Skip to main content
Log in

Maternal Phthalate and Personal Care Products Exposure Alters Extracellular Placental miRNA Profile in Twin Pregnancies

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Prenatal exposure to endocrine-disrupting chemicals (EDCs) exerts both short- and long-term adverse effects on the developing fetus. However, the mechanisms underlying these effects have yet to be uncovered. Maternal—fetal signaling is mediated in part by signaling molecules (eg, microRNAs [miRNAs]) contained in extracellular vesicles (EVs) that are released by the placenta into the maternal circulation. We investigated whether maternal exposure to the EDCs phthalates and personal care products alters the miRNA profile of placental-derived EVs circulating in maternal blood. Blood and urine samples from pregnant women with uncomplicated term dichorionic, diamniotic twin pregnancies were analyzed as part of a larger study investigating correlations between exposure of phthalate and personal care products and epigenetic alterations in twin pregnancies. We explored correlations between maternal urinary levels of 13 phthalate and 12 personal care products metabolites and the miRNA profile of placental EVs (EV-miRNAs) circulating in maternal blood. The expression of miR-518e was highest among women with high urinary levels of monobenzyl phthalate and methyl paraben. miR-373-3p was the least expressed in women exposed to high levels of methyl paraben, and miR-543 was significantly downregulated in women exposed to high levels of paraben metabolites, dichlorophenol metabolites, and triclosan. In conclusion, this pilot study reveals that prenatal exposure to EDCs is associated with altered profile of circulating placenta-derived EV-miRNAs. Further studies are needed to generalize these results to singleton pregnancies and to assess whether these alterations are associated with pregnancy complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golden R, Gandy J, Vollmer G. A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol. 2005;35(5):435–458.

    CAS  PubMed  Google Scholar 

  2. Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62(11):806–818.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–177.

    CAS  PubMed  Google Scholar 

  4. Berman T, Hochner-Celnikier D, Calafat AM, et al. Phthalate exposure among pregnant women in Jerusalem, Israel: results of a pilot study. Environ Int. 2009;35(2):353–357.

    CAS  PubMed  Google Scholar 

  5. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect. 2010;118(5):679–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tefre de Renzy-Martin K, Frederiksen H, Christensen JS, et al. Current exposure of 200 pregnant Danish women to phthalates, parabens and phenols. Reproduction. 2014;147(4):443–453.

    PubMed  Google Scholar 

  7. Wolff MS, Engel SM, Berkowitz GS, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the US: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–885. doi:https://doi.org/10.1289/ehp.1002727.

    PubMed  PubMed Central  Google Scholar 

  9. Liu J, Li J, Wu Y, et al. Bisphenol A metabolites and bisphenol S in paired maternal and cord serum. Environ Sci Technol. 2017;51(4):2456–2463.

    CAS  PubMed  Google Scholar 

  10. Mose T, Mortensen GK, Hedegaard M, Knudsen LE. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol. 2007;23(1):83–91.

    CAS  PubMed  Google Scholar 

  11. Dann AB, Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol. 2011;31(4):285–311.

    CAS  PubMed  Google Scholar 

  12. Krause M, Klit A, Blomberg Jensen M, et al. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl. 2012;35(3):424–436.

    CAS  PubMed  Google Scholar 

  13. Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):2079–2096.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–826.

    CAS  PubMed  Google Scholar 

  15. Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213(4 suppl): S173–S181.

    CAS  PubMed  Google Scholar 

  16. Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;860(1):106–112.

    CAS  PubMed  Google Scholar 

  17. Ye X, Kuklenyik Z, Needham LL, Calafat AM. Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem. 2005;77(16):5407–5413.

    CAS  PubMed  Google Scholar 

  18. Cavalleri T, Angelici L, Favero C, et al. Plasmatic extracellular vesicle microRNAs in malignant pleural mesothelioma and asbestos-exposed subjects suggest a 2-miRNA signature as potential biomarker of disease. PLoS One. 2017;12(5):e0176680.

    PubMed  PubMed Central  Google Scholar 

  19. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250.

    CAS  PubMed  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  22. Fu G, Ye G, Nadeem L, Ji L, et al. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013;61(4):864–872.

    CAS  PubMed  Google Scholar 

  23. Hiura H, Hattori H, Kobayashi N, et al. Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer. Clin Epigenetics. 2017;9:79.

    PubMed  PubMed Central  Google Scholar 

  24. Laresgoiti-Servitje E. Pregnancy-related miRNAs participate in the regulation of the immune system during the gestational period. J Clin Cell Immunol. 2015;6(5):1000361.

    Google Scholar 

  25. LaRocca J, Binder AM, McElrath TF, Michels KB. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect. 2016;124(3):380–387.

    CAS  PubMed  Google Scholar 

  26. Vashukova ES, Glotov AS, Fedotov PV, et al. Placental microRNA expression in pregnancies complicated by superimposed preeclampsia on chronic hypertension. Mol Med Rep. 2016;14(1):22–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J. 1993;54(10):615–627.

    CAS  PubMed  Google Scholar 

  28. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61.

    CAS  PubMed  Google Scholar 

  29. Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S, et al. MicroRNA expression profiles of trophoblastic cells. Placenta. 2012;33(9):725–734.

    CAS  PubMed  Google Scholar 

  30. Yang S, Li H, Ge Q, Guo L, Chen F. Deregulated microRNA species in the plasma and placenta of patients with preeclampsia. Mol Med Rep. 2015;12(1):527–534.

    CAS  PubMed  Google Scholar 

  31. Werner EF, Braun JM, Yolton K, Khoury JC, Lanphear BP. The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: the HOME study. Environ Health. 2015;14:75.

    PubMed  PubMed Central  Google Scholar 

  32. Delorme-Axford E, Donker RB, Mouillet JF, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A. 2013;110(29):12048–12053.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou AD, Diao LT, Xu H, et al. Beta-catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/beta-catenin-signaling pathway. Oncogene. 2012;31(24):2968–2978.

    CAS  PubMed  Google Scholar 

  34. Chen Y, Luo J, Tian R, Sun H, Zou S. miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Dig Dis Sci. 2011;56(6):1693–1701.

    CAS  PubMed  Google Scholar 

  35. Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med. 2015;13:162.

    PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Guo X, Feng X, et al. MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1alpha protein. Oncotarget. 2017;8(2):2342–2355.

    PubMed  Google Scholar 

  37. Meruvu S, Zhang J, Bedi YS, Choudhury M. Mono-(2-ethylhexyl) phthalate induces apoptosis through miR-16 in human first trimester placental cell line HTR-8/SVneo. Toxicol In Vitro. 2016;31:35–42.

    CAS  PubMed  Google Scholar 

  38. Avissar-Whiting M, Veiga KR, et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol. 2010;29(4):401–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Endzelins E, Berger A, Melne V, et al. Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer. 2017;17(1):730.

    PubMed  PubMed Central  Google Scholar 

  40. Gunel T, Hosseini MK, Gumusoglu E, Kisakesen HI, Benian A, Aydinli K. Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology. Placenta. 2017;52:77–85.

    CAS  PubMed  Google Scholar 

  41. Hosseini MK, Gunel T, Gumusoglu E, Benian A, Aydinli K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep. 2018;17(4):4941–4952. doi:https://doi.org/10.3892/mmr.2018.8530.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Q, Long A, Jiang L, et al. Quantification of preeclampsia-related microRNAs in maternal serum. Biomed Rep. 2015;3(6):792–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Saadeldin IM, Oh HJ, Lee BC. Embryonic-maternal cross-talk via exosomes: potential implications. Stem Cells Cloning. 2015;8:103–107.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Machtinger MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Baccarelli, A.A., Mansur, A. et al. Maternal Phthalate and Personal Care Products Exposure Alters Extracellular Placental miRNA Profile in Twin Pregnancies. Reprod. Sci. 26, 289–294 (2019). https://doi.org/10.1177/1933719118770550

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118770550

Keywords

Navigation