1 Introduction

Assuming that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq 0\), \(a=\{a_{m}\}_{m=1}^{\infty}\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p}=(\sum_{m=1}^{\infty}a_{m}^{p})^{\frac{1}{p}}>0\), \(\|b\|_{q}>0\), we have the following Hardy-Hilbert inequality with the best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. [1], Theorem 315):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(1)

The more accurate inequality of (1) is given as follows (cf. [2] and Theorem 323 of [1]):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n-\alpha }< \frac{\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}\quad(0\leq\alpha\leq1), $$
(2)

which is an extension of (1). We still have the following Mulholland inequality similar to (1) with the same best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) (cf. [3] or Theorem 343 of [1], replacing \(\frac{a_{m}}{n}\), \(\frac{b_{n}}{n}\) by \(a_{m}\), \(b_{n}\)):

$$ \sum_{m=2}^{\infty}\sum _{n=2}^{\infty}\frac{a_{m}b_{n}}{\ln mn}< \frac {\pi }{\sin(\pi/p)} \Biggl( \sum_{m=2}^{\infty}\frac {a_{m}^{p}}{m^{1-p}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=2}^{\infty} \frac{b_{n}^{q}}{n^{1-q}} \Biggr) ^{\frac{1}{q}}. $$
(3)

Inequalities (1)-(3) are important in analysis and applications (cf. [2, 49]).

If \(\mu_{i},\upsilon_{j}>0 \) (\(i,j\in\mathbf{N}=\{1,2,\ldots\}\)),

$$ U_{m}:=\sum_{i=1}^{m} \mu_{i},\qquad V_{n}:=\sum_{j=1}^{n} \upsilon_{j}\quad(m,n\in \mathbf{N}), $$
(4)

then we have the following Hardy-Hilbert-type inequality (cf. Theorem 321 of [1], replacing \(\mu_{m}^{1/q}a_{m}\) and \(\upsilon_{n}^{1/p}b_{n}\) by \(a_{m}\) and \(b_{n}\)):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}\frac {a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac {b_{n}^{q}}{\upsilon_{n}^{q-1}} \Biggr) ^{\frac{1}{q}}. $$
(5)

For \(\mu_{i}=\upsilon_{j}=1\) (\(i,j\in\mathbf{N}\)), (5) reduces to (1).

In 2015, Yang [10] gave an extension of (5) as follows: For \(0<\lambda_{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\{\mu_{m}\}_{m=1}^{\infty}\), and \(\{\upsilon_{n}\}_{n=1}^{\infty}\) are decreasing, and \(U_{\infty}=V_{\infty}=\infty\), we have the following inequality with the best possible constant factor \(B(\lambda _{1},\lambda _{2})\):

$$\begin{aligned} &\sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{(U_{m}+V_{n})^{\lambda}} < B(\lambda_{1},\lambda_{2}) \Biggl[ \sum _{m=1}^{\infty}\frac{U_{m}^{p(1-\lambda_{1})-1}a_{m}^{p}}{\mu_{m}^{p-1}} \Biggr] ^{\frac {1}{p}} \Biggl[ \sum_{n=1}^{\infty} \frac{V_{n}^{q(1-\lambda_{2}-1)}b_{n}^{q}}{\upsilon_{n}^{q-1}} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(6)

where \(B(u,v)\) is the beta function defined by (cf. [11])

$$ B(u,v):= \int_{0}^{\infty}\frac{t^{u-1}}{(1+t)^{u+v}}\,dt \quad(u,v>0). $$
(7)

In a similar way, Huang and Yang [12] gave a more accurate inequality of (6) and Yang and Chen [13] obtained a Hardy-Hilbert-type inequality with another kernel and a best possible constant factor.

In this paper, using the way of weight coefficients and applying Hermite-Hadamard’s inequality, a Hardy-Mulholland-type inequality with a best possible constant factor similar to (6) is proved, which is an extension of (3). Furthermore, the more accurate Hardy-Mulholland-type inequality is built by introducing a few parameters. We also consider the equivalent forms, the operator expressions and some particular inequalities.

2 Some lemmas and an example

In the following of this paper, we assume that \(p>1\), \(\frac{1}{p}+\frac {1}{q}=1\), \(\mu_{i},\upsilon_{j}>0\) (\(i,j\in\mathbf{N}\)), with \(\mu_{1}=\upsilon _{1}=1\), \(U_{m}\) and \(V_{n}\) are indicated by (4), \(\alpha\leq \frac{\mu_{2}}{2}\), \(\beta\leq\frac{\upsilon_{2}}{2}\), \(0<\lambda _{1},\lambda_{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(a_{m},b_{n}\geq0\), \(\|a\|_{p,\Phi_{\lambda}}:=(\sum_{m=2}^{\infty }\Phi _{\lambda}(m)a_{m}^{p})^{\frac{1}{p}}\), and \(\|b\|_{q,\Psi_{\lambda }}:=(\sum_{n=2}^{\infty}\Psi_{\lambda}(n)b_{n}^{q})^{\frac{1}{q}}\), where

$$\begin{aligned} &\Phi_{\lambda}(m) :=\frac{[\ln(U_{m}-\alpha)]^{p(1-\lambda _{1})-1}}{(U_{m}-\alpha)^{1-p}\mu_{m+1}^{p-1}}, \\ &\Psi_{\lambda}(n) :=\frac{[\ln(V_{n}-\beta)]^{q(1-\lambda _{2})-1}}{(V_{n}-\beta)^{1-q}\upsilon_{n+1}^{q-1}} \quad\bigl(m,n\in\mathbf{N}\backslash \{1\}\bigr). \end{aligned}$$
(8)

Lemma 1

Suppose that \(a\in\mathbf{R}\), \(f(x)\) in continuous in \([a-\frac{1}{2},a+\frac{1}{2}]\), \(f^{\prime}(x)\) is strictly increasing in \((a-\frac {1}{2},a)\) and \((a,a+\frac{1}{2})\), and \(f^{\prime}(a-0)\leq f^{\prime }(a+0)\). We have the following Hermite-Hadamard inequality (cf. Lemma 1 of [14]):

$$ f(a)< \int_{a-\frac{1}{2}}^{a+\frac{1}{2}}f(x)\,dx. $$
(9)

Example 1

Assuming that \(\{\mu_{m}\}_{m=1}^{\infty}\) and \(\{\upsilon _{n}\}_{n=1}^{\infty}\) are decreasing, we set \(\mu(t):=\mu_{m}\), \(t\in(m-1,m]\) (\(m\in\mathbf{N}\)); \(\upsilon(t):=\upsilon_{n}\), \(t\in (n-1,n]\) (\(n\in\mathbf{N}\)),

$$ U(x):= \int_{0}^{x}\mu(t)\,dt\quad(x\geq0),\qquad V(y):= \int_{0}^{y}\upsilon (t)\,dt\quad(y\geq 0). $$
(10)

Then we have \(U(m)=U_{m}\), \(V(n)=V_{n}\), \(U(\infty)=U_{\infty }\), \(V(\infty)=V_{\infty}\) and

$$\begin{aligned}& U^{\prime}(x) =\mu(x)=\mu_{m},\quad x\in(m-1,m),\\& V^{\prime}(y) =\upsilon(y)=\upsilon_{n}, \quad y\in(n-1,n)\ (m,n\in \mathbf{N}). \end{aligned}$$

For fixed \(m,n\in\mathbf{N}\backslash\{1\}\), we define the function \(h(x)\) as follows:

$$\begin{aligned}& h(x): =\frac{\ln^{\lambda_{2}-1}(V(x)-\beta)}{(V(x)-\beta)[\ln (U_{m}-\alpha)+\ln(V(x)-\beta)]^{\lambda}},\quad x \in\biggl[n-\frac{1}{2},n+\frac{1}{2}\biggr]. \end{aligned}$$

Then \(h(x)\) in continuous in \([n-\frac{1}{2},n+\frac{1}{2}]\), and, for \(x\in(n-\frac{1}{2},n)\) (\(n\in\mathbf{N}\backslash\{1\}\)),

$$\begin{aligned} h^{\prime}(x) =&- \biggl\{ \frac{\ln^{\lambda_{2}-1}(V(x)-\beta)}{(V(x)-\beta)}+\frac{\lambda\ln^{\lambda_{2}-1}(V(x)-\beta)}{\ln [(U_{m}-\alpha)(V(x)-\beta)]}\\ &{} +\frac{1-\lambda_{2}}{(V(x)-\beta)^{2-\lambda_{2}}} \biggr\} \frac{\upsilon_{n}}{(V(x)-\beta)\ln^{\lambda}[(U_{m}-\alpha)(V(x)-\beta)]}. \end{aligned}$$

In view of \(1-\lambda_{2}\geq0\), \(h^{\prime}(x)\) (<0) is strictly increasing in \((n-\frac{1}{2},n)\) and

$$\begin{aligned} \lim_{x\rightarrow n-}h^{\prime}(x) =&h^{\prime}(n-0)=- \biggl\{ \frac {\ln ^{\lambda_{2}-1}(V_{n}-\beta)}{(V_{n}-\beta)}+\frac{\lambda\ln ^{\lambda _{2}-1}(V_{n}-\beta)}{\ln[(U_{m}-\alpha)(V_{n}-\beta)]}\\ &{} +\frac{1-\lambda_{2}}{(V_{n}-\beta)^{2-\lambda_{2}}} \biggr\} \frac{\upsilon_{n}}{(V_{n}-\beta)\ln^{\lambda}[(U_{m}-\alpha )(V_{n}-\beta)]}. \end{aligned}$$

In the same way, for \(x\in(n,n+\frac{1}{2})\), we find

$$\begin{aligned} h^{\prime}(x) =&- \biggl\{ \frac{\ln^{\lambda_{2}-1}(V(x)-\beta)}{(V(x)-\beta)}+\frac{\lambda\ln^{\lambda_{2}-1}(V(x)-\beta)}{\ln [(U_{m}-\alpha)(V(x)-\beta)]}\\ &{} +\frac{1-\lambda_{2}}{(V(x)-\beta)^{2-\lambda_{2}}} \biggr\} \frac{\upsilon_{n+1}}{(V(x)-\beta)\ln^{\lambda}[(U_{m}-\alpha )(V(x)-\beta)]}, \end{aligned}$$

\(h^{\prime}(x)\) (<0) is strictly increasing in \((n,n+\frac{1}{2})\) and

$$\begin{aligned} \lim_{x\rightarrow n+}h^{\prime}(x) =&h^{\prime}(n+0)=- \biggl\{ \frac {\ln ^{\lambda_{2}-1}(V_{n}-\beta)}{(V_{n}-\beta)}+\frac{\lambda\ln ^{\lambda _{2}-1}(V_{n}-\beta)}{\ln[(U_{m}-\alpha)(V_{n}-\beta)]}\\ &{}+\frac{1-\lambda_{2}}{(V_{n}-\beta)^{2-\lambda_{2}}} \biggr\} \frac{\upsilon_{n+1}}{(V_{n}-\beta)\ln^{\lambda}[(U_{m}-\alpha )(V_{n}-\beta)]}. \end{aligned}$$

Since \(\upsilon_{n+1}\leq\upsilon_{n}\), we have \(h^{\prime}(n-0)\leq h^{\prime}(n+0)\). Then by (9), for \(m,n\in\mathbf{N}\backslash\{1\}\), it follows that

$$\begin{aligned} h(n) < & \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}h(x)\,dx = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{\ln^{\lambda _{2}-1}(V(x)-\beta)}{(V(x)-\beta)[\ln(U_{m}-\alpha)+\ln(V(x)-\beta )]^{\lambda}}\,dx. \end{aligned}$$
(11)

Lemma 2

For \(m,n\in \mathbf{N}\backslash\{1\}\), we define the following weight coefficients:

$$\begin{aligned}& \omega(\lambda_{2},m) :=\sum_{n=2}^{\infty} \frac{1}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]}\frac{\upsilon_{n+1}\ln^{\lambda _{1}}(U_{m}-\alpha)}{(V_{n}-\beta)\ln^{1-\lambda_{2}}(V_{n}-\beta)}, \end{aligned}$$
(12)
$$\begin{aligned}& \varpi(\lambda_{1},n) :=\sum_{m=2}^{\infty} \frac{1}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]}\frac{\mu_{m+1}\ln^{\lambda _{2}}(V_{n}-\beta)}{(U_{m}-\alpha)\ln^{1-\lambda_{1}}(U_{m}-\alpha)}. \end{aligned}$$
(13)

If \(\{\mu_{m}\}_{m=1}^{\infty}\) and \(\{\upsilon _{n}\}_{n=1}^{\infty}\) are decreasing, and \(U(\infty)=V(\infty )=\infty \), then

$$\begin{aligned}& \omega(\lambda_{2},m) < B(\lambda_{1}, \lambda_{2}) \quad\bigl(m\in\mathbf {N}\backslash\{1\}\bigr), \end{aligned}$$
(14)
$$\begin{aligned}& \varpi(\lambda_{1},n) < B(\lambda_{1}, \lambda_{2}) \quad\bigl(n\in\mathbf {N}\backslash\{1\}\bigr). \end{aligned}$$
(15)

Proof

For \(x\in(n-\frac{1}{2},n+\frac{1}{2})\backslash \{n\}\), \(\upsilon_{n+1}\leq V^{\prime}(x)\), by (11), we obtain

$$\begin{aligned} \omega(\lambda_{2},m) < &\sum_{n=2}^{\infty} \upsilon_{n+1} \int _{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{\ln^{\lambda_{1}}(U_{m}-\alpha)\ln ^{\lambda _{2}-1}(V(x)-\beta)\,dx}{(V(x)-\beta)[\ln(U_{m}-\alpha)+\ln (V(x)-\beta )]^{\lambda}} \\ \leq&\sum_{n=2}^{\infty} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\frac{\ln ^{\lambda_{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)}{[\ln (U_{m}-\alpha)+\ln(V(x)-\beta)]^{\lambda}}\frac{V^{\prime}(x)}{V(x)-\beta}\,dx \\ =& \int_{\frac{3}{2}}^{\infty}\frac{\ln^{\lambda_{1}}(U_{m}-\alpha )\ln ^{\lambda_{2}-1}(V(x)-\beta)}{[\ln(U_{m}-\alpha)+\ln(V(x)-\beta )]^{\lambda}}\frac{V^{\prime}(x)}{V(x)-\beta}\,dx. \end{aligned}$$

Setting \(t=\frac{\ln(V(x)-\beta)}{\ln(U_{m}-\alpha)}\), since \(V(\frac{3}{2})-\beta=1+\frac{\upsilon_{2}}{2}-\beta\geq1\) and \(\frac{V^{\prime }(x)}{V(x)-\beta}\,dx=\ln(U_{m}-\alpha)\,dt\), we find

$$ \omega(\lambda_{2},m)< \int_{0}^{\infty}\frac{1}{(1+t)^{\lambda}}t^{\lambda_{2}-1}\,dt=B( \lambda_{1},\lambda_{2}). $$

Hence, we obtain (14). In the same way, we obtain (15). □

Lemma 3

Suppose that \(\{\mu_{m}\}_{m=1}^{\infty}\) and \(\{\upsilon _{n}\}_{n=1}^{\infty}\) are decreasing, and \(U(\infty)=V(\infty )=\infty \). (i) For \(m,n\in\mathbf{N}\backslash\{1\}\), we have

$$\begin{aligned} &B(\lambda_{1},\lambda_{2}) \bigl(1-\theta( \lambda_{2},m)\bigr) < \omega (\lambda _{2},m), \end{aligned}$$
(16)
$$\begin{aligned} &B(\lambda_{1},\lambda_{2}) \bigl(1-\vartheta( \lambda_{1},n)\bigr) < \varpi (\lambda_{1},n), \end{aligned}$$
(17)

where

$$\begin{aligned}& \begin{aligned}[b] \theta(\lambda_{2},m) &=\frac{1}{B(\lambda_{1},\lambda_{2})}\frac {\ln ^{\lambda_{2}-1}(1+\upsilon_{2}-\beta)}{\lambda_{2}[1+\frac{\ln (1+\upsilon_{2}\theta(m)-\beta)}{\ln(U_{m}-\alpha)}]^{\lambda }} \frac{1}{\ln^{\lambda_{2}}(U_{m}-\alpha)} \\ &=O\biggl(\frac{1}{\ln^{\lambda_{2}}(U_{m}-\alpha)}\biggr)\in(0,1) \quad\biggl(\theta (m)\in \biggl(\frac{\beta}{\upsilon_{2}},1\biggr)\biggr), \end{aligned} \end{aligned}$$
(18)
$$\begin{aligned}& \begin{aligned}[b] \vartheta(\lambda_{1},n) &=\frac{1}{B(\lambda_{1},\lambda _{2})}\frac{\ln^{\lambda_{1}}(1+\mu_{2}-\alpha)}{\lambda_{1}[1+\frac{\ln(1+\mu _{2}\vartheta(n)-\alpha)}{\ln(V_{n}-\beta)}]^{\lambda}} \frac{1}{\ln ^{\lambda_{1}}(V_{n}-\beta)} \\ &=O\biggl(\frac{1}{\ln^{\lambda_{1}}(V_{n}-\beta)}\biggr) \in(0,1) \quad\biggl(\vartheta (n)\in \biggl(\frac{\alpha}{\mu_{2}},1\biggr)\biggr); \end{aligned} \end{aligned}$$
(19)

(ii) for any \(c>0\), we have

$$\begin{aligned}& \sum_{m=2}^{\infty}\frac{\mu_{m+1}}{(U_{m}-\alpha)\ln ^{1+c}(U_{m}-\alpha )} = \frac{1}{c} \biggl( \frac{1}{\ln^{c}(1+\mu_{2}-\alpha )}+cO(1) \biggr) , \end{aligned}$$
(20)
$$\begin{aligned}& \sum_{n=2}^{\infty}\frac{\upsilon_{n+1}}{(V_{n}-\beta)\ln ^{1+c}(V_{n}-\beta)} = \frac{1}{c} \biggl( \frac{1}{\ln^{c}(1+\upsilon _{2}-\beta)}+c\widetilde{O}(1) \biggr) . \end{aligned}$$
(21)

Proof

In view of \(0\leq\beta\leq\frac{\upsilon_{2}}{2}<\upsilon_{2}\), it follows that \(\frac{\beta}{\upsilon_{2}}+1\geq1\) and \(\frac{\beta}{\upsilon_{2}}+1<2\). By Example 1, \(h(x)\) is strictly decreasing in \([n,n+1]\), then for \(m\in\mathbf{N}\backslash\{1\}\), we obtain

$$\begin{aligned} \omega(\lambda_{2},m) >&\sum_{n=2}^{\infty} \int_{n}^{n+1}\frac{\ln ^{\lambda_{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)\upsilon _{n+1}\,dx}{(V(x)-\beta)[\ln(U_{m}-\alpha)+\ln(V(x)-\beta)]^{\lambda }} \\ =& \int_{2}^{\infty}\frac{\ln^{\lambda_{1}}(U_{m}-\alpha)\ln ^{\lambda _{2}-1}(V(x)-\beta)}{[\ln(U_{m}-\alpha)+\ln(V(x)-\beta)]^{\lambda }}\frac{V^{\prime}(x)}{V(x)-\beta}\,dx\\ =& \int_{\frac{\beta}{\upsilon_{2}}+1}^{\infty}\frac{\ln^{\lambda _{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)}{[\ln (U_{m}-\alpha )+\ln(V(x)-\beta)]^{\lambda}}\frac{V^{\prime}(x)}{V(x)-\beta}\,dx \\ &{}- \int_{\frac{\beta}{\upsilon_{2}}+1}^{2}\frac{\ln^{\lambda _{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)}{[\ln (U_{m}-\alpha )+\ln(V(x)-\beta)]^{\lambda}}\frac{V^{\prime}(x)\,dx}{V(x)-\beta}. \end{aligned}$$

Setting \(t=\frac{\ln(V(x)-\beta)}{\ln(U_{m}-\alpha)}\), since

$$\ln\biggl(V\biggl(\frac{\beta}{\upsilon_{2}}+1\biggr)-\beta\biggr)=\ln \biggl(1+\upsilon_{2}\frac{\beta }{\upsilon_{2}}-\beta\biggr)=0, $$

we find

$$\begin{aligned} \omega(\lambda_{2},m) >& \int_{0}^{\infty}\frac{1}{(1+t)^{\lambda}}t^{\lambda_{2}-1}\,dt - \int_{\frac{\beta}{\upsilon_{2}}+1}^{2}\frac{\ln^{\lambda _{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)}{[\ln (U_{m}-\alpha )+\ln(V(x)-\beta)]^{\lambda}}\frac{V^{\prime}(x)}{V(x)-\beta}\,dx \\ =&B(\lambda_{1},\lambda_{2}) \bigl(1-\theta( \lambda_{2},m)\bigr), \end{aligned}$$

where

$$\begin{aligned} \theta(\lambda_{2},m) :=&\frac{\ln^{\lambda_{1}}(U_{m}-\alpha)}{B(\lambda_{1},\lambda_{2})} \int_{\frac{\beta}{\upsilon _{2}}+1}^{2}\frac{V^{\prime}(x)\ln^{\lambda_{2}-1}(V(x)-\beta)\,dx}{(V(x)-\beta)\ln ^{\lambda}[(U_{m}-\alpha)(V(x)-\beta)]} \in(0,1). \end{aligned}$$

In view of the integral mid value theorem, there exists a \(\theta (m)\in(\frac{\beta}{\upsilon_{2}},1)\), satisfying

$$\begin{aligned} \theta(\lambda_{2},m) =&\frac{1}{B(\lambda_{1},\lambda_{2})}\frac {\ln ^{\lambda_{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(V(x)-\beta)}{[\ln (U_{m}-\alpha)+\ln(V(1+\theta(m))-\beta)]^{\lambda}} \\ &{}\times \int_{\frac{\beta}{\upsilon_{2}}+1}^{2}\ln^{\lambda _{2}-1}\bigl(V(x)-\beta \bigr)\frac{V^{\prime}(x)}{V(x)-\beta}\,dx \\ =&\frac{1}{B(\lambda_{1},\lambda_{2})}\frac{\ln^{\lambda _{1}}(U_{m}-\alpha)\ln^{\lambda_{2}-1}(1+\upsilon_{2}-\beta)}{[\ln (U_{m}-\alpha)+\ln(1+\upsilon_{2}\theta(m)-\beta)]^{\lambda}} \\ =&\frac{1}{B(\lambda_{1},\lambda_{2})}\frac{\ln^{\lambda _{2}-1}(1+\upsilon_{2}-\beta)}{\lambda_{2}[1+\frac{\ln(1+\upsilon _{2}\theta(m)-\beta)}{\ln(U_{m}-\alpha)}]^{\lambda}}\frac{1}{\ln ^{\lambda_{2}}(U_{m}-\alpha)}. \end{aligned}$$

Since we find

$$ 0< \theta(\lambda_{2},m)\leq\frac{\ln^{\lambda_{2}-1}(1+\upsilon _{2}-\beta)}{\lambda_{2}}\frac{1}{\ln^{\lambda_{2}}(U_{m}-\alpha)}, $$

namely, \(\theta(\lambda_{2},m)=O(\frac{1}{\ln^{\lambda _{2}}(U_{m}-\alpha )})\), we have (16) and (18). In the same way, we obtain (17) and (19).

For any \(c>0\), it follows that

$$\begin{aligned} &\sum_{m=2}^{\infty}\frac{\mu_{m+1}}{(U_{m}-\alpha)\ln ^{1+c}(U_{m}-\alpha)}\\ &\quad\leq\sum _{m=2}^{\infty}\frac{\mu _{m}}{(U_{m}-\alpha )\ln^{1+c}(U_{m}-\alpha)} \\ &\quad=\frac{\mu_{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)}+\sum_{m=3}^{\infty} \frac{\mu_{m}}{(U_{m}-\alpha)\ln ^{1+c}(U_{m}-\alpha)} \\ &\quad=\frac{\mu_{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)}+\sum_{m=3}^{\infty} \int_{m-1}^{m}\frac{U^{\prime}(x)\,dx}{(U_{m}-\alpha )\ln^{1+c}(U_{m}-\alpha)} \\ &\quad< \frac{\mu_{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)}+\sum_{m=3}^{\infty} \int_{m-1}^{m}\frac{U^{\prime}(x)\,dx}{(U(x)-\alpha )\ln ^{1+c}(U(x)-\alpha)} \\ &\quad=\frac{\mu_{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)}+ \int_{2}^{\infty}\frac{U^{\prime}(x)\,dx}{(U(x)-\alpha)\ln ^{1+c}(U(x)-\alpha)} \\ &\quad=\frac{\mu_{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)}+\frac {1}{c\ln ^{c}(1+\mu_{2}-\alpha)} \\ &\quad=\frac{1}{c} \biggl[ \frac{1}{\ln^{c}(1+\mu_{2}-\alpha)}+\frac{c\mu _{2}}{(U_{2}-\alpha)\ln^{1+c}(U_{2}-\alpha)} \biggr] ,\\ &\sum_{m=2}^{\infty}\frac{\mu_{m+1}}{(U_{m}-\alpha)\ln ^{1+c}(U_{m}-\alpha)}\\ &\quad=\sum _{m=2}^{\infty} \int_{m}^{m+1}\frac{U^{\prime }(x)\,dx}{(U_{m}-\alpha)\ln^{1+c}(U_{m}-\alpha)} \\ &\quad>\sum_{m=2}^{\infty} \int_{m}^{m+1}\frac{U^{\prime}(x)}{(U(x)-\alpha )\ln ^{1+c}(U(x)-\alpha)}\,dx \\ &\quad= \int_{2}^{\infty}\frac{U^{\prime}(x)\,dx}{(U(x)-\alpha)\ln ^{1+c}(U(x)-\alpha)}=\frac{1}{c\ln^{c}(1+\mu_{2}-\alpha)}. \end{aligned}$$

Hence we obtain (20). In the same way, we obtain (21). □

3 Main results

We define the following functions:

$$\begin{aligned} &\widetilde{\Phi}_{\lambda}(m) :=\omega(\lambda_{2},m) \frac{[\ln (U_{m}-\alpha)]^{p(1-\lambda_{1})-1}}{(U_{m}-\alpha)^{1-p}\mu _{m+1}^{p-1}}, \\ &\widetilde{\Psi}_{\lambda}(n) :=\varpi(\lambda_{1},n) \frac{[\ln (V_{n}-\beta)]^{q(1-\lambda_{2})-1}}{(V_{n}-\beta)^{1-q}\upsilon _{n+1}^{q-1}}\quad\bigl(m,n\in\mathbf{N}\backslash\{1\}\bigr). \end{aligned}$$
(22)

Theorem 1

We have the following equivalent inequalities:

$$\begin{aligned}& I :=\sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln ^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]}\leq\|a\|_{p,\widetilde {\Phi}_{\lambda}} \|b\|_{q,\widetilde{\Psi}_{\lambda}}, \end{aligned}$$
(23)
$$\begin{aligned}& J := \Biggl\{ \sum_{n=2}^{\infty} \frac{\upsilon_{n+1}\ln^{p\lambda _{2}-1}(V_{n}-\beta)}{(\varpi(\lambda_{1},n))^{p-1}(V_{n}-\beta )} \Biggl[ \sum_{m=2}^{\infty} \frac{a_{m}}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \leq\|a \|_{p,\widetilde{\Phi}_{\lambda}}. \end{aligned}$$
(24)

Proof

By Hölder’s inequality (cf. [15]) and (13), we find

$$\begin{aligned} & \Biggl[ \sum_{m=2}^{\infty} \frac{a_{m}}{\ln^{\lambda}[(U_{m}-\alpha )(V_{n}-\beta)]} \Biggr] ^{p} \\ &\quad= \Biggl[ \sum _{m=2}^{\infty}\frac{1}{\ln ^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]} \\ &\qquad{}\times \biggl( \frac{(U_{m}-\alpha)^{1/q}\ln ^{(1-\lambda_{1})/q}(U_{m}-\alpha)}{\mu_{m+1}^{1/q}\ln^{(1-\lambda _{2})/p}(V_{n}-\beta)}a_{m} \biggr) \biggl( \frac{\mu_{m+1}^{1/q}\ln^{(1-\lambda _{2})/p}(V_{n}-\beta)}{(U_{m}-\alpha)^{1/q}\ln ^{(1-\lambda_{1})/q}(U_{m}-\alpha)} \biggr) \Biggr] ^{p} \\ &\quad\leq\sum_{m=2}^{\infty}\frac{1}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]} \frac{(U_{m}-\alpha)^{p-1}\ln ^{(1-\lambda _{1})p/q}(U_{m}-\alpha)}{\mu_{m+1}^{p/q}\ln^{1-\lambda _{2}}(V_{n}-\beta)}a_{m}^{p} \\ &\qquad{}\times \Biggl[ \sum_{m=2}^{\infty} \frac{\mu_{m+1}}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]}\frac{\ln^{(1-\lambda _{2})(q-1)}(V_{n}-\beta)}{(U_{m}-\alpha)\ln ^{1-\lambda_{1}}(U_{m}-\alpha)} \Biggr] ^{p-1} \\ &\quad=\frac{(\varpi(\lambda_{1},n))^{p-1}(V_{n}-\beta)}{\upsilon _{n+1}\ln ^{p\lambda_{2}-1}(V_{n}-\beta)} \\ &\qquad{}\times\sum_{m=2}^{\infty}\frac{\upsilon_{n+1}(U_{m}-\alpha )^{p-1}\ln ^{(1-\lambda_{1})(p-1)}(U_{m}-\alpha)}{\mu_{m+1}^{p-1}(V_{n}-\beta )\ln ^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]\ln^{1-\lambda _{2}}(V_{n}-\beta)}a_{m}^{p}. \end{aligned}$$
(25)

Then by (12) we obtain

$$\begin{aligned} J &\leq \Biggl[ \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{\upsilon _{n+1}(U_{m}-\alpha)^{p-1}a_{m}^{p}}{\ln^{\lambda}[(U_{m}-\alpha )(V_{n}-\beta)]}\frac{\ln^{(1-\lambda_{1})(p-1)}(U_{m}-\alpha)}{\mu _{m+1}^{p-1}(V_{n}-\beta)\ln^{1-\lambda_{2}}(V_{n}-\beta)} \Biggr] ^{ \frac{1}{p}} \\ &= \Biggl[ \sum_{m=2}^{\infty}\sum _{n=2}^{\infty}\frac{\upsilon _{n+1}(U_{m}-\alpha)^{p-1}a_{m}^{p}}{\ln^{\lambda}[(U_{m}-\alpha )(V_{n}-\beta)]}\frac{\ln^{(1-\lambda_{1})(p-1)}(U_{m}-\alpha)}{\mu _{m+1}^{p-1}(V_{n}-\beta)\ln^{1-\lambda_{2}}(V_{n}-\beta)} \Biggr] ^{ \frac{1}{p}} \\ &= \Biggl[ \sum_{m=2}^{\infty}\omega( \lambda_{2},m)\frac{\ln ^{p(1-\lambda _{1})-1}(U_{m}-\alpha)}{(U_{m}-\alpha)^{1-p}\mu_{m+1}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}, \end{aligned}$$
(26)

namely, (24) follows. By Hölder’s inequality (cf. [15]), we find

$$\begin{aligned} I =&\sum_{n=2}^{\infty} \Biggl[ \frac{\upsilon_{n+1}^{1/p}\ln^{\lambda _{2}-\frac{1}{p}}(V_{n}-\beta)}{(\varpi(\lambda_{1},n))^{\frac{1}{q}}(V_{n}-\beta)^{1/p}}\sum_{m=1}^{\infty} \frac{a_{m}}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]} \Biggr] \\ &{}\times \biggl[ \bigl(\varpi(\lambda_{1},n)\bigr)^{\frac{1}{q}} \frac{\ln^{\frac {1}{p}-\lambda_{2}}(V_{n}-\beta)}{(V_{n}-\beta)^{-1/p}\upsilon _{n+1}^{1/p}}b_{n} \biggr] \leq J\|b\|_{q,\widetilde{\Psi}_{\lambda}}. \end{aligned}$$
(27)

Then by (24), (23) follows.

On the other hand, suppose that (23) is valid. We set

$$\begin{aligned} b_{n} :=&\frac{\upsilon_{n+1}\ln^{p\lambda_{2}-1}(V_{n}-\beta )}{(\varpi (\lambda_{1},n))^{p-1}(V_{n}-\beta)} \Biggl[ \sum _{m=2}^{\infty}\frac {a_{m}}{\ln^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]} \Biggr] ^{p-1},\quad n \in\mathbf{N}\backslash\{1\}. \end{aligned}$$
(28)

Then we have \(J^{p}=\|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q}\). If \(J=0\), then (24) is trivially valid; if \(J=\infty\), then in view of (26), (24) takes the form of an equality. Suppose that \(0< J<\infty\). By (23), we obtain

$$\begin{aligned}& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q} =J^{p}=I\leq\|a\|_{p,\widetilde{\Phi}_{\lambda}} \|b\|_{q,\widetilde{\Psi}_{\lambda}}, \end{aligned}$$
(29)
$$\begin{aligned}& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q-1} =J\leq \|a\|_{p,\widetilde{\Phi}_{\lambda}}, \end{aligned}$$
(30)

namely, (24) follows, which is equivalent to (23). □

Theorem 2

Assuming that \(\{\mu_{m}\}_{m=1}^{\infty}\) and \(\{\upsilon _{n}\}_{n=1}^{\infty}\) are decreasing, \(U(\infty)=V(\infty)=\infty\), \(0<\|a\|_{p,\Phi_{\lambda}},\|b\|_{q,\Psi_{\lambda }}<\infty\), we have the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]}< B(\lambda_{1}, \lambda _{2})\|a\|_{p,\Phi _{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(31)
$$\begin{aligned}& \begin{aligned}[b] J_{1} :={}& \Biggl\{ \sum_{n=2}^{\infty} \frac{\upsilon_{n+1}\ln ^{p\lambda _{2}-1}(V_{n}-\beta)}{V_{n}-\beta} \\ &{} \times \Biggl[ \sum_{m=2}^{\infty} \frac{a_{m}}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} < B( \lambda_{1},\lambda_{2})\|a\|_{p,\Phi_{\lambda}}, \end{aligned} \end{aligned}$$
(32)

where the constant factor \(B(\lambda_{1},\lambda_{2})\) is the best possible.

Proof

Applying (14) and (15) in (23) and (24), we have the equivalent inequalities (31) and (32).

For \(\varepsilon\in(0,p\lambda_{1})\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p}\) (\(\in(0,1)\)), \(\widetilde{\lambda} _{2}=\lambda_{2}+\frac{\varepsilon}{p}\) (>0), and

$$ \widetilde{a}_{m} :=\frac{\mu_{m+1}}{U_{m}-\alpha}\ln^{\widetilde{\lambda}_{1}-1}(U_{m}- \alpha),\qquad \widetilde{b}_{n} :=\frac{\upsilon_{n+1}}{V_{n}-\beta}\ln^{\widetilde {\lambda}_{2}-\varepsilon-1}(V_{n}- \beta). $$
(33)

Then by (20), (21), and (17), we obtain

$$\begin{aligned}& \begin{aligned}[b] &\|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\Psi _{\lambda }}\\ &\quad= \Biggl[ \sum_{m=2}^{\infty}\frac{\mu_{m+1}}{(U_{m}-\alpha)\ln ^{1+\varepsilon}(U_{m}-\alpha)} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=2}^{\infty} \frac{\upsilon_{n+1}}{(V_{n}-\beta )\ln ^{1+\varepsilon}(V_{n}-\beta)} \Biggr] ^{\frac{1}{q}} \\ &\quad=\frac{1}{\varepsilon} \biggl[ \frac{1}{\ln^{\varepsilon}(1+\mu _{2}-\alpha)}+\varepsilon O(1) \biggr] ^{\frac{1}{p}} \biggl[ \frac{1}{\ln ^{\varepsilon}(1+\upsilon_{2}-\beta)}+\varepsilon\widetilde {O}(1) \biggr] ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} :={}&\sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac {\widetilde{a}_{m}\widetilde{b}_{n}}{\ln^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]} \\ ={}&\sum_{n=2}^{\infty} \Biggl[ \sum _{m=2}^{\infty}\frac{1}{\ln^{\lambda }[(U_{m}-\alpha)(V_{n}-\beta)]}\frac{\mu_{m+1}\ln^{\widetilde {\lambda}_{2}}(V_{n}-\beta)}{(U_{m}-\alpha)\ln^{1-\widetilde{\lambda}_{1}}(U_{m}-\alpha)} \Biggr] \\ &{}\times\frac{\upsilon_{n+1}}{(V_{n}-\beta)\ln^{\varepsilon +1}(V_{n}-\beta)} =\sum_{n=2}^{\infty} \varpi(\widetilde{\lambda}_{1},n)\frac{\upsilon _{n+1}}{(V_{n}-\beta)\ln^{\varepsilon+1}(V_{n}-\beta)} \\ \geq{}&B(\widetilde{\lambda}_{1},\widetilde{\lambda}_{2}) \Biggl[ \sum_{n=2}^{\infty}\frac{\upsilon_{n+1}}{(V_{n}-\beta)\ln ^{\varepsilon +1}(V_{n}-\beta)}\\ &{}- \sum_{n=2}^{\infty}O\biggl( \frac{\upsilon_{n+1}}{(V_{n}-\beta)\ln ^{\lambda_{1}+\frac{\varepsilon}{q}+1}(V_{n}-\beta)}\biggr) \Biggr]\\ ={}&\frac{1}{\varepsilon}B(\widetilde{\lambda}_{1},\widetilde{\lambda }_{2}) \biggl[ \frac{1}{\ln^{\varepsilon}(1+\upsilon_{2}-\beta )}+\varepsilon \bigl(\widetilde{O}(1)-O(1)\bigr) \biggr]. \end{aligned} \end{aligned}$$

If there exists a positive constant \(K\leq B(\lambda_{1},\lambda_{2})\), such that (31) is valid when replacing \(B(\lambda_{1},\lambda_{2})\) by K, then in particular, we have \(\varepsilon\widetilde {I}<\varepsilon K\|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\Psi _{\lambda }}\), namely

$$\begin{aligned} &B\biggl(\lambda_{1}-\frac{\varepsilon}{p},\lambda_{2}+ \frac{\varepsilon }{p}\biggr) \biggl[ \frac{1}{\ln^{\varepsilon}(1+\upsilon_{2}-\beta )}+\varepsilon \bigl(\widetilde{O}(1)-O(1)\bigr) \biggr] \\ &\quad< K \biggl[ \frac{1}{\ln^{\varepsilon}(1+\mu_{2}-\alpha )}+\varepsilon O(1) \biggr] ^{\frac{1}{p}} \biggl[ \frac{1}{\ln^{\varepsilon}(1+\upsilon _{2}-\beta)}+\varepsilon\widetilde{O}(1) \biggr] ^{\frac{1}{q}}. \end{aligned}$$

It follows that \(B(\lambda_{1},\lambda_{2})\leq K(\varepsilon \rightarrow 0^{+})\). Hence, \(K=B(\lambda_{1},\lambda_{2})\) is the best possible constant factor of (31).

Similarly, we can obtain

$$ I\leq J_{1}\|b\|_{q,\Psi_{\lambda}}. $$
(34)

Hence, we can prove that the constant factor \(B(\lambda_{1},\lambda_{2})\) in (32) is the best possible. Otherwise, we would reach a contradiction by (34) that the constant factor in (31) is not the best possible. □

We find \(\Psi_{\lambda}^{1-p}(n)=\frac{\upsilon_{n+1}}{V_{n}-\beta }\ln ^{p\lambda_{2}-1}(V_{n}-\beta)\), and we define the following weighted normed spaces:

$$\begin{aligned}& l_{p,\Phi_{\lambda}} :=\bigl\{ a=\{a_{m}\}_{m=2}^{\infty}; \|a\|_{p,\Phi _{\lambda}}< \infty\bigr\} , \\& l_{q,\Psi_{\lambda}} :=\bigl\{ b=\{b_{n}\}_{n=2}^{\infty}; \|b\|_{q,\Psi _{\lambda}}< \infty\bigr\} , \\& l_{p,\Psi_{\lambda}^{1-p}} :=\bigl\{ c=\{c_{n}\}_{n=2}^{\infty }; \|c\|_{p,\Psi _{\lambda}^{1-p}}< \infty\bigr\} . \end{aligned}$$

Assuming that \(a=\{a_{m}\}_{m=2}^{\infty}\in l_{p,\Phi_{\lambda}}\), setting

$$ c=\{c_{n}\}_{n=2}^{\infty},\qquad c_{n}:=\sum _{m=2}^{\infty}\frac{a_{m}}{\ln ^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]},\quad n\in\mathbf{N} \backslash\{ 1\}, $$

we can rewrite (32) as follows:

$$ \|c\|_{p,\Psi_{\lambda}^{1-p}}< B(\lambda_{1},\lambda _{2})\|a \|_{p,\Phi _{\lambda}}< \infty, $$

namely, \(c\in l_{p,\Psi_{\lambda}^{1-p}}\).

Definition 1

Define a Hardy-Mulholland-type operator \(T:l_{p,\Phi _{\lambda}}\rightarrow l_{p,\Psi_{\lambda}^{1-p}}\) as follows: For any \(a=\{a_{m}\}_{m=2}^{\infty}\in l_{p,\Phi_{\lambda}}\), there exists a unique representation \(Ta=c\in l_{p,\Psi_{\lambda}^{1-p}}\). We set the formal inner product of Ta and \(b=\{b_{n}\}_{n=2}^{\infty}\in l_{q,\Psi _{\lambda}}\) as follows:

$$ (Ta,b):=\sum_{n=2}^{\infty} \Biggl[ \sum _{m=2}^{\infty}\frac{a_{m}}{\ln ^{\lambda}[(U_{m}-\alpha)(V_{n}-\beta)]} \Biggr] b_{n}. $$
(35)

Then we can rewrite (31) and (32) as follows:

$$\begin{aligned}& (Ta,b) < B(\lambda_{1},\lambda_{2})\|a\|_{p,\Phi_{\lambda }} \|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(36)
$$\begin{aligned}& \|Ta\|_{p,\Psi_{\lambda}^{1-p}} < B(\lambda_{1},\lambda _{2})\|a \|_{p,\Phi_{\lambda}}. \end{aligned}$$
(37)

We set the norm of operator T as follows:

$$ \|T\|:=\sup_{a(\neq\theta)\in l_{p,\Phi_{\lambda}}}\frac {\|Ta\|_{p,\Psi _{\lambda}^{1-p}}}{\|a\|_{p,\Phi_{\lambda}}}. $$

By (37), we find \(\|T\|\leq B(\lambda_{1},\lambda_{2})\). Since the constant factor in (37) is the best possible, it follows that \(\|T\|=B(\lambda_{1},\lambda_{2})\).

Remark 1

(i) For \(\alpha=\beta=0\) in (31) and (32), setting

$$ \varphi_{\lambda}(m):=\frac{(\ln U_{m})^{p(1-\lambda_{1})-1}}{U_{m}^{1-p}\mu_{m+1}^{p-1}},\qquad\psi_{\lambda}(n):= \frac{(\ln V_{n})^{q(1-\lambda_{2})-1}}{V_{n}^{1-q}\upsilon_{n+1}^{q-1}} \quad \bigl(m,n\in \mathbf{N}\backslash\{1\}\bigr), $$

we have the following equivalent Hardy-Mulholland-type inequalities:

$$\begin{aligned}& \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln^{\lambda }(U_{m}V_{n})}< B(\lambda_{1}, \lambda_{2})\|a\|_{p,\varphi_{\lambda }}\|b\|_{q,\psi_{\lambda}}, \end{aligned}$$
(38)
$$\begin{aligned}& \Biggl\{ \sum_{n=2}^{\infty}\frac{\upsilon_{n+1}}{V_{n}} \ln^{p\lambda _{2}-1}V_{n} \Biggl[ \sum_{m=2}^{\infty} \frac{a_{m}}{\ln^{\lambda }(U_{m}V_{n})} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< B( \lambda_{1},\lambda _{2})\|a\|_{p,\varphi_{\lambda}}. \end{aligned}$$
(39)

For \(\lambda=1\), \(\lambda_{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\) in (38) and (39), we have the following equivalent inequality:

$$\begin{aligned}& \sum_{n=2}^{\infty}\sum _{m=2}^{\infty}\frac{a_{m}b_{n}}{\ln (U_{m}V_{n})}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl[ \sum_{m=2}^{\infty}\biggl( \frac{U_{m}}{\mu_{m+1}}\biggr)^{p-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum_{n=2}^{\infty}\biggl( \frac{V_{n}}{\upsilon_{n+1}}\biggr)^{q-1}b_{n}^{q} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(40)
$$\begin{aligned}& \Biggl\{ \sum_{n=2}^{\infty}\frac{\upsilon_{n+1}}{V_{n}} \Biggl[ \sum_{m=2}^{\infty}\frac{a_{m}}{\ln(U_{m}V_{n})} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl[ \sum _{m=2}^{\infty }\biggl(\frac{U_{m}}{\mu_{m+1}} \biggr)^{p-1}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(41)

Hence, (38) is an extension of (40), and (31) is a more accurate inequality of (38) (for \(0<\alpha\leq\frac {\mu_{2}}{2}\), \(0<\beta\leq\frac{\upsilon_{2}}{2}\)).

(ii) For \(\mu_{i}=\upsilon_{j}=1 \) (\(i,j\in\mathbf{N}\)), \(\lambda =1\), \(\lambda _{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\) in (31), we reduce our case to the following inequality: For \(\alpha,\beta\leq\frac{1}{2}\),

$$\begin{aligned} &\sum_{m=2}^{\infty}\sum _{n=2}^{\infty}\frac{a_{m}b_{n}}{\ln [(m-\alpha )(n-\beta)]} \\ &\quad< \frac{\pi}{\sin(\pi/p)} \Biggl[ \sum_{m=2}^{\infty} \frac {a_{m}^{p}}{(m-\alpha)^{1-p}} \Biggr] ^{\frac{1}{p}} \Biggl[ \sum _{n=2}^{\infty}\frac {b_{n}^{q}}{(n-\beta)^{1-q}} \Biggr] ^{\frac{1}{q}}, \end{aligned}$$
(42)

Hence, (42) is a more accurate inequality of (3) (for \(0<\alpha,\beta\leq\frac{1}{2}\)).