1 Introduction

Let X be a Banach space and C be a closed convex subset of X. For each j1, a mapping T j :CC is said to be nonexpansive on C if

T j x T j yxy

for all x,yC. For each j1, let F( T j ) be the set of fixed points of T j . If X is a strictly convex Banach space, then F( T j ) is closed and convex.

In [1], Baillon proved the first nonlinear ergodic theorem such that, if X is a real Hilbert space and F( T j ) for each j1, then, for each xC, the sequence { S n , j x} defined by

S n , j x= 1 n ( x + T j x + + T j n 1 x )

converges weakly to a fixed point of T j . It was also shown by Pazy [2] that, if X is a real Hilbert space and S n , j x converges weakly to yC, then yF(T). These results were extended by Baillon [3], Bruck [4] and Reich [5, 6] and [7].

2 Multi-Banach spaces

The notion of a multi-normed space was introduced by Dales and Polyakov in [8]. This concept is somewhat similar to an operator sequence space and has some connections with the operator spaces and Banach lattices. Observations on multi-normed spaces and examples are given in [810].

Let (E,) be a complex normed space and let kN. We denote by E k the linear space EE consisting of k-tuples ( x 1 ,, x k ), where x 1 ,, x k E. The linear operations on E k are defined coordinate-wise. The zero element of either E or E k is denoted by 0. We denote by N k the set {1,2,,k} and by Σ k the group of permutations on k symbols.

Definition 2.1 A multi-norm on { E k :kN} is a sequence { k } k N such that k is a norm on E k for each kN with k2 satisfying the following conditions:

(A1) ( x σ ( 1 ) , , x σ ( k ) ) k = ( x 1 , , x k ) k (σ Σ k , x 1 ,, x k E);

(A2) ( α 1 x 1 , , α k x k ) k ( max i N k | α i |) ( x 1 , , x k ) k ( α 1 ,, α k C, x 1 ,, x k E);

(A3) ( x 1 , , x k 1 , 0 ) k = ( x 1 , , x k 1 ) k 1 ( x 1 ,, x k 1 E);

(A4) ( x 1 , , x k 1 , x k 1 ) k = ( x 1 , , x k 1 ) k 1 ( x 1 ,, x k 1 E).

In this case, we say that { ( E k , k ) } k N is a multi-normed space.

Lemma 2.2 ([10])

Suppose that { ( E k , k ) } k N is a multi-normed space and take kN. Then we have the following:

  1. (1)

    ( x , , x ) k =x (xE);

  2. (2)

    max i N k x i x 1 , , x k k i = 1 k x i k max i N k x i ( x 1 ,, x k E).

It follows from (2) that, if (E,) is a Banach space, then ( E k , k ) is a Banach space for each kN. In this case { ( E k , k ) } k N is a multi-Banach space.

Now, we give two important examples of multi-norms for an arbitrary normed space E [8].

Example 2.3 The sequence { k } k N on { E k :kN} defined by

( x 1 , , x k ) k := max i N k x i ( x 1 ,, x k E)

is a multi-norm, which is called the minimum multi-norm. The terminology ‘minimum’ is justified by the property (2).

Example 2.4 Let {( k α :kN):αA} be the (nonempty) family of all multi-norms on { E k :kN}. For each kN, set

( x 1 , , x k ) k := sup α A ( x 1 , , x k ) k α ( x 1 ,, x k E).

Then { k } k N is a multi-norm on { E k :kN}, which is called the maximum multi-norm.

We need the following observation, which can easily be deduced from the triangle inequality for the norm k and the property (2) of multi-norms.

Lemma 2.5 Suppose that kN and ( x 1 ,, x k ) E k . For each j{1,,k}, let { x n j } n 1 be a sequence in E such that lim n x n j = x j . Then, for each ( y 1 ,, y k ) E k , we have

lim n ( x n 1 y 1 , , x n k y k ) =( x 1 y 1 ,, x k y k ).

Definition 2.6 Let { ( E k , k ) } k N be a multi-normed space. A sequence { x n } n 1 in E is called a multi-null sequence if, for any ε>0, there exists n 0 N such that

sup k N ( x n , , x n + k 1 ) k <ε(n n 0 ).

Let xE. We say that the sequence { x n } n 1 is multi-convergent to a point xE and write

lim n x n =x

if { x n x } n is a multi-null sequence.

3 Main results

To prove the main results in this paper, first, we introduce some lemmas.

Lemma 3.1 ([11])

Let { ( X j , j ) } j N be a uniformly convex multi-Banach space with modulus of the convexity δ. Let x j , y j X. If ( x 1 , , x j ) j r, ( y 1 , , y j ) j r, rR and ( x 1 y 1 , , x j y j ) j ϵ>0, then

( λ x 1 + ( 1 λ ) y 1 , , λ x j + ( 1 λ ) y j ) j r ( 1 2 λ ( 1 λ ) δ R ( ϵ ) )

for all λ[0,1], where δ R (ϵ)=δ( ϵ R ).

To proceed, let { ( X j , j ) } j N denote a uniformly convex multi-Banach space with modulus of the convexity δ.

Lemma 3.2 Let C be a closed convex subset of X and for each j1, T j :CC be a nonexpansive mapping. Let xC, f j F( T j ) for each j1 and 0<αβ<1. Then, for any ϵ>0, there exists N>0 such that, for all nN,

( T 1 k ( λ T 1 n x + ( 1 λ ) f 1 ) ( λ T 1 n + k x + ( 1 λ ) f 1 ) , , T j k ( λ T j n x + ( 1 λ ) f j ) ( λ T j n + k x + ( 1 λ ) f j ) ) j < ϵ

for all k>0 and λ[α,β].

Proof Put

r = lim n ( T 1 n x f 1 , , T j n x f j ) j , R = ( x f 1 , , x f j ) j , c = min { 2 λ ( 1 λ ) : α λ β } .

For given ϵ>0, choose d>0 such that r r + d >1c δ R (ϵ). Then there exists N>0 such that, for all nN,

( T 1 n x f 1 , , T j n x f j ) j <r+d.

For each nN, k>0 and αλβ, we put

u j =(1λ) ( T j k z f j ) , v j =λ ( T j n + k x T j k z ) ,

where z j =λ T j n x+(1λ) f j . Then we have

( u 1 , , u j ) j λ(1λ) ( T 1 n x f 1 , , T j n x f j ) j

and

( v 1 , , v j ) j λ(1λ) ( T 1 n x f 1 , , T j n x f j ) j .

Suppose that

( u 1 v 1 , , u j v j ) j = ( T 1 k z ( λ T 1 n + k x + ( 1 λ ) f 1 ) , , T 1 k z ( λ T j n + k x + ( 1 λ ) f j ) ) j ϵ .

Then, by Lemma 3.1, we have

( λ u 1 + ( 1 λ ) v 1 , , λ u j + ( 1 λ ) v j ) j = λ ( 1 λ ) ( T 1 n + k x f 1 , , T j n + k x f j ) j λ ( 1 λ ) ( T 1 n x f 1 , , T j n x f j ) j ( 1 2 λ ( 1 λ ) δ R ( ϵ ) ) λ ( 1 λ ) ( T 1 n x f 1 , , T j n x f j ) j ( 1 c δ R ( ϵ ) ) .

Hence we have

(r+d) ( 1 c δ R ( ϵ ) ) <r(r+d) ( 1 C δ R ( ϵ ) ) ,

which is a contradiction. This completes the proof. □

Lemma 3.3 (Browder [12])

Let C be a closed convex subset of X and T j :CC be a nonexpansive mapping. If { u i } is a weakly convergent sequence in C with the weak limit u 0 and lim i u i T j u i =0, then u 0 is a fixed point of T j .

Lemma 3.4 Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. Then, for all xC and n>0,

lim i sup j ( T 1 k S n , 1 T 1 i x S n , 1 T 1 k T 1 i x , , T j k S n , j T j i x S n , j T j k T j i x ) j =0
(1)

uniformly for each k1.

Proof By induction on n, we prove this lemma. First, we prove the conclusion in the case n=2. Put

r = lim n sup j 1 ( T 1 n + 1 x T 1 n x , , T j n + 1 x T j n x ) j , R = ( x T 1 x , , x T j x ) j , x i , j = T j i x

for each i1.

If r0, then, for any ϵ>0, choose c>0 such that r r + c >1 δ R (ϵ)/2. Then there exists N>0 such that, for all iN,

( T 1 k x i , 1 T 1 k + 1 x i , 1 , , T j k x i , j T j k + 1 x i , j ) j r+c

for each k1. If we put

u j = 1 2 ( T j k z T j k x i , j ) , v j = 1 2 ( T j k + 1 x i , j T j k z j ) ,

where iN, k>0 and z j = 1 2 ( x i , j + T j x i , j ), then we have

( u 1 , , u j ) j 1 2 ( z 1 x i , 1 z j x i , j ) j = 1 4 ( T 1 x i , 1 x i , 1 , , T j x i , j x i , j ) j 1 4 ( r + c ) .

Similarly, we have ( v 1 , , v j ) j 1 4 (r+c). Suppose that

( u 1 v 1 , , u j v j ) j = ( T 1 k z 1 1 2 ( T 1 k + 1 x i , 1 + T 1 k x i , 1 ) , , T j k z j 1 2 ( T j k + 1 x i , j + T j k x i , j ) ) j ϵ .

Then, by Lemma 3.1, we have

1 2 ( u 1 + v 1 , , u j + v j ) j = 1 4 ( T 1 k + 1 x i , 1 T 1 k x i , 1 , , T j k + 1 x i , j T j k x i , j ) j 1 4 ( r + c ) ( 1 1 2 δ R ( ϵ ) ) ,

which contradicts r>(r+c)(1 1 2 δ R (ϵ)).

If r=0, then, for any ϵ>0, choose i>0 so large that sup j ( u 1 , , u j ) j < ϵ 2 . Hence we have

sup j 1 ( T 1 k z 1 1 2 ( T 1 k + 1 x i , 1 + T 1 k x i , 1 ) , , T j k z j 1 2 ( T j k + 1 x i , j + T j k x i , j ) ) j = sup j 1 ( u 1 v 1 , , u j v j ) j sup j 1 ( u 1 , , u j ) j + sup j 1 ( v 1 , , v j ) j < ϵ .

This completes the proof of the case n=2.

Now, suppose that

lim i sup j 1 ( T 1 k S n 1 , 1 x i , 1 S n 1 , 1 T 1 k x i , 1 , , T j k S n 1 , j x i , j S n 1 , j T j k x i , j ) j =0

uniformly for each k1. We claim that

lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j

exists. Put

r= lim inf i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j .

For any ϵ>0, choose i>0 such that

sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j <r+ ϵ 2

and

sup j 1 ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j < ϵ 2 .

Then we have

sup j 1 ( S n 1 , 1 T 1 x i + k , 1 x i + k , 1 , , S n 1 , j T j x i + k , j x i + k , j ) j sup j 1 ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j + sup j 1 ( T 1 k S n 1 , 1 x i + 1 , 1 T 1 k x i , 1 , , T j k S n 1 , j x i + 1 , j T j k x i , j ) j < ϵ 2 + r + ϵ 2 = r + ϵ

for all k1. Therefore, we have

lim sup i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j = lim sup k sup j 1 ( S n 1 , 1 T 1 x i + k , 1 x i + k , 1 , , S n 1 , j T j x i + k , j x i + k , j ) j < r + ϵ .

Since ϵ>0 is arbitrary, we have

lim sup i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , 1 x i , 1 ) j lim inf i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j ,

i.e., lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j exists.

Now, we put

r= lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j .

If r0, then, for any ϵ, choose c>0 such that

r c r + 2 c >1 ( 2 ( n 1 ) n 2 ) δ 3 r (ϵ).

Then there exists N>0 such that, if, for all iN, we put

u j = n ( n 1 ) ( T j k S n , j x i , j T j k x i , j ) , v j =n ( S n 1 , j T j k x i + 1 , j T j k S n , j x i , j ) ,

so

( u 1 , , u j ) j ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j r + c , ( v 1 , , v 2 ) j n ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j + ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j r + 2 c

and

( u 1 v 1 , , u j v j ) j = n n 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j .

Hence, by the method in the proof of the case n=2, we have

sup j 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j <ϵ

for all k1 and iN.

If r=0, then, as in the proof of the case n=2, there exists N such that, for each i N ,

sup j 1 ( u 1 , , u j ) j < ϵ 2 , sup j 1 ( v 1 , , v j ) j < ϵ 2 .

Therefore, we have

sup j 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j <ϵ.

This completes the proof. □

Now, assume that the norm of X is Frechet differentiable and then we have the following.

Proposition 3.5 ([4, 6, 13])

Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. If we put W j (x)= m c o ¯ { T j k x:km} for all xC, then W j (x)F( T j ) is at most one point.

In this paper, we give a new proof of the following theorem, which is due to Reich [6].

Theorem 3.6 Let { ( X j , j ) } j N be a uniformly convex multi-Banach space which has the Fréchet differentiable norm. Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. Then the following statements are equivalent:

  1. (1)

    F( T j ).

  2. (2)

    { T j n x} is bounded for all xC.

  3. (3)

    For all xC, { S n T j i x} converges weakly to a point ( y 1 ,, y j ) C j uniformly for each i1.

Proof (1) ⟺ (2) is well known in [12].

(3) ⟺ (2) Suppose that, for some xC, there exists an unbounded subsequence { T j n i x} of { T j n x}. For each j1, since T j is a nonexpansive mapping, it follows that, for each m>0, the sequence { S m < j T j n i x} is also unbounded, which contradicts the condition (3).

(2) ⟺ (3) Since { T j n x} is bounded and

( T 1 S n , 1 T 1 i x S n , 1 T 1 i x , , T j S n , j T j i x S n , j T j i x ) j ( T 1 S n , 1 T 1 i x S n , 1 T 1 T 1 i x , , T j S n , j T j i x S n , j T j T j i x ) j + ( S n , 1 T 1 T 1 i x S n , 1 T 1 i x , , S n , j T j T j i x S n , j T j i x ) j ( T 1 S n , 1 T 1 i x S n , 1 T 1 T 1 i x , , T j S n , j T j i x S n , j T j T j i x ) j + 1 n ( T 1 i + 1 + n x T 1 i x , , T j i + 1 + n x T j i x ) j ,

there exists a sequence { S n , j T j i n x} such that

lim n sup j 1 ( T 1 S n , 1 T 1 i n x S n , 1 T 1 i n x , , T j S n , j T j i n x S n , j T j i n x ) j =0.

Then, by Lemma 3.3 and Proposition 3.5, it follows that any weakly multi-convergent subsequence of { S n , j T j i n x} multi-converges weakly to a point y j , i.e., S n , j T j i n x y j , where y j = W j (x)F( T j ). Also, by Lemma 3.4, it follows that

lim n sup j 1 ( T 1 S n , 1 T 1 i n + k n + i x S n , 1 T 1 i n + k n + i x , , T j S n , j T j i n + k n + i x S n , j T j i n + k n + i x ) j =0

for all i,k1. Therefore, S n , j T j i n + k n x i y j uniformly for each k1.

On the other hand, for each n1 with m i n , we have

S m , j T j i x = 1 m k = 0 m 1 T j k x i = 1 m ( k = i n + t n m 1 T j k x i + n ( k = 0 t S n T j i n + k n x i ) + k = 0 i n T j k x i ) ,

where m=tn+ i n +r, r<n. Since { S n , j T j i n + k n x i } multi-converges to y j uniformly for each k1, it follows that { S m , j T j i x} converges weakly to y j uniformly for each i1. This completes the proof. □