})\bigr) \\ &\leq\mathcal{F}\bigl(d(\zeta_{0}, \zeta_{1})\bigr)- \varphi\bigl(d(\zeta_{0}, \zeta_{1})\bigr). \end{aligned}$$
(14)

Since \(T\zeta_{1}\) is compact, there exists \(\zeta_{2}\in T\zeta_{1}\) such that \(d(\zeta_{1}, \zeta_{2}) = D(\zeta_{1}, T\zeta_{1})\). Then from (14) we have

$$\mathcal{F}\bigl(d(\zeta_{1}, \zeta_{2})\bigr) \leq \mathcal{F}\bigl(d(\zeta_{0}, \zeta _{1})\bigr)-\varphi \bigl(d(\zeta_{0}, \zeta_{1})\bigr). $$

The rest of the proof is similar to that of the proof of Theorem 2.1.

Our second result is as follows.

Theorem 2.3

Let \(T: X\to X\)be an \((\mathcal{F}_{s}, \mathcal{L})\)-contractive single-valued operator on a complete metric space. Assume that \(\operatorname{Gr}(T)\)is a closed subset of \(X^{2}\). ThenThas a fixed point. Moreover, if \(s\geq1\), then such a fixed point is unique.

Proof

Similar to the proof of Theorem 2.1, T has a fixed point. Let \(s\geq1\) and ζ, θ be two distinct fixed points of T. Then

$$d(\theta, T\zeta)= d(\theta,\zeta)\leq sd(\theta,\zeta) $$

implies

$$\varphi\bigl(d(\zeta,\theta)\bigr) + F\bigl(d(T\zeta,T\theta)\bigr)\leq F \bigl(d(\zeta,\theta)\bigr) $$

or

$$\varphi\bigl(d(\zeta,\theta)\bigr) + F\bigl(d(\zeta,\theta)\bigr)\leq F\bigl(d( \zeta,\theta)\bigr), $$

hence \(\zeta=\theta\). □

Definition 2.2

Let \(T: X\to \mathit{CB}(X)\) be a multivalued operator on a metric space \((X, d)\). Such T is an \((\mathcal{F}_{r, s}, \mathcal {L})\)-contraction if conditions (\(\mathcal{H}^{\prime}_{1}\)), (\(\mathcal {H}_{2}\)), and (\(\mathcal{H}^{\prime\prime}_{3}\)) are satisfied.

Our third main result is as follows.

Theorem 2.4

Let \(T: X \to \mathit{CB}(X)\)be an \((\mathcal{F}_{r, s}, \mathcal {L})\)-contraction on a complete metric space. Assume that \(\operatorname{Gr}(T)\)is a closed subset of \(X^{2}\). ThenTis a multivalued weakly Picard operator.

Proof

Consider \(t<1\) so that \(0\leq r< t< s\). Since \(\frac{1-t}{1-s}> 1\), by Lemma 1.1, \(\zeta_{1}\in X\), and so there is \(\zeta_{2}\in T\zeta _{1}\) such that

$$d(\zeta_{1},\zeta_{2})\leq\frac{1-t}{1-s} D( \zeta_{1},T\zeta_{1}), $$

then

$$\frac{1}{1+r} D(\zeta_{1},T\zeta_{1})\leq D( \zeta_{1},T\zeta_{1})\leq d(\zeta _{1}, \zeta_{2})\leq\frac{1}{1-s} D(\zeta_{1},T \zeta_{1}). $$

Since T is an \((\mathcal{F}_{r, s}, \mathcal{L})\)-contraction, we have

$$ \varphi\bigl(d(\zeta_{1}, \zeta_{2})\bigr) + F\bigl(H(T\zeta_{1}, T\zeta_{2})\bigr)\leq F\bigl(M(\zeta _{1}, \zeta_{2})\bigr), $$
(15)

where

$$\begin{aligned} M(\zeta_{1},\zeta_{2})&=\max\biggl\{ d(\zeta_{1}, \zeta_{2}),D(\zeta_{1},T\zeta_{1}),D(\zeta _{2},T\zeta_{2}),\frac{D(\zeta_{1},T\zeta_{2})+D(\zeta_{2},T\zeta_{1})}{2}\biggr\} \\ &\quad+L \min\bigl\{ d(\zeta_{1},\zeta_{2}),D( \zeta_{2},T\zeta_{1}),D(\zeta_{1},T\zeta _{1})\bigr\} \\ &\leq d(\zeta_{1},\zeta_{2}). \end{aligned}$$

So (15) becomes

$$ F\bigl(H(T\zeta_{1}, T\zeta_{2})\bigr)\leq F \bigl(d(\zeta_{1}, \zeta_{2})\bigr)-\varphi\bigl(d( \zeta_{1}, \zeta_{2})\bigr). $$
(16)

Since \(D(\zeta_{2}, T\zeta_{2}) \leq H(T\zeta_{1}, T\zeta_{2})\), from (\(\mathcal {F}_{1}\)) and (16), we have

$$ F\bigl(D(\zeta_{2},T\zeta_{2})\bigr)\leq F \bigl(H(T\zeta_{1},T\zeta_{2})\bigr)\le F\bigl(d(\zeta _{1},\zeta_{2})\bigr)- \varphi\bigl(d(\zeta_{1}, \zeta_{2})\bigr). $$
(17)

As \(T\zeta_{2}\) is closed, \(D(\zeta_{2}, T\zeta_{2})>0\), and from (\(\mathcal{F}_{4}\))

$$F\bigl(D(\zeta_{2}, T\zeta_{2})\bigr)=\inf _{y\in T\zeta_{2}}F\bigl(d(\zeta_{2}, y)\bigr). $$

By (17), we have

$$ \inf_{y\in T\zeta_{2}}F\bigl(d(\zeta_{2},y)\bigr) \le F\bigl(d(\zeta_{1},\zeta_{2})\bigr)-\varphi \bigl(d( \zeta_{1}, \zeta_{2})\bigr). $$
(18)

There is \(\zeta_{3}\in T\zeta_{2}\) such that

$$F\bigl(d(\zeta_{2},\zeta_{3})\bigr)\le F\bigl(d( \zeta_{1},\zeta_{2})\bigr)-\varphi\bigl(d( \zeta_{1}, \zeta_{2})\bigr). $$

Continuing in this manner, we construct a sequence \(\{\zeta_{n}\}\) such that \(\zeta_{n+1}\in T\zeta_{n}\), and the following inequality holds:

$$ F\bigl(d(\zeta_{n},\zeta_{n+1})\bigr)\leq F \bigl(d(\zeta_{n-1},\zeta_{n})\bigr)-\varphi\bigl(d(\zeta _{n-1}, \zeta_{n})\bigr) $$
(19)

for each \(n\geq1\).

As in the proof of Theorem 2.1, \((\zeta_{n})\) is a Cauchy sequence, and so \(\zeta_{n}\to z\in X\) as \(n\to\infty\). By the arguments similar to those given in Theorem 2.1, we have that \(D(z,Tz)=0\). □

The following example is in support of Theorem 2.1.

Example 2.1

Let \(X= \{0, 1, 2, 3\}\) and take \(d(\zeta,\theta)=|\zeta-\theta|\). Consider \(T: X \to \mathit{CB}(X)\) as

$$T\eta= \textstyle\begin{cases} \{1,3\} & \text{if } \eta=3, \\ \{2\} & \text{if not}. \end{cases} $$

Then, for \((\zeta, \theta)\in\{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1),(1, 2),(2, 0),(2, 1),(2, 2),(3, 3)\}\),

$$H(T\zeta, T\varTheta)=0, $$

and for \((\zeta, \theta)\in\{(0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2)\}\),

$$H(T\zeta, T\theta)=1. $$

Choosing \(s=0.5\) and \((\zeta, \theta)\in\{(2, 3), (3, 2)\}\), we have

$$D(\theta, T\zeta)=1 =d(\theta, \zeta), $$

which gives

$$D(\theta, T\zeta)> sd(\theta, \zeta). $$

Now, for \((\zeta, \theta)\in\{(0, 3), (1, 3), (3, 0), (3, 1)\}\), we have

$$D(\theta, T\zeta)\leq sd(\theta, \zeta). $$

Hence, for any \(\mathcal{L}\geq0\), choosing \(\varphi(t)=\frac{1}{t}\) and \(\mathcal{F}(t)= t + \ln(t)\), we have

$$\begin{aligned} \varphi\bigl(d(\zeta,\theta)\bigr) + \mathcal{F}\bigl(H(T\zeta,T\theta)\bigr)< \mathcal {F}\bigl(M(\zeta,\theta)\bigr). \end{aligned}$$

That is, T is an \((\mathcal{F}_{s}, \mathcal{L})\)-contraction. Also, \(\operatorname{Gr}(T)\) is a closed subset of \(X^{2}\). By Theorem 2.1, T has 2 and 3 as fixed points.