Skip to main content

Advertisement

Log in

Maternal Serum Endocan Concentration in Pregnancies Complicated by Intrauterine Growth Restriction

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objectives

Endocan plays a role in the development of vascular tissue in health and disease and is an indicator of endothelial cells activation and angiogenesis. Therefore, this study aimed to investigate the relationship between maternal endocan serum level and intrauterine growth restriction (IUGR) as well as ultrasound Doppler flow measurements indicating placental insufficiency.

Methods

This study included a group of women with IUGR (n = 37) and a group of healthy pregnant women (controls, n = 37). The endocan serum concentrations were assessed using commercially available enzyme-linked immunosorbent assay kit. Every woman underwent an ultrasound examination with Doppler flow measurements of the uterine arteries, umbilical vessels, and fetal middle cerebral artery. We used the cerebroplacental ratio (CPR) to determine placental insufficiency.

Results

We found significant differences in median (interquartile) endocan serum level (pg/mL) between study and control groups (464 [374–532] vs 339 [189–496], respectively; P <.001). The endocan serum level correlated neither with umbilical cord blood gases nor with Apgar score. Ultrasound Doppler findings revealed significant differences in middle cerebral artery pulsatility index (PI), umbilical artery PI, CPR, as well as mean uterine arteries PI between IUGR group and controls. In the study group, we found significant correlations between the serum endocan and CPR (R = 0.56, P <.001) as well as between serum endocan and mean uterine arteries PI (R = 0.46, P =.006).

Conclusion

Endocan is likely involved in the pathogenesis of IUGR in pregnant women and possibly is a useful marker of endothelial dysfunction in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nardozza LM, Caetano, Zamarian AC, et al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–1077.

    PubMed  Google Scholar 

  2. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113(1):1–13.

    CAS  PubMed  Google Scholar 

  3. Robertson WB, Brosens I, Pijnenborg R, De Wolf F. The making of the placental bed. Eur J Obstet Gynecol Reprod Biol. 1984;18(5–6):255–266.

    CAS  PubMed  Google Scholar 

  4. Biyashev D, Qin G. E2F and microRNA regulation of angiogenesis. Am J Cardiovasc Dis. 2011;1(2):110–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maulik D, De A, Ragolia L, et al. Down-regulation of placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol. 2016;214(2):279.e1–279.e9.

    CAS  Google Scholar 

  6. Herraiz I, Simón E, Gómez-Arriaga P, et al. Angiogenesis-related biomarkers (sflt-1/plgf) in the prediction and diagnosis of placental dysfunction: an approach for clinical integration. Int J Mol Sci. 2015;16(8):19009–19026.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203(9):2165–2175.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Szentpéteri I, Rab A, Kornya L, Kovács P, Joó JG. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction. J Matern Neonatal Med. 2013;26(10):984–989.

    Google Scholar 

  9. Kali A, Shetty KSR. Endocan: a novel circulating proteoglycan. Indian J Pharmacol. 2014;46(6):579.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Zuo L, Zhou Q, et al. Expression and distribution of endocan in human tissues. Biotech Histochem. 2012;87(3):172–178.

    CAS  PubMed  Google Scholar 

  11. Sarrazin S, Adam E, Lyon M, et al. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta. 2006;1765(1):25–37.

    CAS  PubMed  Google Scholar 

  12. Balta S, Mikhailidis DP, Demirkol S, Ozturk C, Celik T, Iyisoy A. Endocan: a novel inflammatory indicator in cardiovascular disease? Atherosclerosis. 2015;243(1):339–343.

    CAS  PubMed  Google Scholar 

  13. Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood. 2008;112(6):2318–2326.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Arroyo JA, Winn VD. Vasculogenesis and angiogenesis in the IUGR placenta. Semin Perinatol. 2008;32(3):172–177.

    PubMed  Google Scholar 

  15. Maulik D, Frances Evans J, Ragolia L. Fetal growth restriction: pathogenic mechanisms. Clin Obstet Gynecol. 2006;49(2):219–227.

    PubMed  Google Scholar 

  16. Kiserud T, Piaggio G, Carroli G, et al. The World Health Organization fetal growth charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLOS Med. 2017;14(1):e1002220.

    PubMed  PubMed Central  Google Scholar 

  17. ACOG practice bulletin. Antepartum fetal surveillance. Number 9, October 1999 (replaces Technical Bulletin Number 188, January 1994). Clinical management guidelines for obstetrician-gynecologists. Int J Gynaecol Obstet. 2000;68(2):175–185.

    Google Scholar 

  18. Gosling RG, Dunbar G, King DH, et al. The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive ultrasonic technique. Angiology. 1971;22(1):52–55.

    CAS  PubMed  Google Scholar 

  19. Soto E, Romero R, Kusanovic JP, et al. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J Matern Fetal Neonatal Med. 2012;25(5):498–507.

    CAS  PubMed  Google Scholar 

  20. Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotechini T, Graham CH. Aberrant maternal inflammation as a cause of pregnancy complications: a potential therapeutic target? Placenta. 2015;36(8):960–966.

    CAS  PubMed  Google Scholar 

  22. Béchard D, Scherpereel A, Hammad H, et al. Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1. J Immunol. 2001;167(6):3099–3106.

    PubMed  Google Scholar 

  23. Balta I, Balta S, Koryurek OM, et al. Serum endocan levels as a marker of disease activity in patients with Behçet disease. J Am Acad Dermatol. 2014;70(2):291–296.

    CAS  PubMed  Google Scholar 

  24. Sargent IL, Borzychowski AM, Redman CW. NK cells and human pregnancy—an inflammatory view. Trends Immunol. 2006;27(9):399–404.

    CAS  PubMed  Google Scholar 

  25. Adekola H, Romero R, Chaemsaithong P, et al. Endocan, a putative endothelial cell marker, is elevated in preeclampsia, decreased in acute pyelonephritis, and unchanged in other obstetrical syndromes. J Matern Fetal Neonatal Med. 2015(14);28:1621–1632.

    PubMed  Google Scholar 

  26. Scherpereel A, Depontieu F, Grigoriu B, et al. Endocan, a new endothelial marker in human sepsis. Crit Care Med. 2006;34(2):532–537.

    CAS  PubMed  Google Scholar 

  27. Kao SJ, Chuang CY, Tang CH, et al. Plasma endothelial cell-specific molecule-1 (ESM-1) in management of community-acquired pneumonia. Clin Chem Lab Med. 2014;52:445–451.

    CAS  PubMed  Google Scholar 

  28. Güzel A, Duran L, Köksal N, et al. Evaluation of serum endothelial cell specific molecule-1 (endocan) levels as a biomarker in patients with pulmonary thromboembolism. Blood Coagul Fibrinolysis 2014;25:272–276.

    PubMed  Google Scholar 

  29. Afsar B, Takir M, Kostek O, Covic A, Kanbay M. Endocan: a new molecule playing a role in the development of hypertension and chronic kidney disease? J Clin Hypertens. 2014;16:914–916.

    Google Scholar 

  30. Ghosh GS, Gudmundsson S. Uterine and umbilical artery Doppler are comparable in predicting perinatal outcome of growth-restricted fetuses. BJOG. 2009;116:424–430.

    CAS  PubMed  Google Scholar 

  31. Vergani P, Roncaglia N, Andreotti C, et al. Prognostic value of uterine artery Doppler velocimetry in growth-restricted fetuses delivered near term. Am J Obstet Gynecol. 2002;187:932–936.

    PubMed  Google Scholar 

  32. Khalil A, Morales-Roselló J, Townsend R, et al. Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol. 2016;47:74–780.

    CAS  PubMed  Google Scholar 

  33. Khalil A, Thilaganathan B. Role of uteroplacental and fetal Doppler in identifying fetal growth restriction at term. Best Pract Res Clin Obstet Gynaecol. 2017;38:38–47.

    PubMed  Google Scholar 

  34. Charnock-Jones D, Kaufmann P, Mayhew T. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–113.

    CAS  PubMed  Google Scholar 

  35. Mayhew TM. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta. 2002;23:742–750.

    PubMed  Google Scholar 

  36. Su EJ, Xin H, Yin P, et al. Impaired fetoplacental angiogenesis in growth-restricted fetuses with abnormal umbilical artery doppler velocimetry is mediated by Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT). J Clin Endocrinol Metab 2015;100:E30–E40.

    CAS  PubMed  Google Scholar 

  37. Maurage CA, Adam E, Minéo JF, et al. Endocan expression and localization in human glioblastomas. J Neuropathol Exp Neurol. 2009;68:633–641.

    CAS  PubMed  Google Scholar 

  38. Carrillo LM, Arciniegas E, Rojas H, Ramírez R. Immunolocalization of endocan during the endothelial-mesenchymal transition process. Eur J Histochem. 2011;55:e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roudnicky F, Poyet C, Wild P, et al. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res. 2013;73:1097–1106.

    CAS  PubMed  Google Scholar 

  40. Béchard D, Gentina T, Delehedde M, et al. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J Biol Chem. 2001;276:48341–48349.

    PubMed  Google Scholar 

  41. Rennel E, Mellberg S, Dimberg A, et al. Endocan is a VEGF-A and PI3 K regulated gene with increased expression in human renal cancer. Exp Cell Res. 2007;313:1285–1294.

    CAS  PubMed  Google Scholar 

  42. Delehedde M, Devenyns L, Maurage CA, Vivès RR. Endocan in Cancers: a lesson from a circulating dermatan sulfate proteoglycan. Int J Cell Biol. 2013;2013:1–11.

    Google Scholar 

  43. Scherpereel A, Gentina T, Grigoriu B, et al. Overexpression of endocan induces tumor formation. Cancer Res. 2003;63:6084–6089.

    CAS  PubMed  Google Scholar 

  44. Kang YH, Ji NY, Lee C II, et al. ESM-1 silencing decreased cell survival, migration, and invasion and modulated cell cycle progression in hepatocellular carcinoma. Amino Acids. 2011;40:1003–1013.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Szpera-Gozdziewicz MD, PhD.

Additional information

Authors’ Note

The manuscript has not been and will not be submitted to any other journal while it is under consideration by the Reproductive Sciences. Also, there are no prior publications or submissions with any overlapping information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szpera-Gozdziewicz, A., Kosicka, K., Gozdziewicz, T. et al. Maternal Serum Endocan Concentration in Pregnancies Complicated by Intrauterine Growth Restriction. Reprod. Sci. 26, 370–376 (2019). https://doi.org/10.1177/1933719118773480

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118773480

Keywords

Navigation