1 Introduction

Consider the following DC infinite optimization problem:

$$ (\mbox{P})\quad \begin{array}{@{}l@{\quad}l} \mbox{Min}&f(x)-g(x),\\ \mbox{s. t. }& f_{t}(x)-g_{t}(x)\le0,\quad t\in T, \\ & x\in C, \end{array} $$
(1.1)

where T is an arbitrary (possibly infinite) index set, C is a nonempty convex subset of a locally convex Hausdorff topological vector space X and \(f, g,f_{t},g_{t}:X\rightarrow\overline{{\mathbb {R}}}:={\mathbb {R}}\cup\{ +\infty\}\), \(t\in T\), are proper convex functions. This problem has been studied extensively by many researchers. For example, the authors in [111] studied Lagrange dualities, Farkas lemmas, and optimality condition in the case when \(g=g_{t}=0\), \(t\in T\) and the authors in [12] established the Fenchel-Lagrange duality in the case when \(X={\mathbb {R}}^{n}\) and T is finite, and Sun et al. gave some dualities and Farkas-type results in [13, 14]. In particular, the authors in [15] defined the dual problem of (1.1) by

$$ (\mbox{D}) \quad \sup_{\lambda\in {\mathbb {R}}_{+}^{(T)}} \inf _{w^{\ast}\in H^{\ast}}L\bigl( w^{*}, \lambda\bigr), $$
(1.2)

where \(H^{\ast}=\operatorname{dom}g^{\ast}\times \prod_{t\in T}\operatorname{dom}g_{t}^{\ast}\), and the Lagrange function \(L: H^{*}\times {\mathbb {R}}_{+}^{(T)}\to\overline{{\mathbb {R}}}\) for (1.1) is defined by

$$ L\bigl( w^{*}, \lambda\bigr):=g^{\ast}\bigl(u^{\ast}\bigr)+\sum_{t\in T}\lambda_{t}g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr) - \biggl(f+\delta_{C}+\sum _{t\in T}\lambda_{t}f_{t} \biggr)^{\ast}\biggl(u^{\ast}+\sum_{t\in T} \lambda_{t}v_{t}^{\ast}\biggr) $$
(1.3)

for any \(( w^{*},\lambda)\in H^{*}\times {\mathbb {R}}_{+}^{(T)}\) with \(w^{*}=(u^{*}, (v_{t}^{*}))\in H^{*}\) and \(\lambda=(\lambda_{t})\in {\mathbb {R}}_{+}^{(T)}\), and they established some Lagrangian dualities between (P) and (D).

Usually, the main interest for the above optimization problems is focused on two aspects: one is about strong Lagrangian duality and the other is about total Lagrangian duality. For the strong Lagrangian duality for problem (1.1), one seeks conditions ensuring

$$ \inf_{x\in A} \bigl\{ f(x)-g(x)\bigr\} =\max _{\lambda\in {\mathbb {R}}_{+}^{(T)}}\inf_{w^{\ast}\in H^{\ast}}L\bigl( w^{*}, \lambda\bigr); $$
(1.4)

and, for the problem of total Lagrangian duality, one seeks conditions ensuring the following equality holds:

$$ \min_{x\in A} \bigl\{ f(x)-g(x)\bigr\} =\max _{\lambda \in {\mathbb {R}}_{+}^{(T)}}\inf_{w^{\ast}\in H^{\ast}}L\bigl( w^{*}, \lambda\bigr), $$
(1.5)

where \(A:=\{x\in C: f_{t}(x)-g_{t}(x)\le0, \mbox{for each } t\in T\}\). To establish the strong Lagrangian duality, the authors in [15] introduced the following constraint qualification (the conical \((WEHP)\)):

$$\begin{aligned} \operatorname{epi}(f-g+\delta_{A})^{\ast}={}&\bigcup _{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap_{(u^{\ast},v^{\ast})\in H^{\ast}} \biggl( \operatorname{epi} \biggl(f+\delta_{C}+\sum _{t\in T}\lambda_{t}f_{t} \biggr)^{\ast}-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)\\ &{}-\sum_{t\in T}\lambda_{t} \bigl(v_{t}^{\ast}, g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\bigr) \biggr) \biggr), \end{aligned}$$

and to consider the total Lagrangian duality, the authors in [16] introduced two constraint qualifications: the quasi-\((WBCQ)\)

$$\partial (f-g+\delta_{A}) (x)\subseteq\bigcup _{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap_{(u^{\ast},v^{\ast})\in\partial H(x)} \biggl( \partial\biggl(f+\delta_{C}+\sum_{t\in T(x)} \lambda_{t}f_{t}\biggr) (x)-u^{\ast}-\sum _{t\in T(x)}\lambda_{t}v_{t}^{\ast}\biggr) \biggr), $$

and the \((WBCQ)\)

$$\partial (f-g+\delta_{A}) (x)\subseteq\bigcup _{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap_{(u^{\ast},v^{\ast})\in H^{\ast}} \biggl( \partial\biggl(f+\delta_{C}+\sum_{t\in T(x)} \lambda_{t}f_{t}\biggr) (x)-u^{\ast}-\sum _{t\in T(x)}\lambda_{t}v_{t}^{\ast}\biggr) \biggr), $$

where \(\partial H(x):=\partial g(x )\times\prod_{t\in T}\partial g_{t}( x )\), for each \(x\in X \) and \(T(x):=\{t\in T: f_{t}(x)-g_{t}(x)=0\}\).

In this paper, we continuous to study the general case, that is, C is not necessarily closed and f, g, \(f_{t}\), \(g_{t}\), \(t\in T\), are not necessarily lsc. Our main aim in the present paper is focused on the relationships among the conical \((WEHP)\), the quasi-\((WBCQ)\), and the \((WBCQ)\). The paper is organized as follows. The next section contains some necessary notations and preliminary results. In Section 3, some relationships among the conical \((WEHP)\), the quasi-\((WBCQ)\), and the \((WBCQ)\) are obtained and some examples illustrating the relationships are given.

2 Notations and preliminaries

The notations used in this paper are standard (cf. [17]). In particular, we assume throughout the whole paper that X is a real locally convex space and let \(X^{*}\) denote the dual space of X. For \(x\in X\) and \(x^{*}\in X^{*}\), we write \(\langle x^{*},x\rangle\) for the value of \(x^{*}\) at x, that is, \(\langle x^{*},x\rangle:=x^{\ast}(x)\). Let Z be a set in X. The closure of Z is denoted by clZ. If \(W\subseteq X^{\ast}\), then clW denotes the weak-closure of W. For the whole paper, we endow \(X^{\ast}\times{\mathbb{R}}\) with the product topology of \(w^{\ast}(X^{\ast},X)\) and the usual Euclidean topology.

The normal cone of Z at \(z_{0}\in Z\) is denoted by \(N_{Z}(z_{0})\) and is defined by

$$N_{Z}(z_{0})=\bigl\{ x^{\ast}\in X^{\ast}: \bigl\langle x^{\ast},z-z_{0} \bigr\rangle \le0 \mbox{ for all }z \in Z\bigr\} . $$

The indicator function \(\delta_{Z}\) of Z is defined by

$$\delta_{Z}(x):= \left \{ \begin{array}{@{}l@{\quad}l} 0,&x\in Z,\\ +\infty, &\mbox{otherwise}. \end{array} \right . $$

Let f be a proper function defined on X. The effective domain, the conjugate function, and the epigraph of f are denoted by domf, \(f^{*}\), and epif, respectively; they are defined by

$$\begin{aligned}& \operatorname{dom} f:=\bigl\{ x\in X: f(x)< +\infty\bigr\} , \\& f^{*}\bigl(x^{*}\bigr):=\sup\bigl\{ \bigl\langle x^{*},x\bigr\rangle -f(x): x\in X\bigr\} ,\quad \mbox{for each }x^{*}\in X^{*}, \end{aligned}$$

and

$$\operatorname{epi} f:=\bigl\{ (x,r)\in X\times {\mathbb {R}}: f(x)\le r\bigr\} . $$

It is well known and easy to verify that \(\operatorname{epi} f^{*}\) is weak-closed. The closure of f is denoted by clf, which is defined by

$$\operatorname{epi} (\operatorname{cl}f)=\operatorname{cl}(\operatorname{epi} f). $$

Then (cf. [17, Theorems 2.3.1]),

$$ f^{*}=(\operatorname{cl} f)^{*}. $$
(2.1)

By [17, Theorem 2.3.4], if clf is proper and convex, then the following equality holds:

$$ f^{\ast\ast}=\operatorname{cl} f. $$
(2.2)

Let \(x\in X\). The subdifferential of f at x is defined by

$$ \partial f(x):=\bigl\{ x^{\ast}\in X^{\ast}: f(x)+ \bigl\langle x^{\ast },y-x\bigr\rangle \leq f(y), \mbox{for each }y\in X \bigr\} $$
(2.3)

if \(x\in\operatorname{dom} f\), and \(\partial f(x):=\emptyset\) otherwise. We also define

$$\operatorname{dom} \partial f=\bigl\{ x \in X : \partial f(x) \neq\emptyset\bigr\} , $$

and

$$\operatorname{Im} \partial f=\bigl\{ x^{\ast}\in X^{\ast}: x^{\ast}\in \partial f(x) \mbox{ for some }x\in X\bigr\} . $$

By [17, Theorems 2.3.1 and 2.4.2(iii)], the Young-Fenchel inequality below holds:

$$ f(x)+f^{\ast}\bigl(x^{\ast}\bigr)\ge\bigl\langle x, x^{\ast}\bigr\rangle , \quad\mbox{for each pair } \bigl(x, x^{\ast}\bigr) \in X\times X^{\ast}, $$
(2.4)

and the Young equality holds:

$$ f(x)+f^{*}\bigl(x^{*}\bigr)=\bigl\langle x^{*},x\bigr\rangle \quad\mbox{if and only if}\quad x^{*}\in\partial f(x). $$
(2.5)

Furthermore, if g, h are proper functions, then

$$\begin{aligned}& \operatorname{epi} g^{\ast}+\operatorname{epi} h^{\ast}\subseteq\operatorname{epi} (g+h)^{\ast}, \end{aligned}$$
(2.6)
$$\begin{aligned}& g\le h \quad\Rightarrow\quad g^{\ast}\ge h^{\ast}\quad\Leftrightarrow\quad\operatorname{epi} g^{\ast}\subseteq\operatorname{epi} h^{\ast}, \end{aligned}$$
(2.7)

and

$$ \partial g(a)+\partial h(a)\subseteq\partial(g+h) (a), \quad\mbox{for each }a\in\operatorname{dom} g\cap\operatorname{dom} h. $$
(2.8)

We end this section with the remark that an element \(p\in X^{*}\) can be naturally regarded as a function on X in such way that

$$ p(x):=\langle p,x\rangle, \quad\mbox{for each }x\in X. $$
(2.9)

Thus the following fact is clear for any \(a\in {\mathbb {R}}\) and real-valued proper function f:

$$ \operatorname{epi}(f+p+a)^{*}=\operatorname{epi}f^{*}+(p,-a). $$
(2.10)

3 Relationships among constraint qualifications

Let X be a real locally convex Hausdorff vector space, and \(C\subseteq X\) be a convex set. Let T be an index set and let f, g, \(f_{t}\), \(g_{t}\), \(t\in T \) be proper convex functions such that \(f-g\) and \(f_{t}-g_{t}\), \(t\in T\), are proper functions. Here and throughout the whole paper, following [17, p.39], we adapt the convention that \((+\infty)+(-\infty)=(+\infty)-(+\infty)=+\infty \), \(0\cdot(+\infty)=+\infty\), and \(0\cdot(-\infty)=0\). Then

$$ \emptyset\neq \operatorname{dom} f\subseteq\operatorname{dom} g \quad\mbox{and}\quad \emptyset\neq \operatorname{dom} f_{t}\subseteq \operatorname{dom} g_{t}. $$
(3.1)

Let \(A\neq\emptyset\) be the solution set of the following system with the assumption that \(A\cap \operatorname{dom} (f-g)\) is nonempty:

$$ x\in C;\quad f_{t}(x)-g_{t}(x)\le0, \quad\mbox{for each } t\in T, $$
(3.2)

and let \(A^{\operatorname{cl}}\) be the solution set of the following system:

$$ x\in C;\quad f_{t}(x)-\operatorname{cl}g_{t}(x) \le0, \quad\mbox{for each } t\in T. $$
(3.3)

Then \(A^{\operatorname{cl}}\subseteq A\). Following [18], we use \({\mathbb {R}}^{(T)}\) to denote the space of real tuples \(\lambda=(\lambda_{t})\) with only finitely many \(\lambda_{t}\neq0\), and let \({\mathbb {R}}_{+}^{(T)}\) denote the nonnegative cone in \({\mathbb {R}}^{(T)}\), that is,

$${\mathbb {R}}_{+}^{(T)}:=\bigl\{ \lambda=(\lambda_{t})\in {\mathbb {R}}^{(T)}: \lambda_{t}\ge 0, \mbox{for each } t\in T \bigr\} . $$

For simplicity, we denote

$$H^{\ast}:=\operatorname{dom}g^{\ast}\times\prod _{t\in T}\operatorname{dom} g_{t}^{\ast}$$

and

$$\partial H(x ):=\partial g(x )\times\prod_{t\in T} \partial g_{t}( x ), \quad\mbox{for each } x\in X. $$

To make the dual problem considered here well defined, we further assume that clg and \(\operatorname{cl} g_{t}\), \(t\in T\), are proper. Then \(H^{\ast}\neq\emptyset\). For the whole paper, any elements \(\lambda\in {\mathbb {R}}^{(T)}\) and \(v^{\ast}\in \prod_{t\in T}\operatorname{dom} g_{t}^{\ast}\) are understood as \(\lambda=(\lambda_{t})\in {\mathbb {R}}^{(T)}\) and \(v^{\ast}=(v_{t}^{\ast})\in\prod_{t\in T}\operatorname{dom} g_{t}^{\ast}\), respectively. Following [15], we define the characteristic set K for the DC optimization problem (1.1) by

$$\begin{aligned} K:= \bigcup_{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap _{(u^{\ast},v^{\ast})\in H^{\ast}} \biggl(\operatorname{epi} \biggl(f+ \delta_{C}+\sum_{t\in T}\lambda_{t}f_{t} \biggr)^{\ast}-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)-\sum_{t\in T}\lambda_{t} \bigl(v_{t}^{\ast}, g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\bigr) \biggr) \biggr), \end{aligned}$$
(3.4)

where we adopt the convention that \(\bigcap_{t\in\emptyset}S_{t}=X\) (see [17, p.2]). Below we will make use of the subdifferential \(\partial h(x)\) for a general proper function (not necessarily convex) \(h:X\to\overline{{\mathbb {R}}}\); see (2.3). Clearly, the following equivalence holds:

$$ x_{0}\mbox{ is a minimizer of }h\mbox{ if and only if }0 \in\partial h(x_{0}). $$
(3.5)

For each \(x\in X\), let \(T(x)\) be the active index set of system (3.2), that is,

$$T(x):=\bigl\{ t\in T: f_{t}(x)-g_{t}(x)=0\bigr\} . $$

Define \(N^{\prime}(x)\) by

$$N^{\prime}(x):=\bigcup_{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap_{(u^{\ast},v^{\ast})\in H^{\ast}} \biggl(\partial\biggl(f+ \delta_{C}+\sum_{t\in T(x)}\lambda _{t}f_{t}\biggr) (x)-u^{\ast}-\sum _{t\in T(x)}\lambda_{t}v_{t}^{\ast}\biggr) \biggr) $$
(3.6)

and define \(N_{0}^{\prime}(x)\) by

$$ N_{0}^{\prime}(x):=\bigcup _{\lambda\in {\mathbb {R}}_{+}^{(T)}} \biggl(\bigcap_{(u^{\ast},v^{\ast})\in\partial H(x)} \biggl( \partial\biggl(f+\delta_{C}+\sum_{t\in T(x)} \lambda_{t}f_{t}\biggr) (x)-u^{\ast}-\sum _{t\in T(x)}\lambda_{t}v_{t}^{\ast}\biggr) \biggr). $$
(3.7)

Then, for each \(x\in X\),

$$N^{\prime}(x)\subseteq N_{0}^{\prime}(x). $$

Definition 3.1

The family \(\{f,g,\delta_{C}; f_{t},g_{t}:t\in T\}\) is said to satisfy

  1. (a)

    the lower semi-continuity closure (\((LSC)\)) if

    $$ \operatorname{epi} (f -g+\delta_{A})^{\ast}= \operatorname{epi} (f -\operatorname{cl}g+\delta_{A^{\operatorname{cl}}})^{\ast}; $$
    (3.8)
  2. (b)

    the conical weak epigraph hull property (\((WEHP)\)) if

    $$ \operatorname{epi} (f-g+\delta_{A})^{\ast}=K; $$
    (3.9)
  3. (c)

    the quasi-weakly basic constraint qualification (the quasi-\((WBCQ)\)) at \(x\in A\) if

    $$ \partial (f-g+\delta_{A}) (x)\subseteq N_{0}^{\prime}(x); $$
    (3.10)
  4. (d)

    the weakly basic constraint qualification (the \((WBCQ)\)) at \(x\in A\) if

    $$ \partial (f-g+\delta_{A}) (x)\subseteq N^{\prime}(x). $$
    (3.11)

It is said that the family \(\{f,g,\delta_{C}; f_{t},g_{t}:t\in T\}\) satisfies the quasi-\((WBCQ)\) (resp. the \((WBCQ)\)) if it satisfies the quasi-\((WBCQ)\) (resp. the \((WBCQ)\)) at each point \(x \in A\).

Remark 3.1

  1. (a)

    The notions of \((LSC)\) and the conical \((WEHP)\) were introduced in [15] and the quasi-\((WBCQ)\) and the \((WBCQ)\) were taken from [16].

  2. (b)

    Recall from [3, 4] that the family \(\{\delta _{C}; f_{t}: t\in T\}\) has the conical \((WEHP)_{f}\) if

    $$ \operatorname{epi} (f+\delta_{A})^{\ast}= \bigcup_{\lambda\in R_{+}^{(T)}}\operatorname{epi} \biggl(f+ \delta_{C}+\sum_{t\in T}\lambda_{t}f_{t} \biggr) ^{\ast}$$
    (3.12)

    and has the \((WBCQ)_{f}\) at \(x\in\operatorname{dom} f\cap A \) if

    $$ \partial (f+\delta_{A}) (x)= \mathop{\bigcup_{\lambda\in R_{+}^{(T)}}} _{\sum_{t\in T}\lambda_{t}f_{t}(x)=0} \partial \biggl(f+\delta_{C}+\sum _{t\in T}\lambda_{t}f_{t} \biggr) (x). $$
    (3.13)

Thus, in the special case when \(g=g_{t}=0\), \(t\in T\), the conical \((WEHP)\) coincides with the conical \((WEHP)_{f}\) for the family \(\{\delta _{C}; f_{t}: t\in T\}\) and the quasi-\((WBCQ)\) and \((WBCQ)\) are reduced to the \((WBCQ)_{f}\) for the family \(\{\delta_{C}; f_{t}: t\in T\}\).

Theorems 3.1 and 3.2 characterize the relationships among the quasi-\((WBCQ)\), the \((WBCQ)\), and the conical \((WEHP)\).

Theorem 3.1

The following implication holds:

$$ \bigl[\operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K\bigr]\quad\Longrightarrow\quad\textit{the quasi-}(WBCQ). $$
(3.14)

Consequently,

$$ \textit{the conical } (WEHP) \quad\Longrightarrow\quad\textit{the quasi-} (WBCQ). $$
(3.15)

Proof

Suppose that \(\operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K\). To show the quasi-\((WBCQ)\), let \(x_{0}\in A\) and let \(x^{\ast}\in\partial(f-g+\delta _{A})(x_{0})\). Then, by (2.5),

$$\bigl\langle x^{\ast},x_{0}\bigr\rangle -(f-g+ \delta_{A}) (x_{0})=(f-g+\delta_{A})^{\ast}\bigl(x^{\ast}\bigr). $$

This implies that

$$\bigl(x^{\ast}, \bigl\langle x^{\ast},x_{0}\bigr\rangle -(f-g+\delta_{A}) (x_{0})\bigr)\in \operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K. $$

Hence, there exists \(\lambda\in {\mathbb {R}}_{+}^{(T)}\) such that, for each \((u^{\ast},v^{\ast})\in\partial H(x_{0})\),

$$\bigl(x^{\ast}, \bigl\langle x^{\ast},x_{0}\bigr\rangle -(f-g+\delta_{A}) (x_{0})\bigr)\in\operatorname{epi} \biggl(f+\delta_{C}+\sum_{t\in T} \lambda_{t}f_{t}\biggr)^{\ast}-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)-\sum_{t\in T} \lambda_{t}\bigl(v_{t}^{\ast}, g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\bigr). $$

Let \((u^{\ast},v^{\ast})\in\partial H(x_{0})\). There exists \((x_{1}^{\ast},r_{1})\in \operatorname{epi} (f+\delta_{C}+\sum_{t\in J}\lambda_{t}f_{t})^{\ast}\) such that

$$ x^{\ast}=x_{1}^{\ast}-u^{\ast}- \sum_{t\in J}\lambda_{t} v_{t}^{\ast}$$
(3.16)

and

$$ \bigl\langle x^{\ast},x_{0}\bigr\rangle -(f-g+ \delta_{A}) (x_{0})=r_{1}- g^{\ast}\bigl(u^{\ast}\bigr) -\sum_{t\in J} \lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr), $$
(3.17)

where \(J:=\{t\in T:\lambda_{t}\neq0\} \) is a finite subset of T. Below we only need to show that \(x_{1}^{\ast}\in\partial(f+\delta_{C}+\sum_{t\in J}\lambda_{t} f_{t})(x_{0})\) and \(J\subseteq T(x_{0})\). To do this, note by the definition of epigraph, one has

$$ \biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t}f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)\le r_{1}. $$
(3.18)

Note that \((u^{\ast},v^{\ast})\in\partial H(x_{0})\), it follows from (2.5) that

$$ g(x_{0})+g^{\ast}\bigl(u^{\ast}\bigr)= \bigl\langle u^{\ast},x_{0} \bigr\rangle \quad\mbox{and}\quad g_{t}(x_{0})+g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)=\bigl\langle v_{t}^{\ast},x_{0} \bigr\rangle , \quad\mbox{for each } t\in T. $$
(3.19)

This together with (3.16), (3.17), and (3.18) implies that

$$\begin{aligned} &\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr) \\ &\quad\le\bigl\langle x^{\ast},x_{0}\bigr\rangle -(f-g+ \delta_{A}) (x_{0})+g^{\ast}\bigl(u^{\ast}\bigr)+\sum_{t\in J}\lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr) \\ &\quad\le \biggl\langle x_{1}^{\ast}-u^{\ast}-\sum _{t\in J}\lambda_{t} v_{t}^{\ast},x_{0}\biggr\rangle -\biggl(f-g+\delta_{C}+\sum _{t\in J}\lambda_{t}(f_{t} -g_{t} )\biggr) (x_{0})\\ &\qquad{}+g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}\lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr) \\ &\quad\le \bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle - \biggl(f +\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t} \biggr) (x_{0})+\bigl\{ g(x_{0})-\bigl\langle u^{\ast},x_{0}\bigr\rangle +g^{\ast}\bigl(u^{\ast}\bigr)\bigr\} \\ &\qquad{}+ \sum _{t\in J}\lambda_{t} \bigl\{ g_{t}(x_{0})- \bigl\langle v_{t}^{\ast},x_{0}\bigr\rangle +g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr) \bigr\} \\ &\quad= \bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle - \biggl(f +\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t} \biggr) (x_{0}), \end{aligned}$$

where the second inequality holds because \(x_{0}\in A\). Hence,

$$\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)+\biggl(f +\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t} \biggr) (x_{0})=\bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle $$

since

$$\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)\ge \bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle -\biggl(f +\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t} \biggr) (x_{0}) $$

holds automatically by the Fenchel-Young inequality (2.4). Therefore, by (2.5), \(x^{\ast}\in\partial( f+\delta_{C}+\sum_{t\in J}\lambda_{t} f_{t})(x_{0})\). To show \(J\subseteq T(x_{0})\), note that \(x_{0}\in A\), then

$$\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)\le\bigl\langle x^{\ast},x_{0}\bigr\rangle -f(x_{0})+g(x_{0})+g^{\ast}\bigl(u^{\ast}\bigr)+\sum_{t\in J}\lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr) $$

and

$$\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)\ge \bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle - f(x_{0})- \sum_{t\in J} \lambda_{t} f_{t} (x_{0}). $$

Thus, by (3.16) and (3.19), we have

$$\begin{aligned} f(x_{0})-g(x_{0})-\bigl\langle x^{\ast},x_{0} \bigr\rangle \le& g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}\lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)-\biggl(f+\delta_{C}+\sum _{t\in J}\lambda_{t} f_{t} \biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr) \\ \le& g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}\lambda_{t} g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)- \bigl\langle x_{1}^{\ast},x_{0} \bigr\rangle + f(x_{0})+ \sum_{t\in J} \lambda_{t} f_{t} (x_{0}) \\ =&f(x_{0})-g(x_{0})-\bigl\langle x^{\ast},x_{0} \bigr\rangle +\sum_{t\in J}\lambda _{t} \bigl(f_{t}(x_{0})-g_{t}(x_{0})\bigr) \\ \le& f(x_{0})-g(x_{0})-\bigl\langle x^{\ast},x_{0} \bigr\rangle . \end{aligned}$$

Since \(\lambda_{t}>0\) and \(f_{t}(x_{0})-g_{t}(x_{0})\le0\), for each \(t\in J\), it follows that \(\lambda_{t}(f_{t}(x_{0})-g_{t}(x_{0}))=0\), that is, \(f_{t}(x_{0})-g_{t}(x_{0})=0\), for each \(t\in J\). Thus, \(J\subseteq T(x_{0})\) and hence the quasi-\((WBCQ)\) holds. □

Theorem 3.2

If \(\operatorname{dom}(f-g+\delta_{A})^{\ast}\subseteq\operatorname{im} \partial (f-g+\delta_{A})\), then

$$\textit{the } (WBCQ) \quad\Longrightarrow\quad\bigl[ \operatorname{epi}(f-g+ \delta_{A})^{\ast}\subseteq K\bigr]. $$
(3.20)

Furthermore, if the \((LSC)\) holds, then

$$ \textit{the } (WBCQ)\Longrightarrow\textit{ the conical } (WEHP). $$
(3.21)

Proof

Suppose that \(\operatorname{dom}(f-g+\delta_{A})^{\ast}\subseteq\operatorname{im} \partial (f-g+\delta_{A})\) and that the \((WBCQ)\) holds. To show \(\operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K\), let \((x^{\ast},\alpha)\in\operatorname{epi}(f-g+\delta_{A})^{\ast}\). Since \(x^{\ast}\in\operatorname{dom}(f-g+\delta_{A})^{\ast}\subseteq\operatorname{im}\partial(f-g+\delta_{A})\), it follows that there exists \(x_{0}\in\operatorname{dom}(f-g)\cap A\) such that \(x^{\ast}\in\partial (f-g+\delta_{A})(x_{0})\subseteq N^{\prime}(x_{0})\), thanks to the assumed \((WBCQ)\). This means that there exists \(\lambda\in {\mathbb {R}}_{+}^{(T)}\) such that, for each \((u^{\ast},v^{\ast})\in H^{\ast}\),

$$x^{\ast}\in\partial\biggl(f+\delta_{C}+\sum _{t\in J}\lambda_{t} f_{t}\biggr) (x_{0})-u^{\ast}-\sum_{t\in J} \lambda_{t}v_{t}^{\ast}$$

for some finite subset \(J\subseteq T(x_{0})\) and \(\{\lambda_{t}\}\subseteq {\mathbb {R}}\) with \(\lambda_{t}\ge0\), for each \(t\in J\). Let \((u^{\ast},v^{\ast})\in H^{\ast}\). Then there exists \(x_{1}^{\ast}\in\partial(f+\delta_{C}+\sum_{t\in J}\lambda_{t} f_{t})(x_{0})\) such that

$$ x^{\ast}=x_{1}^{\ast}-u^{\ast}- \sum_{t\in J}\lambda_{t}v_{t}^{\ast}. $$
(3.22)

By the Young equality (2.5), we have

$$ \bigl\langle x_{1}^{\ast},x_{0}\bigr\rangle = \biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr)+\biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr) (x_{0}) $$
(3.23)

and

$$ \bigl\langle x^{\ast},x_{0}\bigr\rangle = (f-g+ \delta_{A})^{\ast}\bigl(x^{\ast}\bigr)+(f-g+\delta _{A}) (x_{0})\le\alpha+f(x_{0})-g(x_{0}), $$
(3.24)

where the last inequality holds because of \((x^{\ast},\alpha)\in\operatorname{epi}(f-g+\delta_{A})^{\ast}\) and \(x_{0}\in A\). This together with (3.22) and (3.23) implies that

$$\begin{aligned} \biggl(f+\delta_{C}+\sum_{t\in J} \lambda_{t} f_{t}\biggr)^{\ast}\bigl(x_{1}^{\ast}\bigr) \le&\bigl\langle u^{\ast},x_{0}\bigr\rangle +\sum _{t\in J}\lambda_{t}\bigl\langle v_{t}^{\ast},x_{0} \bigr\rangle +\alpha-g(x_{0})-\sum_{t\in J} \lambda_{t} f_{t}(x_{0}) \\ \le&\alpha+g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)-\sum_{t\in J}\lambda_{t} \bigl(f_{t}(x_{0})-g_{t}(x_{0})\bigr) \\ =& \alpha+g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr), \end{aligned}$$

where the second inequality holds by the Fenchel-Young inequality and the last equality holds because \(J\subseteq T(x_{0})\). This means that

$$\biggl(x_{1}^{\ast}, \alpha+g^{\ast}\bigl(u^{\ast}\bigr)+\sum_{t\in J}g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\biggr)\in \operatorname{epi}\biggl(f+ \delta_{C}+\sum_{t\in J}\lambda_{t} f_{t}\biggr)^{\ast}. $$

Hence,

$$\begin{aligned} \bigl(x^{\ast},\alpha\bigr) =&\biggl(x_{1}^{\ast}, \alpha+g^{\ast}\bigl(u^{\ast}\bigr)+\sum _{t\in J}g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\biggr)-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr) \bigr)-\sum_{t\in J}\lambda_{t} \bigl(v_{t}^{\ast},g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\bigr) \\ \in& \operatorname{epi}\biggl(f+\delta_{C}+\sum _{t\in J}\lambda_{t} f_{t} \biggr)^{\ast}-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)-\sum_{t\in J}\lambda_{t} \bigl(v_{t}^{\ast},g_{t}^{\ast}\bigl(v_{t}^{\ast}\bigr)\bigr) \end{aligned}$$

and so \((x^{\ast},\alpha)\in K\) by the arbitrary of \((u^{\ast},v^{\ast})\in H^{\ast}\). Therefore,

$$ \operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K. $$
(3.25)

Furthermore, we assume that the \((LSC)\) holds. Then (3.8) holds. By [15, Lemma 3.1], we see that

$$ K=\bigcup_{\lambda\in {\mathbb {R}}_{+}^{(T)}}\biggl(f- \operatorname{cl}g+\delta_{C}+\sum_{t\in T} \lambda_{t} (f_{t}-\operatorname{cl}g_{t}) \biggr)^{\ast}; $$
(3.26)

while by [3, (3.5)],

$$ \bigcup_{\lambda\in {\mathbb {R}}_{+}^{(T)}}\biggl(f- \operatorname{cl}g+\delta_{C}+\sum_{t\in T} \lambda_{t} (f_{t}-\operatorname{cl}g_{t}) \biggr)^{\ast}\subseteq\operatorname{epi}(f-\operatorname{cl}g+ \delta_{A^{\operatorname{cl}}})^{\ast}. $$
(3.27)

Combining (3.26), (3.27) with (3.8), we have

$$ K\subseteq\operatorname{epi}(f- g+\delta_{A})^{\ast}. $$
(3.28)

Hence, by (3.25), the conical \((WEHP)\) holds and the proof is complete. □

Remark 3.2

By [16, Remark 3.2], we see that

$$\mbox{the }(WBCQ)\quad\Longrightarrow\quad\mbox{the quasi-}(WBCQ) $$

and by Theorems 3.1 and 3.2, we get

$$\begin{aligned} &\bigl[\mbox{the } (WBCQ)\ \&\ \operatorname{dom}(f-g+\delta _{A})^{\ast}\subseteq\operatorname{im} \partial (f-g+\delta_{A}) \ \&\ \mbox{the } (LSC)\bigr] \\ &\quad\Longrightarrow\quad \mbox{the conical } (WEHP) \quad\Longrightarrow\quad \mbox{the quasi-} (WBCQ). \end{aligned}$$

By Theorems 3.1 and 3.2, we get the following corollary directly, which was given in [4, Proposition 3.1]. Note that the conical \((WEHP)_{f}\) and the \((WBCQ)_{f}\) for the family \(\{\delta _{C}; f_{t}: t\in T\}\) were introduced in [3, 4]; see also Remark 3.1(ii).

Corollary 3.1

For the family \(\{\delta_{C}; f_{t}: t\in T\}\), the following implication holds:

$$\textit{the conical } (WEHP)_{f} \quad\Longrightarrow\quad\textit{the quasi-} (WBCQ)_{f} $$

and

$$\textit{the conical } (WEHP)_{f} \quad\Longleftrightarrow\quad\textit{the quasi-} (WBCQ)_{f} $$

if \(\operatorname{dom}(f+\delta_{A})^{\ast}\subseteq\operatorname{im} \partial (f+\delta_{A})\).

The following example illustrates (3.14) and shows that the quasi-\((WBCQ)\) in (3.14) cannot be replaced by the \((WBCQ)\).

Example 3.1

Let \(X=C:={\mathbb {R}}\) and let \(T=\{1\}\). Define \(f,g,f_{1},g_{1}:{\mathbb {R}}\to\overline{{\mathbb {R}}}\), respectively, by

$$f(x):= \left \{ \begin{array}{@{}l@{\quad}l} x, &x\ge0,\\ +\infty, & x< 0, \end{array} \right .\qquad g(x):=\left \{ \begin{array}{@{}l@{\quad}l} 0, & x>0,\\ 1, & x= 0,\\ +\infty, &x<0, \end{array} \quad\mbox{for each } x\in {\mathbb {R}},\right . $$

\(f_{1}:=\delta_{[0,+\infty)}\) and \(g_{1}:=0\). Then f, g, \(f_{1}\), and \(g_{1}\) are proper convex functions and \(A=[0,+\infty)\). Note that, for each \(x\in {\mathbb {R}}\),

$$(f-g+\delta_{A}) (x )= \left \{ \begin{array}{@{}l@{\quad}l} x, & x>0,\\ -1,& x=0,\\ +\infty, &x< 0, \end{array} \right . $$

and \(f+\delta_{C}+\lambda f_{1}=f\) holds, for each \(\lambda\ge0\). Then, for each \(x^{\ast}\in {\mathbb {R}}\), \(g^{\ast}=\delta_{(-\infty,0]}\),

$$(f-g+\delta_{A})^{\ast}\bigl(x^{\ast}\bigr) =\left \{ \begin{array}{@{}l@{\quad}l} 1, & x^{\ast}\le1,\\ +\infty, &x^{\ast}>1, \end{array} \right . $$

and, for each \(\lambda\ge0\),

$$(f+\delta_{C}+\lambda f_{1})^{\ast}\bigl(x^{\ast}\bigr)= \left \{ \begin{array}{@{}l@{\quad}l} 0, & x^{\ast}\le1,\\ +\infty, &x^{\ast}>1. \end{array} \right . $$

This means that \(\operatorname{dom}g^{\ast}=(-\infty,0]\),

$$\operatorname{epi}(f-g+\delta_{A})^{\ast}=(-\infty,1] \times[1,+\infty) $$

and

$$\operatorname{epi}(f+\delta_{C}+\lambda f_{1})^{\ast}= (-\infty,1]\times[0,+\infty ), \quad\mbox{for each } \lambda\ge0. $$

Hence

$$K=\bigcup_{\lambda\ge0}\biggl(\bigcap _{u^{\ast}\in(-\infty,0]}\bigl(\operatorname{epi}(f+\delta_{C}+\lambda f_{1})^{\ast}-\bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)\bigr)\biggr)=(-\infty ,1]\times[0,+\infty ). $$

This implies that \(\operatorname{epi}(f-g+\delta_{A})^{\ast}\subseteq K\). Moreover, it is easy to see that, for each \(x\in A\),

$$\partial g(x ) = \left \{ \begin{array}{@{}l@{\quad}l} \{0\},& x>0,\\ \emptyset, &x=0, \end{array} \right . $$

and, for each \(\lambda\ge0\),

$$\partial(f-g+\delta_{A}) (x )=\partial(f+\delta_{C}+ \lambda f_{1}) (x) = \left \{ \begin{array}{@{}l@{\quad}l} 1, & x>0,\\ (-\infty,1],& x=0. \end{array} \right . $$

Hence, for each \(x\in A\),

$$N_{0}^{\prime}(x)=\bigcup_{\lambda\ge0} \biggl(\bigcap_{u^{\ast}\in\partial g(x)}\bigl(\partial(f+ \delta_{C}+\lambda_{1}f_{1}) (x)-u^{\ast}\bigr)\biggr)= \left \{ \begin{array}{@{}l@{\quad}l} 1, & x>0,\\ {\mathbb {R}},& x=0, \end{array} \right . $$

and

$$N^{\prime}(x)=\bigcup_{\lambda\ge0}\biggl(\bigcap _{u^{\ast}\in\operatorname{dom}g^{\ast}}\bigl(\partial(f+\delta_{C}+ \lambda_{1}f_{1}) (x)-u^{\ast}\bigr)\biggr)= \left \{ \begin{array}{@{}l@{\quad}l} \emptyset, & x>0,\\ (-\infty,1],& x=0. \end{array} \right . $$

This means that \(\partial(f-g+\delta_{A})(x)\subseteq N_{0}^{\prime}(x)\) but \(\partial(f-g+\delta_{A})(x)\nsubseteq N^{\prime}(x)\), for each \(x\in A\). Thus, the quasi-\((WBCQ)\) holds but not the \((WBCQ)\).

Example 3.2 illustrates Theorem 3.2 and Example 3.3 shows that the condition \((LSC)\) is essential for (3.21) to hold.

Example 3.2

Let \(X=C:={\mathbb {R}}\). Define \(f,g,f_{1},g_{1}:{\mathbb {R}}\rightarrow\overline{{\mathbb {R}}}\), respectively, by \(f=f_{1}=g:= \delta_{(-\infty,0]}\), \(g_{1}:=0\). Then f, g, \(f_{1}\), and \(g_{1}\) are proper convex functions. Consider the system (3.2) with \(T:=\{1\} \). Then one sees that

$$A=\bigl\{ x\in {\mathbb {R}}:f_{1}(x)-g_{1}(x)\le0\bigr\} =(-\infty,0]. $$

It is easy to see that

$$ f-g+\delta_{A} =\delta_{A} \quad\mbox{and}\quad (f-g+ \delta_{A})^{\ast}=\delta _{[0,+\infty)}. $$

Hence,

$$\operatorname{dom}(f-g+\delta_{A})^{\ast}=[0,+\infty), $$

and, for each \(x\in A\),

$$\partial(f-g+\delta_{A}) (x )=N_{A}(x) = \left \{ \begin{array}{@{}l@{\quad}l} \{0\},& x< 0,\\ {[}0,+\infty), & x=0. \end{array} \right . $$

This implies that \(\operatorname{dom}(f-g+\delta_{A})^{\ast}\subseteq\operatorname{im} \partial (f-g+\delta_{A})\). Note that \(g_{1}^{\ast}=\delta_{\{0\}} \), \(g^{\ast}=\delta _{[0,+\infty)}\), and \((f+\lambda f_{1})^{\ast}=\delta_{[0,+\infty)}\), for each \(\lambda\ge0\). It follows that, for each \(x\in A\),

$$N^{\prime}(x)=\bigcup_{\lambda\ge0}\biggl(\bigcap _{u^{\ast}\in[0,+\infty )}\bigl(N_{A}(x)-u^{\ast}\bigr) \biggr)=\left \{ \begin{array}{@{}l@{\quad}l} \{0\},& x< 0,\\ {[}0,+\infty), &x=0. \end{array} \right . $$

Thus, \(\partial(f-g+\delta_{A})(x)=N^{\prime}(x)\) and the \((WBCQ)\) holds. Therefore, by Theorem 3.1, we see that \(\operatorname{epi}(f-g+\delta _{A})^{\ast}\subseteq K\). Moreover, since g is lsc, it follows that the \((LSC)\) holds. Therefore, by (3.21), one sees that the conical \((WEHP)\) holds. In fact, it is easy to see that

$$\operatorname{epi} (f-g+\delta_{A})^{\ast}=[0,+\infty) \times[0,+\infty) $$

and

$$K=\bigcup_{\lambda\ge0}\biggl(\bigcap _{u^{\ast}\in[0,+\infty)}\bigl( \operatorname{epi} (f+\lambda f_{1})^{\ast}- \bigl(u^{\ast},g^{\ast}\bigl(u^{\ast}\bigr)\bigr)\bigr) \biggr)=[0,+\infty)\times [0,+\infty). $$

Example 3.3

Let \(X=C:={\mathbb {R}}\). Define \(f,g,f_{1},g_{1}:{\mathbb {R}}\rightarrow\overline{{\mathbb {R}}}\) as in [15, Example 3.1], that is, \(f=f_{1}:= \delta_{(-\infty,0]}\), \(g_{1}:=0\) and, for each \(x\in {\mathbb {R}}\),

$$g(x) :=\left \{ \begin{array}{@{}l@{\quad}l} 0, & x< 0,\\ 1, &x=0,\\ +\infty, &x>0. \end{array} \right . $$

Then f, g, \(f_{1}\), and \(g_{1}\) are proper convex functions. Consider the system (3.2) with \(T:=\{1\} \). Then one sees that

$$A=\bigl\{ x\in {\mathbb {R}}:f_{1}(x)-g_{1}(x)\le0\bigr\} =(-\infty,0]. $$

It is easy to see that, for each \(x\in {\mathbb {R}}\),

$$ (f-g+\delta_{A}) (x)= \left \{ \begin{array}{@{}l@{\quad}l} 0, &x< 0,\\ -1, & x=0,\\ +\infty, &x>0, \end{array} \right . $$

and, for each \(x^{\ast}\in {\mathbb {R}}\),

$$ (f-g+\delta_{A})^{\ast}\bigl(x^{\ast}\bigr)= \left \{ \begin{array}{@{}l@{\quad}l} 1, & x^{\ast}\ge0,\\ +\infty,& x^{\ast}< 0. \end{array} \right . $$

Moreover, for each \(x\in A\), we see that

$$\partial(f-g+\delta_{A}) (x)= \left \{ \begin{array}{@{}l@{\quad}l} \emptyset, &x< 0,\\ {[}0,+\infty), & x=0. \end{array} \right . $$

Thus, \(\operatorname{dom}(f-g+\delta_{A})^{\ast}\subseteq\operatorname{im} \partial (f-g+\delta_{A})\). Note that \(g_{1}^{\ast}=\delta_{\{0\}} \), \(g^{\ast}=\delta_{[0,+\infty)}\), and \((f+\lambda f_{1})^{\ast}=\delta_{[0,+\infty)}\), for each \(\lambda\ge0\). It follows that, for each \(x\in A\),

$$N^{\prime}(x)=\bigcup_{\lambda\ge0}\biggl(\bigcap _{u^{\ast}\in[0,+\infty )}\bigl(N_{A}(x)-u^{\ast}\bigr) \biggr)=\left \{ \begin{array}{@{}l@{\quad}l} \{0\}, &x< 0,\\ {[}0,+\infty) & x=0. \end{array} \right . $$

Therefore, the \((WBCQ)\) holds. However, the conical \((WEHP)\) does not hold as shown in Example 3.1 in [15]. Actually, the family \(\{f,g,\delta_{C}; f_{t},g_{t}:t\in T\}\) does not satisfy the \((LSC)\), since

$$\operatorname{epi} (f-g+\delta_{A})^{\ast}=[0,+\infty) \times[1,+\infty); $$

but

$$\operatorname{epi} (f-\operatorname{cl} g+\delta_{A})^{\ast}=[0,+ \infty)\times[0,+\infty). $$