1 Introduction

The homotopy operator T and projection operator H defined on differential forms are two critical operators which have been very well studied and used in recent years, see [17]. In many situations, we need to deal with the composition \(T\circ H \) of the homotopy operator T and the projection operator H. For example, when we consider the decomposition of \(H(u)\), we have to face the composition \(T\circ H \). The study of the composition \(T \circ H\) of homotopy and projection operators was initiated by Ding and Liu in 2009 in [5] and [6], respectively, where they investigated singular integrals of this composite operator and established some \(L^{p}\) inequalities for the composite operator \(T \circ H\) with singular factors. Later, in 2011, Bi and Ding proved some \(L^{\varphi}\)-estimates for this composite operator \(T \circ H\) in [7], where φ satisfies the \(G(p, q, C)\) condition. The purpose of this paper is to establish the \(L^{\varphi}\)-embedding theorems for the composition \(T \circ H\) applied to differential forms, here φ satisfies the \(NG(p, q)\) condition. If we choose \(\varphi(t)= t^{p}\), the \(L^{\varphi}\)-norm inequalities reduce to \(L^{p}\)-norm inequalities. Our main \(L^{\varphi}\)-embedding inequality for the composite operator can be simply stated as

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega} \bigr\| _{W^{1, \varphi} (\Omega)} \leq C \|u \|_{L^{\varphi}(\Omega )}, $$
(1.1)

where Ω is any bounded domain in \(\mathbb{R}^{n}\), \(n \geq2\), \(\varphi: [0, \infty) \to[0, \infty)\) with \(\varphi(0)= 0\) is a Young function satisfying certain conditions described later, and C is a constant independent of the differential form u. In order to establish the above main \(L^{\varphi}\)-embedding inequality, we also prove the Poincaré inequality and some inequalities with \(L^{\varphi}\)-norm for the related compositions of operators.

We keep using the traditional notations throughout this paper. Let B and σB be the balls with the same center and \(\operatorname{diam}(\sigma B) = \sigma\operatorname{diam}(B)\). Let \(|E|\) be the n-dimensional Lebesgue measure of a set E\(\mathbb{R}^{n}\). In this paper, we treat a ball same as a cube and use \(u_{B}=\frac{1}{|B|} \int_{B} u \,dx\) to denote the average of a function u. Let \(\wedge^{l} = \wedge^{l} (\mathbb{R}^{n})\) be the set of all l-forms in \(\mathbb{R}^{n}\), \(D'(\Omega, \wedge^{l})\) be the space of all differential l-forms in Ω, and \(L^{p}(\Omega, \wedge^{l}) \) be the l-forms \(u(x)= \sum_{I} u_{I}(x)\,dx_{I} \) in Ω satisfying \(\int_{\Omega}|u_{I}|^{p} < \infty\) for all ordered l-tuples I, \(l=1, 2, \ldots, n\). We denote the exterior derivative by d and the Hodge star operator by ⋆.

The definition of the operator \(K_{y}\) with the case \(y =0\) and its generalized version can be found in [8, 9]. To each \(y \in\Omega \) there corresponds a linear operator \(K_{y}: C^{\infty}(\Omega, \wedge^{l}) \to C^{\infty}(\Omega,\wedge^{l-1})\) defined by \((K_{y} \omega)(x; \xi_{1}, \ldots, \xi_{l-1})=\int_{0}^{1}t^{l-1}\omega (tx+y-ty;x-y, \xi_{1},\ldots,\xi_{l-1})\,dt\) and the decomposition \(\omega= d(K_{y}\omega) + K_{y}(d \omega)\). A homotopy operator \(T: C^{\infty}(\Omega, \wedge^{l}) \to C^{\infty}(\Omega ,\wedge^{l-1})\) is defined by averaging \(K_{y}\) over all points \(y \in \Omega\): \(T\omega= \int_{\Omega}\phi(y)K_{y}\omega\,dy\), where \(\phi\in C_{0}^{\infty}(\Omega)\) is normalized so that \(\int\phi (y)\,dy=1\). For each differential form u, we have the decomposition

$$ u= d(Tu) + T(du) $$
(1.2)

and

$$ \bigl\| \nabla(T u) \bigr\| _{p, B} \leq C |B| \|u \|_{p, B}\quad \mbox{and}\quad \|Tu\|_{p, B} \leq C |B| \operatorname{diam} (B) \|u \|_{p, B}. $$
(1.3)

From [10], p.16, we know that any open subset Ω in \(\mathbb{R}^{n}\) is the union of a sequence of cubes \(Q_{k}\), whose sides are parallel to the axes, whose interiors are mutually disjoint, and whose diameters are approximately proportional to their distances from F, where F is the complement of Ω in \(\mathbb{R}^{n}\). Specifically, (i) \(\Omega= \bigcup_{k=1}^{\infty}Q_{k}\), (ii) \(Q^{0}_{j} \cap Q^{0}_{k} = \phi\) if \(j \neq k\), (iii) there exist two constants \(c_{1}, c_{2} >0\) (we can take \(c_{1}=1\), and \(c_{2}=4\)), so that \(c_{1} \operatorname{diam} (Q_{k}) \leq\operatorname{distance} (Q_{k}, F) \leq c_{2}\operatorname{diam}(Q_{k})\). Thus, the definition of the homotopy operator T can be generalized to any domain Ω in \(\mathbb{R}^{n}\): For any \(x \in\Omega\), \(x \in Q_{k}\) for some k. Let \(T_{Q_{k}}\) be the homotopy operator defined on \(Q_{k}\) (each cube is bounded and convex). Thus, we can define the homotopy operator \(T_{\Omega}\) on any domain Ω by \(T_{\Omega}= \sum_{k=1}^{\infty}T_{Q_{k}} {\chi_{Q_{k}}(x)}\). The nonlinear partial differential equation for differential forms

$$ d^{\star} A(x, d u) = B(x, du) $$
(1.4)

is called a non-homogeneous A-harmonic equation, where \(A: \Omega\times\wedge^{l}(\mathbb{R}^{n}) \to\wedge^{l}(\mathbb{R}^{n})\) and \(B: \Omega\times\wedge^{l}(\mathbb{R}^{n}) \to\wedge^{l-1}(\mathbb{R}^{n})\) satisfy the conditions:

$$ \bigl|A(x, \xi)\bigr| \leq a|\xi|^{p-1},\qquad A(x, \xi) \cdot \xi\geq| \xi|^{p} \quad\mbox{and} \quad\bigl|B(x, \xi)\bigr| \leq b | \xi|^{p-1} $$
(1.5)

for \(x \in\Omega\) a.e. and all \(\xi\in\wedge^{l} (\mathbb{R}^{n})\). Here \(p>1\) is a constant related to the equation (1.4), and \(a, b >0\). See [1117] for recent results on the A-harmonic equations and related topics. Assume that \(\wedge^{l} \Omega\) is the lth exterior power of the cotangent bundle, \(C^{\infty}(\wedge^{l} \Omega)\) is the space of smooth l-forms on Ω and \(\mathcal{W}(\wedge^{l} \Omega)= \{u \in L^{1}_{\mathrm{loc}}(\wedge^{l} \Omega):u\mbox{ has generalized gradient}\}\). The harmonic l-fields are defined by \(\mathcal{H} (\wedge^{l} \Omega) = \{ u \in\mathcal{W}(\wedge^{l} \Omega): d u = d^{\star}u=0, u \in L^{p}\mbox{ for some }1 < p < \infty\}\). The orthogonal complement of \(\mathcal{H}\) in \(L^{1}\) is defined by \(\mathcal{H}^{\perp} = \{u \in L^{1}: \langle u, h\rangle=0 \mbox{ for all }h \in\mathcal {H}\}\). Then the Green’s operator G is defined as \(G: C^{\infty }(\wedge^{l} \Omega) \to\mathcal{H}^{\perp} \cap C^{\infty}(\wedge^{l} \Omega)\) by assigning \(G(u)\) be the unique element of \(\mathcal {H}^{\perp} \cap C^{\infty}(\wedge^{l} \Omega)\) satisfying Poisson’s equation \(\Delta G(u)= u - H(u)\), where H is the harmonic projection operator that maps \(C^{\infty }(\wedge^{l} \Omega)\) onto \(\mathcal {H}\) so that \(H(u)\) is the harmonic part of u. See [18] for more properties of these operators.

2 Local embedding theorem

The purpose of this section is to prove the local \(L^{\varphi}\)-embedding theorem and some related \(L^{\varphi}\)-norm inequalities that will be used to prove the global embedding theorem in the next section. We first recall the following subclass of Young functions that can be found in [1921].

Definition 2.1

A Young function \(\varphi: [0, \infty ) \longrightarrow[0, \infty)\) is said to be in the class \(NG(p, q)\) if φ satisfies the nonstandard growth condition

$$ p\varphi(t)\leq t\varphi'(t)\leq q\varphi(t) , \quad1< p \leq q < \infty. $$
(2.1)

The first inequality in (2.1) is equivalent to that \(\frac {\varphi(t)}{t^{p}}\) is increasing, and the second inequality in (2.1) is equivalent to △2-condition, i.e., for each \(t>0\), \(\varphi (2t)\leq K \varphi(t)\), where \(K>1\), and \(\frac{\varphi(t)}{t^{q}}\) is decreasing with t. Also, condition (2.1) implies that \(\varphi(t)\) satisfies

$$ c_{1} t^{p} -c_{2} \leq\varphi(t) \leq c_{3} \bigl(t^{q}+1\bigr). $$
(2.2)

Particularly, \(\varphi(t)=t^{p}\) satisfies (2.1) because of \(t\varphi '(t)=p\varphi(t)\), and this makes inequalities with the norm \(\|\cdot \|_{p}\) become a special case of Theorem 2.5; for more details see [19] and [20].

An Orlicz function is a continuously increasing function \(\varphi: [0, \infty) \to[0, \infty)\) with \(\varphi(0)= 0\). The Orlicz space \(L^{\varphi}(\Omega)\) consists of all measurable functions f on Ω such that \(\int_{\Omega}\varphi(\frac{|f|}{\lambda} )\,dx < \infty\) for some \(\lambda=\lambda(f) >0\). \(L^{\varphi}(\Omega)\) is equipped with the nonlinear Luxemburg functional

$$\|f \|_{L^{\varphi}(\Omega)} = \inf\biggl\{ \lambda>0: \int _{\Omega}\varphi\biggl(\frac{|f|}{\lambda} \biggr)\,dx \leq1 \biggr\} . $$

A convex Orlicz function φ is often called a Young function. If φ is a Young function, then \(\| \cdot\|_{L^{\varphi}(\Omega)}\) defines a norm in \(L^{\varphi}(\Omega )\), which is called the Luxemburg norm or Orlicz norm. For any subset \(E \subset \mathbb{R}^{n}\), we use \(W^{1, \varphi}(E, \wedge^{l})\) to denote the Orlicz-Sobolev space of l-forms which equals \(L^{\varphi}(E, \wedge^{l}) \cap L_{1}^{\varphi}(E, \wedge^{l})\) with norm

$$ \|u \|_{W^{1, \varphi}(E)} = \|u \|_{W^{1, \varphi}(E, \wedge^{l})} = \operatorname{diam} (E)^{-1} \|u \|_{L^{\varphi}(E)} + \|\nabla u \|_{L^{\varphi}(E)}. $$
(2.3)

If we choose \(\varphi(t) = t^{p}\), \(p >1\) in (2.3), we obtain the usual \(L^{p}\)-norm for \(W^{1, p}(E, \wedge^{l})\)

$$ \|u \|_{W^{1, p}(E)} = \|u \|_{W^{1, p}(E, \wedge^{l})} = \operatorname{diam} (E)^{-1} \|u \|_{p, E} + \|\nabla u \|_{p, E}. $$
(2.4)

Next, we recall some lemmas that will be used in this paper.

Lemma 2.2

[9]

Let \(u\in D'(B, \wedge^{l})\) and \(du \in L^{p}(B, \wedge^{l+1})\). Then \(u-u_{B} \in L^{\frac{np}{n-p}} (B, \wedge^{l})\), and

$$ \biggl(\int_{B} |u-u_{B}|^{\frac{np}{n-p}}\,dx \biggr)^{\frac{n-p}{np}} \leq c(n,p) \biggl( \int_{B} |du|^{p} \,dx \biggr)^{\frac{1}{p}} $$
(2.5)

for B is a ball or cube in Ω, \(l=0,1,\ldots,n-1\) and \(1< p< n\).

Lemma 2.3

[19]

Suppose φ is a continuous function in the class \(NG(p, q)\) with \(q(n-p)< np\), \(1< p \leq q < \infty\). For any \(t>0\), setting

$$ A(t)= \int_{0}^{t} \biggl(\frac{\varphi(s^{1/q})}{s} \biggr)^{\frac{n+q}{q}}\,ds, \qquad K(t)= \frac{( \varphi(t^{1/q}) )^{\frac{n+q}{q}}}{t^{n/q}}. $$
(2.6)

Then \(A(t)\) is a concave function, and there exists a constant C, such that

$$ K(t)\leq A(t) \leq CK(t),\quad \forall t>0. $$
(2.7)

Lemma 2.4

[1]

Let u be a differential form satisfying the non-homogeneous A-harmonic equation (1.4) in Ω, \(\sigma>1\) and \(0 < s, t < \infty\). Then, there exists a constant C, independent of u, such that \(\|u \|_{s, B}\leq C|B|^{(t-s)/st} \|u \|_{t,\sigma B} \) for all balls or cubes B with \(\sigma B \subset\Omega\).

We are ready to state our main local \(L^{\varphi}\)-embedding theorem as follows, which will be used to prove the global \(L^{\varphi}\)-embedding theorem in the next section.

Theorem 2.5

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\). Ω be a bounded domain, \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator and H be the projection operator. If \(\varphi (|u|) \in L^{1}_{\mathrm{loc}}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr\| _{W^{1, \varphi} (B, \wedge^{l})} \leq C |B| \| u \|_{L^{\varphi}(\sigma B)} $$
(2.8)

for all balls B with \(\sigma B \subset\Omega\), where \(\sigma>1 \) is a constant.

In order to prove the above local \(L^{\varphi}\)-embedding theorem, we need to prove some local \(L^{\varphi}\)-norm inequalities. We begin with the following Poincaré-type inequality with \(L^{\varphi}\)-norm first.

Theorem 2.6

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\), Ω be a bounded domain, \(u \in L^{p}(\Omega, \wedge^{l})\), T be the homotopy operator and H be the projection operator. If \(\varphi (|u|) \in L^{1}_{\mathrm{loc}}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr\| _{L^{\varphi}( B)} \leq C |B| \|u \| _{L^{\varphi}( B)} $$
(2.9)

for all balls \(B\subset\Omega\).

Proof

First, we consider the case \(1 < p <n\). By assumption, we have \(q < \frac{np}{n-p}\). Using the Poincaré-type inequality, Lemma 2.2 to differential forms \(T(H(u))\)

$$ \biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B} \bigr| ^{np/(n-p)}\,dx \biggr)^{(n-p)/np} \leq C_{1} \biggl( \int_{ B} \bigl|d\bigl(T\bigl(H(u)\bigr) \bigr)\bigr|^{p} \,dx \biggr)^{1/p}, $$
(2.10)

we find that

$$ \biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B}\bigr| ^{q}\,dx \biggr)^{1 / q} \leq C_{2} \biggl( \int_{B} \bigl|d\bigl(T\bigl(H(u)\bigr) \bigr)\bigr|^{p} \,dx \biggr)^{1/p}. $$
(2.11)

It is well known that, for any differential form u, \(d(T(u))=u_{B}\) and \(\|u_{B} \|_{p, B} \leq C_{3} \|u \|_{p, B}\). Hence,

$$ \biggl( \int_{ B} \bigl|d\bigl(T\bigl(H(u)\bigr) \bigr)\bigr|^{p} \,dx \biggr)^{1/p} \leq C_{4} \biggl( \int _{ B} \bigl|H(u)\bigr|^{p} \,dx \biggr)^{1/p}. $$
(2.12)

Note that

$$\bigl\| \Delta G(u) \bigr\| _{p, B} = \bigl\| \bigl(d^{\star}d + d d^{\star}\bigr) G(u) \bigr\| _{p, B} \leq C_{5} \|u \|_{p, B}. $$

We have

$$\begin{aligned} \bigl\| H(u)\bigr\| _{p, B} &= \bigl\| u - \Delta G(u) \bigr\| _{p, B} \\ &\leq\|u \|_{p, B} + \bigl\| \Delta G(u) \bigr\| _{p, B} \\ &\leq C_{6} \|u\|_{p, B}. \end{aligned}$$
(2.13)

Combining (2.11), (2.12), and (2.13), we obtain

$$ \biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B}\bigr| ^{q}\,dx \biggr)^{1 / q} \leq C_{7} \biggl( \int_{ B} |u|^{p} \,dx \biggr)^{1/p} $$
(2.14)

for \(1 < p <n\). Next, for the case of \(p \geq n\), since the \(L^{p}\)-norm of \(|T(H(u))- (T(H(u)))_{B}|\) increases with p and \(\frac{np}{n-p} \to \infty\) as \(p \to n\). Then, there exists \(1 < p_{0} <n\) such that \(q < \frac{np_{0} }{ n-p_{0}} \). Hence, it follows that

$$\begin{aligned} & \biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{B}\bigr| ^{q}\,dx \biggr)^{1 / q} \\ &\quad\leq\biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{B} \bigr| ^{n{p_{0}}/(n-{p_{0}} )}\,dx \biggr)^{(n-p_{0})/np_{0}} \\ & \quad\leq C_{8} \biggl( \int_{ B} \bigl|d\bigl(T \bigl(H(u)\bigr)\bigr)\bigr|^{p_{0}}\,dx \biggr)^{1/p_{0}} \\ &\quad\leq C_{9} \biggl( \int_{ B} \bigl|d\bigl(T \bigl(H(u)\bigr)\bigr)\bigr|^{p}\,dx \biggr)^{1/p} \\ &\quad\leq C_{10} \biggl( \int_{ B} |u|^{p}\,dx \biggr)^{1/p}. \end{aligned}$$
(2.15)

Hence, from (2.14) and (2.15), we obtain

$$ \biggl(\int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B}\bigr| ^{q}\,dx \biggr)^{1 / q} \leq C_{10} \biggl( \int_{B} |u|^{p} \,dx \biggr)^{1/p} $$
(2.16)

for any \(p>1\). Using the Hölder inequality with \(1= \frac{q}{ n+q}+ \frac{n }{{n+q}}\), we obtain

$$\begin{aligned} &\int_{B} \varphi\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{B} \bigr| \bigr)\,dx \\ &\quad= \int_{B} \frac{ \varphi(|T(H(u))- (T(H(u)))_{B} | ) }{ |T(H(u))- (T(H(u)))_{B}|^{\frac{nq}{{n+q}}}} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B}\bigr|^{\frac{nq}{{n+q}}}\,dx \\ &\quad\leq\biggl( \int_{B} \frac{{\varphi (|T(H(u))-(T(H(u)))_{B}|)}^{\frac{n+q}{q}} }{|T(H(u))-(T(H(u)))_{B}|^{n}}\,dx \biggr)^{\frac{q}{{n+q}}}\\ &\qquad{}\times{ \biggl( \int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}}. \end{aligned}$$

Applying Lemma 2.3 and noticing \(A(t)\) is a concave function, we obtain

$$\begin{aligned} &\int_{B} \varphi\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr| \bigr)\,dx \\ &\quad\leq\biggl(\int_{B} K\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr|^{q}\bigr)\,dx \biggr)^{\frac{q}{n+q}} { \biggl( \int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad\leq\biggl(\int_{B} A\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr|^{q}\bigr)\,dx \biggr)^{\frac{q}{n+q}} { \biggl( \int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad\leq A^{\frac{q}{n+q}} \biggl(\int_{B} \bigl(\bigl|T \bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr|^{q} \bigr)\,dx \biggr) { \biggl( \int_{B} \bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad\leq C_{1}(n, q) K^{\frac{q}{n +q}} \biggl(\int _{B} \bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B} \bigr|^{q}\bigr)\,dx \biggr) \\ &\qquad{}\times{\biggl( \int _{B} \bigl|T\bigl(H(u)\bigr)-\bigl(T\bigl(H(u)\bigr) \bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad= C_{1}(n, q) \frac{\varphi( (\int_{B} (|T(H(u))- (T(H(u)))_{B} |^{q})\,dx )^{1/q} )}{ (\int_{B} (|T(H(u))- (T(H(u)))_{B} |^{q})\,dx )^{\frac{n}{ n+q} }} \\ &\qquad{}\times{ \biggl( \int _{B} \bigl|T\bigl(H(u)\bigr)-\bigl(T\bigl(H(u)\bigr) \bigr)_{B}\bigr|^{q} \,dx \biggr)}^{\frac{n }{{n+q} }} \\ & \quad= C_{1}(n, q) \varphi\biggl( \biggl(\int_{B} \bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{B} \bigr|^{q}\bigr)\,dx \biggr)^{1/q} \biggr). \end{aligned}$$
(2.17)

Note that φ is increasing and satisfies \(\Delta_{2}\)-condition, substituting (2.16) into (2.17) gives

$$ \int_{B} \varphi\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{B} \bigr| \bigr)\,dx \leq C_{11} \varphi \biggl( \biggl( \int_{ B} |u|^{p} \,dx \biggr)^{1/p} \biggr). $$
(2.18)

Let \(h(t)= \int_{0}^{t} \frac{\varphi(s) }{ s}\,ds\). From (2.1) we know that \(\varphi(t)/t^{q}\) is decreasing with t, thus,

$$h(t) = \int_{0}^{t} \frac{\varphi(s) }{ s}\,ds = \int _{0}^{t} \frac{\varphi(s) }{ s^{q}}s^{q-1}\,ds \geq \varphi(t)/t^{q} \frac{1}{q} s^{q} \bigg|_{0}^{t} = \frac{1}{q} \varphi(t). $$

Similarly, using the fact that \(\varphi(t)/t^{p}\) is increasing with t, we have \(h(t) \leq\frac{1}{p} \varphi(t)\). Therefore,

$$ \frac{1}{q} \varphi(t) \leq h(t) \leq\frac{1}{p} \varphi(t). $$
(2.19)

Let \(g(t)=h(t^{1/p})\), then \(( h(t^{1/p}) )' = \frac{1}{p} \frac{\varphi(t^{1/p})}{t}\) is increasing. Hence, g is a convex function. From the definitions of g and h and using Jensen’s inequality to g, we have

$$ h \biggl( \biggl(\int_{B} |u|^{p} \,dx \biggr)^{1/p} \biggr) = g \biggl(\int_{B} |u|^{p} \,dx \biggr) \leq\int_{B} g \bigl(|u|^{p}\bigr)\,dx = \int_{B} h\bigl(|u|\bigr)\,dx. $$
(2.20)

Combining (2.18), (2.19), and (2.20), we have

$$\begin{aligned} &\int_{B} \varphi\bigl(\bigl|T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{B} \bigr| \bigr)\,dx \\ &\quad \leq C_{11} \varphi\biggl( \biggl( \int_{ B} |u|^{p} \,dx \biggr)^{1/p} \biggr) \\ &\quad\leq C_{12} h \biggl( \biggl(\int_{B} |u|^{p} \,dx \biggr)^{1/p} \biggr) \\ &\quad\leq C_{13} \int_{B} h\bigl(|u|\bigr)\,dx \\ &\quad\leq C_{14} \int_{B} \varphi\bigl(|u|\bigr)\,dx, \end{aligned}$$

which indicates (2.9) holds. We have completed the proof of Theorem 2.6. □

Theorem 2.7

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\), Ω be a bounded domain, \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator and H be the projection operator. If \(\varphi (|u|) \in L^{1}_{\mathrm{loc}}(\Omega)\), then there exists a constant C, independent of u, such that

$$\bigl\| TdTH(u)\bigr\| _{L^{\varphi}( B)} \leq C |B| \|u \|_{L^{\varphi}(\sigma B)} $$

for all balls B with \(\sigma B \subset\Omega\), where \(\sigma>1\) is a constant.

Proof

For any differential form u, we have \(\|dT(u)\| _{q, B} = \|u_{B}\|_{q, B} \leq C_{1} \|u\|_{q, B}\). From (1.3) and (2.13), it follows that

$$\begin{aligned} \bigl\| TdTH(u) \bigr\| _{q, B} & \leq C_{2} |B| \operatorname{diam}(B) \bigl\| dTH(u) \bigr\| _{q, B} \\ &= C_{2} |B| \operatorname{diam}(B) \bigl\| H(u) \bigr\| _{q, B} \\ &= C_{3} |B| \operatorname{diam}(B) \|u \|_{q, B}. \end{aligned}$$
(2.21)

By Lemma 2.4 and \(p, q >0\), we have

$$ \|u \|_{q, B} \leq C_{4} |B|^{(p-q)/pq} \|u \|_{p, \sigma B}, $$
(2.22)

where \(\sigma>1\). Combining (2.21) and (2.22) yields

$$ \bigl\| TdTH(u) \bigr\| _{q, B} \leq C_{5} |B|^{(p-q)/pq} \|u \|_{p, \sigma B}. $$
(2.23)

From the Hölder inequality with \(1= \frac{q}{n+q}+ \frac{n}{{n+q}}\), we find that

$$\begin{aligned} &\int_{B} \varphi\bigl(\bigl|TdTH(u)\bigr| \bigr)\,dx \\ &\quad= \int_{B} \varphi\bigl(\bigl|TdTH(u)\bigr| \bigr) \bigl(\bigl|TdTH(u)\bigr| \bigr)^{-\frac{nq}{{n+q}}} \bigl(\bigl|TdTH(u)\bigr| \bigr)^{\frac{nq}{{n+q}}}\,dx \\ &\quad\leq\biggl( \int_{B} \frac{{\varphi(|TdTH(u)|)}^{\frac {n+q}{q}}}{|TdTH(u)|^{n}}\,dx \biggr)^{\frac{q}{{n+q}}} { \biggl( \int_{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}}. \end{aligned}$$

Using Lemma 2.3 and noticing \(A(t)\) is a concave function, we obtain

$$\begin{aligned} &\int_{B} \varphi\bigl(\bigl|TdTH(u) \bigr| \bigr)\,dx \\ &\quad\leq\biggl(\int_{B} K\bigl(\bigl|TdTH(u) \bigr|^{q} \bigr)\,dx \biggr)^{\frac{q}{n +q}} {\biggl( \int_{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q} }} \\ &\quad\leq\biggl(\int_{B} A\bigl(\bigl|TdTH(u) \bigr|^{q} \bigr)\,dx \biggr)^{\frac{q}{n +q}} { \biggl( \int_{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad\leq A^{\frac{q}{n +q}} \biggl(\int_{B} \bigl(\bigl|TdTH(u)\bigr|^{q}\bigr)\,dx \biggr) { \biggl( \int_{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q} }} \\ &\quad\leq C_{6} K^{\frac{q}{n +q}} \biggl(\int_{B} \bigl(\bigl|TdTH(u) \bigr|^{q}\bigr)\,dx \biggr) { \biggl( \int _{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q} }} \\ &\quad= C_{6} \frac{\varphi( (\int_{B} (\bigl|TdTH(u) \bigr|^{q})\,dx )^{1/q} )}{ (\int_{B} (|TdTH(u)|^{q})\,dx )^{\frac{n}{n+q}}} { \biggl( \int_{B} \bigl|TdTH(u)\bigr|^{q} \,dx \biggr)}^{\frac{n}{{n+q}}} \\ &\quad= C_{6} \varphi\biggl( \biggl(\int_{B} \bigl(\bigl|TdTH(u) \bigr|^{q}\bigr)\,dx \biggr)^{1/q} \biggr). \end{aligned}$$
(2.24)

Since φ is increasing and satisfies \(\Delta_{2}\)-condition, substituting (2.23) into (2.24), we have

$$ \int_{B} \varphi\bigl(\bigl|TdTH(u)\bigr| \bigr)\,dx \leq C_{7} \varphi\biggl( \biggl( \int_{ \sigma B} |u|^{p} \,dx \biggr)^{1/p} \biggr). $$
(2.25)

Starting from (2.25) and using the same discussion as we did in the proof of Theorem 2.6, we obtain

$$\int_{B} \varphi\bigl(\bigl|TdTH(u)\bigr| \bigr)\,dx \leq C \int _{\sigma B} \varphi\bigl(|u|\bigr)\,dx. $$

We have completed the proof of Theorem 2.7. □

From (1.3) and (2.13), we have

$$\begin{aligned} \bigl\| \nabla TdTH(u) \bigr\| _{q, B} &\leq C_{1} |B| \bigl\| dTH(u)\bigr\| _{q, B} \\ &= C_{1} |B| \bigl\| \bigl(H(u)\bigr)_{B}\bigr\| _{q, B} \\ & \leq C_{2} |B| \bigl\| H(u)\bigr\| _{q, B} \\ & \leq C_{3} |B| \|u\|_{q, B}. \end{aligned}$$
(2.26)

Using (2.26) and the similar techniques to the ones developed in the proof of Theorem 2.7, we obtain the following \(L^{\varphi}\)-norm estimate.

Theorem 2.8

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\), Ω be a bounded domain, and \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator and H be the projection operator. If \(\varphi (|u|) \in L^{1}_{\mathrm{loc}}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| \nabla TdTH(u) \bigr\| _{L^{\varphi}( B)} \leq C |B| \|u \|_{L^{\varphi}( \sigma B)} $$
(2.27)

for all balls B with \(\sigma B \subset\Omega\), where \(\sigma>1 \) is a constant.

Proof of Theorem 2.5

By definition (2.3), Theorem 2.7 and Theorem 2.8, we have

$$\begin{aligned} &\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{B} \bigr\| _{W^{1, \varphi} (B, \wedge^{l})} \\ &\quad= \bigl\| TdTH(u) \bigr\| _{W^{1, \varphi} (B, \wedge^{l})} \\ &\quad= \operatorname{diam} (B)^{-1} \bigl\| TdTH(u) \bigr\| _{L^{\varphi}(B)} + \bigl\| \nabla TdTH(u) \bigr\| _{L^{\varphi}(B)} \\ &\quad\leq\operatorname{diam} (B)^{-1} C_{1} |B| \operatorname{diam} (B) \|u \|_{L^{\varphi}( \sigma_{1} B)} + C_{2} |B| \|u \|_{L^{\varphi}(\sigma_{2} B)} \\ &\quad\leq C_{3}|B| \|u \|_{L^{\varphi}(\sigma B)}, \end{aligned}$$
(2.28)

where \(\sigma=\max\{ \sigma_{1}, \sigma_{2} \}\). We have completed the proof of Theorem 2.5. □

3 Global embedding theorem

In this section, we prove our main result, the global \(L^{\varphi}\)-embedding theorem for the solutions of the non-homogeneous A-harmonic equation. We will use the following well-known covering lemma.

Lemma 3.1

Each domain Ω has a modified Whitney cover of cubes \(\mathcal{V} = \{Q_{i}\}\) such that

$$\bigcup_{i} Q_{i} = \Omega,\qquad \sum _{Q_{i} \in\mathcal {V}} \chi_{\sqrt{\frac{5}{4}}Q_{i}} \leq N \chi _{\Omega}$$

and some \(N>1\), and if \(Q_{i} \cap Q_{j} \neq\emptyset\), then there exists a cube R (this cube need not be a member of \(\mathcal {V}\)) in \(Q_{i} \cap Q_{j}\) such that \(Q_{i} \cup Q_{j} \subset NR\). Moreover, if Ω is δ-John, then there is a distinguished cube \(Q_{0} \in\mathcal{V}\) which can be connected with every cube \(Q \in\mathcal {V}\) by a chain of cubes \(Q_{0}, Q_{1}, \ldots, Q_{k} = Q\) from \(\mathcal {V}\) and such that \(Q \subset\rho Q_{i}\), \(i = 0, 1, 2, \ldots, k\), for some \(\rho= \rho(n, \delta)\).

We are ready to prove the following global \(L^{\varphi}\)-embedding theorem with the \(L^{\varphi}\)-norm now.

Theorem 3.2

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\), \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator and H be the projection operator. If \(\varphi(|u|) \in L^{1}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega} \bigr\| _{W^{1, \varphi} (\Omega, \wedge^{l})} \leq C \|u \|_{L^{\varphi}(\Omega)} $$
(3.1)

for a bounded domain \(\Omega\subset \mathbb{R}^{n}\).

Proof

From the Lemma 3.1 and Theorem 2.8, we have

$$\begin{aligned} \bigl\| \nabla Td \bigl(T\bigl(H(u)\bigr)\bigr) \bigr\| _{L^{\varphi}(\Omega)} & \leq\sum_{B \in\mathcal {V}} \bigl\| \nabla Td \bigl(T\bigl(H(u)\bigr) \bigr) \bigr\| _{L^{\varphi}(B)} \\ & \leq\sum_{B \in\mathcal {V}} \bigl( C_{1} |B| \|u \|_{L^{\varphi}(\sigma B)} \bigr) \\ & \leq C_{2} N \|u\|_{L^{\varphi}(\Omega)} \\ & \leq C_{3} \|u \|_{L^{\varphi}(\Omega)}. \end{aligned}$$
(3.2)

Similarly, from Theorem 2.7 and Lemma 3.1, it follows that

$$\begin{aligned} \bigl\| Td \bigl(T\bigl(H(u)\bigr)\bigr) \bigr\| _{L^{\varphi}(\Omega)} & \leq\sum _{B \in\mathcal{V}} \bigl\| Td \bigl(T\bigl(H(u)\bigr)\bigr) \bigr\| _{L^{\varphi}(B)} \\ & \leq\sum_{B \in\mathcal{V}} \bigl( C_{4} \operatorname{diam} (B) \|u \|_{L^{\varphi}(\sigma B)} \bigr) \\ & \leq C_{5} \operatorname{diam} (\Omega) N \|u\|_{L^{\varphi}(\Omega)} \\ & \leq C_{6} \operatorname{diam} (\Omega) \|u \|_{L^{\varphi}(\Omega)}. \end{aligned}$$
(3.3)

Using (2.3), (3.2), and (3.3), we find that

$$\begin{aligned} & \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{\Omega}\bigr\| _{W^{1, \varphi} (\Omega)} \\ & \quad= \bigl\| Td\bigl(T\bigl(H(u)\bigr)\bigr) \bigr\| _{W^{1, \varphi} (\Omega)} \\ &\quad= \bigl(\operatorname{diam}(\Omega)\bigr)^{-1} \bigl\| Td \bigl(T \bigl(H(u)\bigr)\bigr) \bigr\| _{L^{\varphi}(\Omega)} + \bigl\| \nabla Td \bigl(T\bigl(H(u)\bigr) \bigr) \bigr\| _{L^{\varphi}(\Omega)} \\ &\quad\leq\bigl(\operatorname{diam}(\Omega)\bigr)^{-1} \bigl(C_{6} \operatorname{diam} (\Omega) \|u \|_{L^{\varphi}(\Omega)} \bigr) + C_{3} \|u \|_{L^{\varphi}(\Omega)} \\ &\quad\leq C_{7} \|u \|_{L^{\varphi}(\Omega)}. \end{aligned}$$
(3.4)

We have completed the proof of Theorem 3.2. □

Choosing \(\varphi(t) = t^{p} \log_{+}^{\alpha}t\) in Theorems 3.2, we have the following embedding inequality with the \(L^{p}(\log_{+}^{\alpha}L)\)-norms.

Corollary 3.3

Let \(\varphi(t) = t^{p} \log_{+}^{\alpha}t\), \(p \geq1\), \(\alpha\in \mathbb{R}\), \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator, and H be the projection operator. If \(\varphi (|u|) \in L^{1}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1, t^{p} \log_{+}^{\alpha}t} (\Omega)} \leq C \|u \|_{L^{t^{p} \log _{+}^{\alpha}t} (\Omega)} $$
(3.5)

for any bounded domain Ω.

Let \(\varphi(t) = t^{p} \) in Theorem 3.2. Then, we obtain the following version of the embedding inequality with \(L^{p}\)-norms.

Corollary 3.4

Let \(\varphi(t) = t^{p} \), \(p \geq1\), \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator, and H be the projection operator. If \(\varphi(|u|) \in L^{1}(\Omega)\), then there exists a constant C, independent of u, such that

$$\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1, p} (\Omega)} \leq C \|u \|_{p, \Omega} $$

holds for any bounded domain Ω.

Similarly, Theorem 2.6 can be extended into the following global Poincaré-type inequality with \(L^{\varphi}\)-norm.

Theorem 3.5

Let φ be a Young function in the class \(NG(p, q)\) with \(q(n-p)< np \), \(1< p \leq q < \infty\), \(u \in L^{p}(\Omega, \wedge^{l})\) be a solution of the non-homogeneous A-harmonic equation, T be the homotopy operator and H be the projection operator. If \(\varphi(|u|) \in L^{1}(\Omega)\), then there exists a constant C, independent of u, such that

$$ \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{L^{\varphi}(\Omega)} \leq C \operatorname{diam}(\Omega) \|u \| _{L^{\varphi}(\Omega)} $$
(3.6)

for any bounded domain Ω.

Proof

From (2.3) and Theorem 3.2, we have

$$\begin{aligned} & \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{L^{\varphi}(\Omega)} \\ &\quad= \operatorname{diam}(\Omega) \bigl( \bigl(\operatorname {diam}(\Omega) \bigr)^{-1} \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{\Omega}\bigr\| _{L^{\varphi}(\Omega)} \bigr) \\ &\quad \leq\operatorname{diam}(\Omega) \bigl( \bigl(\operatorname {diam}(\Omega) \bigr)^{-1} \bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr) \bigr)_{\Omega}\bigr\| _{L^{\varphi}(\Omega)} \\ &\qquad{}+ \bigl\| \nabla\bigl(T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr)\bigr\| _{L^{\varphi}(\Omega)} \bigr) \\ &\quad =C_{1} \operatorname{diam} (\Omega) \bigl\| T\bigl(H(u)\bigr)- \bigl(T \bigl(H(u)\bigr)\bigr)_{\Omega} \bigr\| _{W^{1, \varphi} (\Omega, \wedge^{l})} \\ &\quad\leq C_{2} \operatorname{diam}(\Omega) \|u \|_{L^{\varphi}(\Omega)}. \end{aligned}$$

We have completed the proof of Theorem 3.5. □

4 Applications

As applications of our main results established in the previous sections, we consider the following examples.

Example 4.1

Assume that \(r>0\) and \(k>0\) are any constants and \(\Omega= \{ (x_{1}, x_{2}, x_{3}): x_{1}^{2} + x_{2}^{2} + x_{3}^{2} \leq r^{2}\} \subset \mathbb{R}^{3}\). Consider the 1-form

$$ u(x_{1}, x_{2}, x_{3}) = \frac{x_{1}}{ k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\,dx_{1} +\frac {x_{2}}{k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\,dx_{2} +\frac{x_{3}}{ k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\,dx_{3} $$
(4.1)

defined in Ω. It is easy to check that \(du=0\). Hence, u is a solution of the non-homogeneous A-harmonic equation (1.4) for any operators A and B satisfying (1.5). Also, it can be calculated that

$$\begin{aligned} |u| &= \biggl( \biggl( \frac{x_{1}}{k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \biggr)^{2} + \biggl( \frac{x_{2}}{k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \biggr)^{2} + \biggl( \frac{x_{3}}{k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \biggr)^{2} \biggr)^{1/2} \\ &= \biggl( \frac{x_{1}^{2} + x_{2}^{2} + x_{3}^{2} }{(k + x_{1}^{2} + x_{2}^{2} + x_{3}^{2})^{2} } \biggr)^{1/2} < 1. \end{aligned}$$
(4.2)

Using (4.2) and (3.1), we find that

$$\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1,\varphi}(\Omega)} \leq C_{1}\|u\| _{L^{\varphi}(\Omega)} \leq C_{2} \|1\|_{L^{\varphi}(\Omega)}, $$

that is,

$$\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1,\varphi}(\Omega)} \leq C_{2}\int_{\Omega}{\varphi \biggl(\frac{1}{\lambda} \biggr)\,dx} \leq C_{3} r^{3}. $$

We should notice that the above example can be extended to the case of \(\mathbb{R}^{n}\). Specifically, we can check that the 1-form defined in \(\mathbb{R}^{n}\)

$$ u(x_{1}, \ldots,x_{n}) = \sum_{i=1}^{n} \frac{x_{i}}{ k + x_{1}^{2} + \cdots+ x_{n}^{2}}\,dx_{i},\quad k>0 $$
(4.3)

is a solution of the non-homogeneous A-harmonic equation (1.4) for any operators A and B satisfying (1.5). Hence, Theorem 3.2 is applicable to \(u(x_{1}, \ldots,x_{n})\) as we did in Example 4.1. Finally, we consider the following example in \(\mathbb{R}^{3}\).

Example 4.2

Let \(\Omega= \{ (x, y, z): x^{2} +y^{2}+z^{2} \leq1 \} \subset \mathbb{R}^{3}\) and \(u(x, y, z)\) be defined in \(\mathbb{R}^{3}\) by

$$u(x, y, z)= e^{x^{2} +y^{2} +z^{2}} (x\,dx +y\,dy + z\,dz ). $$

It is easy to check that \(du=0\). Hence, u is a solution of the non-homogeneous A-harmonic equation (1.4) for any operators A and B satisfying (1.5) in \(\mathbb{R}^{3}\). For any bounded domain Ω in \(\mathbb{R}^{3}\), it would be very complicated if we calculate the integral \(\|T(H(u))- (T(H(u)))_{\Omega}\|_{W^{1,\varphi}(\Omega)}\) directly. However, using the embedding inequality (3.1), we can easily obtain the upper bound of the norm \(\|T(H(u))- (T(H(u)))_{\Omega}\|_{W^{1,\varphi}(\Omega)}\) as follows. We notice that

$$\begin{aligned} \bigl|u(x, y, z)\bigr| & = \bigl( \bigl(e^{x^{2} +y^{2} +z^{2}} x \bigr)^{2} + \bigl(e^{x^{2} +y^{2} +z^{2}} y\bigr)^{2} + \bigl(e^{x^{2} +y^{2} +z^{2}} z\bigr)^{2} \bigr)^{1/2} \\ &= \bigl(e^{2(x^{2} +y^{2} +z^{2})} \bigl(x^{2} +y^{2} +z^{2}\bigr) \bigr)^{1/2} \\ &\leq\bigl( e^{2} \cdot1 \bigr)^{1/2} = e. \end{aligned}$$
(4.4)

From (4.4) and (3.1), we have

$$\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1,\varphi}(\Omega)} \leq C_{1}\|u\| _{L^{\varphi}(\Omega)} \leq C_{2} \|e\|_{L^{\varphi}(\Omega)}, $$

which is equal to

$$\bigl\| T\bigl(H(u)\bigr)- \bigl(T\bigl(H(u)\bigr)\bigr)_{\Omega}\bigr\| _{W^{1,\varphi}(\Omega)} \leq C_{2}\int_{\Omega}{\varphi \biggl(\frac{e}{\lambda} \biggr)\,dx} \leq C_{3} . $$

Remark

(i) From inequalities (3.1), (3.2), and (3.3), we find that the compositions TH, \(TdTH\) and \(\nabla TdTH\) are bounded operators on \(L^{p}(\Omega, \wedge^{l})\). (ii) Note that our global embedding theorem holds on any bounded domains. Hence, the theorem is true if Ω is one of the bounded John domains, \(L^{p}\)-averaging domains or \(L^{\varphi}(\mu)\)-averaging domains. See [1, 22, 23] for more properties of these kinds of domains.