Skip to main content

Advertisement

Log in

Effects of the Catechol and Methoxy Metabolites of 17β-Estradiol on Nitric Oxide Production by Ovine Uterine Artery Endothelial Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) production is essential to facilitate rises in uterine blood flow (UBF) during pregnancy. It has been proposed that the metabolites of E2β, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), 2-methoxyestradiol (2-ME2), and 4-methoxyestradiol (4-ME2) play a role in mediating vasodilation and rises in UBF during pregnancy. We previously showed that the E2β metabolites stimulate prostacyclin production in pregnancy-derived ovine uterine artery endothelial cells (P-UAECs); however, it is unknown whether the E2β metabolites also induce NO production. Herein, UAECs derived from nonpregnant and pregnant ewes were used to test the hypothesis that E2β metabolites stimulate NO production in a pregnancy-specific manner. Specific estrogen receptor (ER) and adrenergic receptor (AR) antagonists were used to determine the roles of ERs or ARs in E2β metabolite-induced NO production. E2β and its metabolites increased total nitric oxide metabolites (NOx) levels (NO2 + NO3) in P-UAECs, but not in NP-UAECs. Pretreatment with combined 1 µmol/L 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP; ER-α antagonist) and 1 µmol/L 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP; ER-β antagonist) inhibited the rises in NOx levels stimulated by E2β and 2-ME2, but had no effect on 2-OHE2-, 4-OHE2-, or 4-ME2-stimulated rises in NOx levels. Pretreatment with yohimbine (α2-AR antagonist) and propranolol (β2,3-AR antagonist) inhibited the rises in NOx levels stimulated by 2-OHE2, but not by E2β, 4-OHE2, 2-ME2, or 4-ME2. These data demonstrate that E2β metabolites stimulate NO synthesis via ERs or ARs in UAECs in a pregnancy-specific manner, suggesting that these metabolites contribute to rises in vasodilation and UBF during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conrad KP, Joffe GM, Kruszyna H, et al. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J. 1993;7(6):566–571.

    Article  CAS  PubMed  Google Scholar 

  2. Resnik R, Killam AP, Barton MD, Battaglia FC, Makowski EL, Meschia G. The effect of various vasoactive compounds upon the uterine vascular bed. Am J Obstet Gynecol. 1976;125(2):201–206.

    Article  CAS  PubMed  Google Scholar 

  3. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol. 1997;272(2 Pt 2):R441–R463.

    CAS  PubMed  Google Scholar 

  4. Weiner CP, Thompson LP. Nitric oxide and pregnancy. Semin Perinatol. 1997;21(5):367–380.

    Article  CAS  PubMed  Google Scholar 

  5. Yang D, Lang U, Greenberg SG, Myatt L, Clark KE. Elevation of nitrate levels in pregnant ewes and their fetuses. Am J Obstet Gynecol. 1996;174(2):573–577.

    Article  CAS  PubMed  Google Scholar 

  6. Magness RR. Maternal cardiovascular and other physiologic responses to the endocrinology of pregnancy. In: Bazer FW, ed. The Endocrinology of Pregnancy. Totowa, NJ: Humana Press Inc; 1998:507–539.

    Chapter  Google Scholar 

  7. Tranquilli AL, Bezzeccheri V, Giannubilo SR, Scagnoli C, Mazzanti L, Garzetti GG. Amniotic levels of nitric oxide in women with fetal intrauterine growth restriction. The J Matern Fetal Neonatal Med. 2003;13(2):115–118.

    Article  CAS  PubMed  Google Scholar 

  8. Remuzzi G, Marchesi D, Zoja C, et al. Reduced umbilical and placental vascular prostacyclin in severe pre-eclampsia. Prostaglandins. 1980;20(1):105–110.

    Article  CAS  PubMed  Google Scholar 

  9. Seligman SP, Buyon JP, Clancy RM, Young BK, Abramson SB. The role of nitric oxide in the pathogenesis of preeclampsia. Am J Obstet Gynecol. 1994;171(4):944–948.

    Article  CAS  PubMed  Google Scholar 

  10. White RE. Estrogen and vascular function. Vascul Pharmacol. 2002;38(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  11. Stefano GB, Prevot V, Beauvillain JC, et al. Cell-surface estrogen receptors mediate calcium-dependent nitric oxide release in human endothelia. Circulation. 2000;101(13):1594–1597.

    Article  CAS  PubMed  Google Scholar 

  12. Lantin-Hermoso RL, Rosenfeld CR, Yuhanna IS, German Z, Chen Z, Shaul PW. Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium. Am J Physiol Renal Physiol. 1997;273(1 pt 1):L119–L126.

    Article  CAS  Google Scholar 

  13. Chang K, Lubo Z. Review article: steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci. 2008;15(4):336–348.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenfeld CR, Cox BE, Roy T, Magness RR. Nitric oxide contributes to estrogen-induced vasodilation of the ovine uterine circulation. J Clin Invest. 1996;98(9):2158–2166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dotsch J, Hogen N, Nyul Z, et al. Increase of endothelial nitric oxide synthase and endothelin-1 mRNA expression in human placenta during gestation. Eur J Obstet Gynecol Reprod Biol. 2001;97(2):163–167.

    Article  CAS  PubMed  Google Scholar 

  16. Collins P, Shay J, Jiang C, Moss J. Nitric oxide accounts for dose-dependent estrogen-mediated coronary relaxation after acute estrogen withdrawal. Circulation. 1994;90(4):1964–1968.

    Article  CAS  PubMed  Google Scholar 

  17. Vedernikov YP, Liao QP, Jain V, Saade GR, Chwalisz K, Garfield RE. Effect of chronic treatment with 17beta-estradiol and progesterone on endothelium-dependent and endothelium-independent relaxation in isolated aortic rings from ovariectomized rats. Am J Obstet Gynecol. 1997;176(3):603–608.

    Article  CAS  PubMed  Google Scholar 

  18. Magness RR, Parker CR Jr, Rosenfeld CR. Systemic and uterine responses to chronic infusion of estradiol-17 beta. Am J Physiol. 1993;265(5 pt 1):E690–E698.

    CAS  PubMed  Google Scholar 

  19. Dubey RK, Jackson EK. Cardiovascular protective effects of 17beta-estradiol metabolites. J Appl Physiol (1985). 2001;91(4):1868–1883.

    Article  CAS  Google Scholar 

  20. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340(23):1801–1811.

    Article  CAS  PubMed  Google Scholar 

  21. Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction. Hypertension. 2013;61(2):480–487.

    Article  CAS  PubMed  Google Scholar 

  22. Dubey RK, Tofovic SP, Jackson EK. Cardiovascular pharmacology of estradiol metabolites. J Pharmacol Exp Ther. 2004;308(2):403–409.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenfeld CR, Jackson GM. Induction and inhibition of uterine vasodilation by catechol estrogen in oophorectomized, nonpregnant ewes. Endocrinology. 1982;110(4):1333–1339.

    Article  CAS  PubMed  Google Scholar 

  24. Stice SL, Ford SP, Rosazza JP, Van Orden DE. Interaction of 4-hydroxylated estradiol and potential-sensitive Ca2+ channels in altering uterine blood flow during the estrous cycle and early pregnancy in gilts. Biol Reprod. 1987;36(2):369–375.

    Article  CAS  PubMed  Google Scholar 

  25. Ford SP. Factors controlling uterine blood flow during estrous and early pregnancy. In: Roselfeld CR, (ed.)

  26. Ball P, Knuppen R. Catecholoestrogens (2-and 4-hydroxyoestrogens): chemistry, biogenesis, metabolism, occurrence and physiological significance. Acta Endocrinol Suppl (Copenh). 1980;232:1–127.

    CAS  Google Scholar 

  27. Chen W, Cui Y, Zheng S, et al. 2-Methoxyestradiol induces vasodilation by stimulating NO release via PPARγ/PI3K/Akt pathway. PLoS One. 2015;10(3):e0118902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fenoy FJ, Hernandez ME, Hernandez M, Quesada T, Salom MG, Hernandez I. Acute effects of 2-methoxyestradiol on endothelial aortic No release in male and ovariectomized female rats. Nitric Oxide. 2010;23(1):12–19.

    Article  CAS  PubMed  Google Scholar 

  29. Hill BJ, Gebre S, Schlicker B, Jordan R, Necessary S. Nongenomic inhibition of coronary constriction by 17ss-estradiol, 2-hydroxyestradiol, and 2-methoxyestradiol. Can J Physiol Pharmacol. 88(2):147–152.

  30. Jobe SO, Ramadoss J, Wargin AJ, Magness RR. Estradiol-17beta and its cytochrome P450- and catechol-O-methyltransferase-derived metabolites selectively stimulate production of prostacyclin in uterine artery endothelial cells: role of estrogen receptor-alpha versus estrogen receptor-beta. Hypertension. 2013;61(2):509–518.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999;103(3):401–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastore MB, Talwar S, Conley MR, Magness RR. Identification of differential ER-Alpha versus ER-Beta mediated activation of eNOS in ovine uterine artery endothelial cells. Biol Reprod. 2016;94(6):139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Magness RR, Rosenfeld CR. Local and systemic estradiol-17 beta: effects on uterine and systemic vasodilation. Am J Physiol. 1989;256(4 Pt 1):E536–E542.

    CAS  PubMed  Google Scholar 

  34. Magness RR, Rosenfeld CR. The role of steroid hormones in control of uterine blood flow. In: The Uterine Circulation (Rosenfeld CR, ed.): Perinatology Press, Ithaca NY; 1989:239–271.

    Google Scholar 

  35. LaVallee TM, Zhan XH, Herbstritt CJ, Kough EC, Green SJ, Pribluda VS. 2-Methoxyestradiol inhibits proliferation and induces apoptosis independently of estrogen receptors alpha and beta. Cancer Res. 2002;62(13):3691–3697.

    CAS  PubMed  Google Scholar 

  36. Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol. 2001;280(3):F365–F388.

    Article  CAS  PubMed  Google Scholar 

  37. Jobe SO, Fling SN, Ramadoss J, Magness RR. A novel role for an endothelial adrenergic receptor system in mediating catecholestradiol-induced proliferation of uterine artery endothelial cells. Hypertension. 2011;58(5):874–881.

    Article  CAS  PubMed  Google Scholar 

  38. Miller VM, Vanhoutte PM. Endothelial alpha 2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol. 1985;118(1–2):123–129.

    Article  CAS  PubMed  Google Scholar 

  39. Figueroa XF, Poblete MI, Boric MP, Mendizabal VE, Adler-Graschinsky E, Huidobro-Toro JP. Clonidine-induced nitric oxide-dependent vasorelaxation mediated by endothelial alpha(2)-adrenoceptor activation. Br J Pharmacol. 2001;134(5):957–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Figueroa XF, Poblete I, Fernandez R, Pedemonte C, Cortes V, Huidobro-Toro JP. NO production and eNOS phosphorylation induced by epinephrine through the activation of beta-adrenoceptors. Am J Physiol Heart Circ Physiol. 2009;297(1):H134–H143.

    Article  CAS  PubMed  Google Scholar 

  41. Landeros RV, Jobe SO, Aranda-Pino G, Lopez GE, Zheng J, Magness RR. Convergent ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) signalling mediate catecholoestradiol-induced proliferation of ovine uterine artery endothelial cells. J Physiol. 2017;595(14):4663–4676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bird IM, Sullivan JA, Di T, et al. Pregnancy-dependent changes in cell signaling underlie changes in differential control of vasodilator production in uterine artery endothelial cells Endocrinology. 2000;141(3):1107–1117.

    Article  CAS  PubMed  Google Scholar 

  43. Jobe SO, Ramadoss J, Koch JM, Jiang Y, Zheng J, Magness RR. Estradiol-17beta and its cytochrome P450- and catechol-O-methyltransferase-derived metabolites stimulate proliferation in uterine artery endothelial cells: role of estrogen receptor-alpha versus estrogen receptor-beta. Hypertension. 2010;55(4):1005–1011.

    Article  CAS  PubMed  Google Scholar 

  44. Kanasaki K, Palmsten K, Sugimoto H, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453(7198):1117–1121.

    Article  CAS  PubMed  Google Scholar 

  45. Lai KB, Sanderson JE, Yu CM. The regulatory effect of norepinephrine on connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF) expression in cultured cardiac fibroblasts. Int J Cardiol. 2013;163(2):183–189.

    Article  PubMed  Google Scholar 

  46. Lunell NO, Nylund LE, Lewander R, Sarby B. Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin Exp Hypertens B. 1982;1(1):105–117.

    CAS  PubMed  Google Scholar 

  47. Palmer SK, Moore LG, Young D, Cregger B, Berman JC, Zamudio S. Altered blood pressure course during normal pregnancy and increased preeclampsia at high altitude (3100 meters) in Colorado. Am J Obstet Gynecol. 1999;180(5):1161–1168.

    Article  CAS  PubMed  Google Scholar 

  48. Palmer SK, Zamudio S, Coffin C, Parker S, Stamm E, Moore LG. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol. 1992;80(6):1000–1006.

    CAS  PubMed  Google Scholar 

  49. Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev. 2002;23(5):665–686.

    Article  CAS  PubMed  Google Scholar 

  50. Chambliss KL, Yuhanna IS, Anderson RG, Mendelsohn ME, Shaul PW. ERbeta has nongenomic action in caveolae. Mol Endocrinol. 2002;16(5):938–946.

    CAS  PubMed  Google Scholar 

  51. Parada-Bustamante A, Orihuela PA, Rios M, et al. Catechol-o-methyltransferase and methoxyestradiols participate in the intraoviductal nongenomic pathway through which estradiol accelerates egg transport in cycling rats. Biol Reprod. 2007;77(6):934–941.

    Article  CAS  PubMed  Google Scholar 

  52. Sutherland TE, Schuliga M, Harris T, et al. 2-methoxyestradiol is an estrogen receptor agonist that supports tumor growth in murine xenograft models of breast cancer. Clin Cancer Res. 2005;11(5):1722–1732.

    Article  CAS  PubMed  Google Scholar 

  53. Barchiesi F, Jackson EK, Fingerle J, Gillespie DG, Odermatt B, Dubey RK. 2-Methoxyestradiol, an estradiol metabolite, inhibits neointima formation and smooth muscle cell growth via double blockade of the cell cycle. Circ Res. 2006;99(3):266–274.

    Article  CAS  PubMed  Google Scholar 

  54. Barchiesi F, Lucchinetti E, Zaugg M, et al. Candidate genes and mechanisms for 2-methoxyestradiol-mediated vasoprotection. Hypertension. 2010;56(5):964–972.

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Ahn S, Ren XR, et al. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A. 2005;102(5):1442–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci. 2007;28(8):397–406.

    Article  CAS  PubMed  Google Scholar 

  57. Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A. 2009;106(24):9649–9654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev. 2012;33(2):271–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang L, Martin B, Brenneman R, Luttrell LM, Maudsley S. Allosteric modulators of g protein-coupled receptors: future therapeutics for complex physiological disorders. J Pharmacol Exp Ther. 2009;331(2):340–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brailoiu E, Dun SL, Brailoiu GC, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol. 2007;193(2):311–321.

    Article  CAS  PubMed  Google Scholar 

  61. Filardo EJ, Thomas P. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology. 2012;153(7):2953–2962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindsey SH, da Silva AS, Silva MS, Chappell MC. Reduced vasorelaxation to estradiol and G-1 in aged female and adult male rats is associated with GPR30 downregulation. Am J Physiol Endocrinol Metab. 2013;305(1):E113–E118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Broughton BR, Miller AA, Sobey CG. Endothelium-dependent relaxation by G protein-coupled receptor 30 agonists in rat carotid arteries. Am J Physiol Heart Circ Physiol. 2010;298(3):H1055–H1061.

    Article  CAS  PubMed  Google Scholar 

  64. Chakrabarti S, Davidge ST. G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation. PLoS One. 2012;7(12): e52357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rowlands DJ, Chapple S, Siow RC, Mann GE. Equol-stimulated mitochondrial reactive oxygen species activate endothelial nitric oxide synthase and redox signaling in endothelial cells: roles for F-actin and GPR30. Hypertension. 2011;57(4):833–840.

    Article  CAS  PubMed  Google Scholar 

  66. Buhimschi I, Yallampalli C, Chwalisz K, Garfield RE. Pre-eclampsia-like conditions produced by nitric oxide inhibition: effects of L-arginine, D-arginine and steroid hormones. Hum Reprod.1995;10(10):2723–2730.

    Article  CAS  PubMed  Google Scholar 

  67. Edwards DL, Arora CP, Bui DT, Castro LC. Long-term nitric oxide blockade in the pregnant rat: effects on blood pressure and plasma levels of endothelin-1. Am J Obstet Gynecol. 1996;175(2):484–488.

    Article  CAS  PubMed  Google Scholar 

  68. Yallampalli C, Garfield RE. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am J Obstet Gynecol. 1993;169(5):1316–1320.

    Article  CAS  PubMed  Google Scholar 

  69. Stanley JL, Andersson IJ, Poudel R, et al. Sildenafil citrate rescues fetal growth in the catechol-O-methyl transferase knockout mouse model. Hypertension. 2012;59(5):1021–1028.

    Article  CAS  PubMed  Google Scholar 

  70. Zoma WD, Baker RS, Clark KE. Effects of combined use of sildenafil citrate (Viagra) and 17beta-estradiol on ovine coronary and uterine hemodynamics. Am J Obstet Gynecol. 2004;190(5):1291–1297.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Magness PhD.

Additional information

Authors’ Note

The work reported in this article was performed at the University of Wisconsin—Madison. R.V.L. contributed to the conception and design of the study, acquisition of data, analysis and interpretation of data, and writing of the manuscript. M.B.P. contributed to the design of the study and acquisition of data and interpretation and revised the article for intellectual content. R.R.M. contributed to the conception and design of the study, interpretation of data and discussion, and revised manuscript for intellectual content. All authors approved the final version to be published.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landeros, R.V., Pastore, M.B. & Magness, R.R. Effects of the Catechol and Methoxy Metabolites of 17β-Estradiol on Nitric Oxide Production by Ovine Uterine Artery Endothelial Cells. Reprod. Sci. 26, 459–468 (2019). https://doi.org/10.1177/1933719118783265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118783265

Keywords

Navigation