Skip to main content

Advertisement

Log in

CD105+ Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly (P <.05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic β cell-like cells was evident with the changes in morphology and the expression of β-cell—specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to β cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rho GJ, Kumar BM, Balasubramanian SS. Porcine mesenchymal stem cells — current technological status and future perspective. Front Biosci (Landmark Ed). 2009;14:3942–3961.

    Article  CAS  Google Scholar 

  2. Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod. 2015;92(6):138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ringe J, Kaps C, Schmitt B, et al. Porcine mesenchymal stem cells. Cell Tissue Res. 2002;307(3):321–327.

    Article  CAS  PubMed  Google Scholar 

  4. Ock SA, Lee YM, Park JS, et al. Evaluation of phenotypic, functional and molecular characteristics of porcine mesenchymal stromal/stem cells depending on donor age, gender and tissue source. J Vet Med Sci. 2016;78(6):987–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from wharton’s jelly form neurons and glia. Stem Cells. 2003;21(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar BM, Yoo JG, Ock SA, et al. In vitro differentiation of mesenchymal progenitor cells derived from porcine umbilical cord blood. Mol Cells. 2007;24(3):343–350.

    CAS  PubMed  Google Scholar 

  7. Kumar BM, Maeng GH, Lee YM, et al. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow. Res Vet Sci. 2012;93(2):749–757.

    Article  CAS  PubMed  Google Scholar 

  8. Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res. 2009;338(3):401–411.

    Article  PubMed  Google Scholar 

  9. Chan RWS, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70(6):1738–1750.

    Article  CAS  PubMed  Google Scholar 

  10. Miernik K, Karasinski J. Porcine uterus contains a population of mesenchymal stem cells. Reproduction. 2012;143(2):203–209.

    Article  CAS  PubMed  Google Scholar 

  11. Subbarao RB, Ullah I, Kim EJ, et al. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci. 2015;16(5):10934–10951.

    Article  CAS  PubMed  Google Scholar 

  12. Tomita S, Mickle DAG, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002;123(6):1132–1140.

    Article  PubMed  Google Scholar 

  13. Rangappa S, Fen C, Lee EH, Bongso A, Sim EKW, Wei EKS. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003;75(3):775–779.

    Article  PubMed  Google Scholar 

  14. Sulewska A, Niklinska W, Kozlowski M, et al. DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol. 2007;45(3):149–158.

    CAS  PubMed  Google Scholar 

  15. Colleoni S, Donofrio G, Lagutina I, Duchi R, Galli C, Lazzari G. Establishment, differentiation, electroporation, viral transduction, and nuclear transfer of bovine and porcine mesenchymal stem cells. Cloning Stem Cells. 2005;7(3):154–166.

    Article  CAS  PubMed  Google Scholar 

  16. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008;95(2):137–148.

    Article  CAS  PubMed  Google Scholar 

  17. Burlacu A. Can 5-azacytidine convert the adult stem cells into cardiomyocytes? A brief overview. Arch Physiol Biochem. 2006;112(4–5):260–264.

    Article  CAS  PubMed  Google Scholar 

  18. Xing Y, Lv A, Wang L, Yan X. The combination of angiotensin II and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem. 2012;360(1–2):279–287.

    Article  CAS  PubMed  Google Scholar 

  19. Shi S, Wu X, Wang X, et al. Differentiation of bone marrow mesenchymal stem cells to cardiomyocyte-like cells is regulated by the combined low dose treatment of transforming growth factor-β1 and 5-azacytidine. Stem Cells Int. 2016;2016:3816256.

    Article  PubMed  CAS  Google Scholar 

  20. Oliver-Krasinski JM, Stoffers DA. On the origin of the cell. Genes Dev. 2008;22(15):1998–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med. 2012;29(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  22. Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9(10):598–606.

    Article  CAS  PubMed  Google Scholar 

  23. Lilly MA, Davis MF, Fabie JE, Terhune EB, Gallicano GI. Current stem cell based therapies in diabetes. Am J Stem Cells. 2016;5(3):87–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001;292(5520):1389–1394.

    Article  CAS  PubMed  Google Scholar 

  25. Burns CJ, Persaud SJ, Jones PM. Diabetes mellitus: a potential target for stem cell therapy. Curr Stem Cell Res Ther. 2006;1(2):255–266.

    Article  CAS  PubMed  Google Scholar 

  26. Lu Y, Wang Z, Zhu M. Human bone marrow mesenchymal stem cells transfected with human insulin genes can secrete insulin stably. Ann Clin Lab Sci. 2006;36(2):127–136.

    CAS  PubMed  Google Scholar 

  27. Li HY, Chen YJ, Chen SJ, et al. Induction of insulin-producing cells derived from endometrial mesenchymal stem-like cells. J Pharmacol Exp Ther. 2010;335(3):817–829.

    Article  CAS  PubMed  Google Scholar 

  28. Santamaria X, Massasa EE, Feng Y, Wolff E, Taylor HS. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol Ther. 2011;19(11):2065–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shivakumar SB, Bharti D, Jang SJ, et al. Cryopreservation of human Wharton’s jelly-derived mesenchymal stem cells following controlled rate freezing protocol using different cryoprotectants; a comparative study. Int J stem cells. 2015;8(2):155–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tamagawa T, Ishiwata I, Sato K, Nakamura Y. Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell. 2009;22(3):55–63.

    Article  PubMed  Google Scholar 

  31. Shivakumar SB, Bharti D, Subbarao RB, et al. DMSO- and serum-free cryopreservation of Wharton’s jelly tissue isolated from human umbilical cord. J Cell Biochem. 2016;117(10):2397–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  33. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105(7):829–841.

    Article  CAS  PubMed  Google Scholar 

  34. Raff M. Adult stem cell plasticity: fact or artifact?. Annu Rev Cell Dev Biol. 2003;19(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  35. Weiss ML, Mitchell KE, Hix JE, et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol. 2003;182(2):288–299.

    Article  CAS  PubMed  Google Scholar 

  36. Hida N, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008;26(7):1695–1704.

    Article  CAS  PubMed  Google Scholar 

  37. Ikegami Y, Miyoshi S, Nishiyama N, et al. Serum-independent cardiomyogenic transdifferentiation in human endometrium-derived mesenchymal cells. Artif Organs. 2010;34(4):280–288.

    Article  PubMed  Google Scholar 

  38. Ye NS, Zhang RL, Zhao YF, Feng X, Wang YM, Luo GA. Effect of 5-azacytidine on the protein expression of porcine bone marrow mesenchymal stem cells in vitro. Genomics Proteomics Bioinform. 2006;4(1):18–25.

    Article  CAS  Google Scholar 

  39. Williams B. Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol. 2001;87(8A):10C–17C.

    Article  CAS  PubMed  Google Scholar 

  40. Ohtani K, Egashira K, Ihara Y, et al. Angiotensin II type 1 receptor blockade attenuates in-stent restenosis by inhibiting inflammation and progenitor cells. Hypertens (Dallas, Tex 1979). 2006;48(4):664–670.

    Article  CAS  Google Scholar 

  41. Yamada T, Kondo T, Numaguchi Y, et al. Angiotensin II receptor blocker inhibits neointimal hyperplasia through regulation of smooth muscle-like progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(11):2363–2369.

    Article  CAS  PubMed  Google Scholar 

  42. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Chu Y, Shen W, Dou Z. Effect of 5-azacytidine induction duration on differentiation of human first-trimester fetal mesenchymal stem cells towards cardiomyocyte-like cells. Interact Cardiovasc Thorac Surg. 2009;9(6):943–946.

    Article  PubMed  Google Scholar 

  44. Chen S, Borowiak M, Fox JL, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol. 2009;5(4):258–265.

    Article  CAS  PubMed  Google Scholar 

  45. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Investig. 2004;84(5):607–617.

    Article  CAS  PubMed  Google Scholar 

  46. Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev. 2001;15(2):111–127.

    Article  CAS  PubMed  Google Scholar 

  47. Cho YM, Lim JM, Yoo DH, et al. Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic β-cell differentiation in human embryonic stem cells. Biochem Biophys Res Commun. 2008;366(1):129–134.

    Article  CAS  PubMed  Google Scholar 

  48. Chelluri LK, Kancherla R, Turlapati N, et al. Improved differentiation protocol of rat bone marrow precursors to functional islet like cells. Stem Cell Stud. 2011;1(1):5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Jin Rho PhD.

Additional information

Authors’ Note

Raghavendra Baregundi Subbarao and Sharath Belame Shivakumar contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subbarao, R.B., Shivakumar, S.B., Choe, YH. et al. CD105+ Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro. Reprod. Sci. 26, 669–682 (2019). https://doi.org/10.1177/1933719118786461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118786461

Keywords

Navigation