Skip to main content

Advertisement

Log in

Similar Characteristics of Endometrial and Endometriotic Epithelial Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal transition (EMT) is characterized by the loss of epithelial and acquisition of mesenchymal cell characteristics. Our aim was to assess the epithelial phenotype in the pathogenesis of endometriosis with epithelial and mesenchymal markers. We used 2 structural (keratin-18, -19 [K18, K19]), 1 membrane-associated (mucin-1 [MUC1]), and 2 mesenchymal proteins (vimentin; zinc finger E-box-binding homeobox 1, [ZEB1]) to compare epithelial and mesenchymal characteristics in eutopic endometrium with the 3 endometriotic entities, peritoneal, ovarian, and deep infiltrating endometriosis (DIE). Quanti-tation showed no differences for K18, K19, and MUC1 between endometrium with and without endometriosis. Also, K18 was not different between endometrium and endometriotic lesions. In contrast, K19 and MUC1 were modestly but significantly decreased in the endometriotic lesions compared to endometrium. However, the maintained expression of epithelial markers in all investigated tissues, regardless of the pathological condition, clearly indicates no loss of the epithelial phenotype. This is further supported by the reduced presence of epithelial vimentin in endometriotic lesions which is in contrast to an increase in stromal vimentin in ectopic endometrium, especially in ovarian endometriosis. The ZEB1 increase in endometriotic lesions, especially in DIE, on the other hand suggests a role of partial EMT in the development of endometriotic lesions, possibly connected with the gain of invasive capabilities or stemness. Taken together, although we found some hints for at least a partial EMT, we did not observe a severe loss of the epithelial cell phenotype. Thus, we propose that EMT is not a main factor in the pathogenesis of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clement PB. The pathology of endometriosis: a survey of the many faces of a common disease emphasizing diagnostic pitfalls and unusual and newly appreciated aspects. Adv Anat Pathol. 2007;14(4):241–260.

    PubMed  Google Scholar 

  2. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  3. Sampson JA. Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–469

    Google Scholar 

  4. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endome-triosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–595.

    CAS  PubMed  Google Scholar 

  5. Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005;65(14):5991–5995.

    CAS  PubMed  Google Scholar 

  6. Chui MH. Insights into cancer metastasis from a clinicopathologic perspective: epithelial-mesenchymal transition is not a necessary step. Int J Cancer. 2013;132(7):1487–1495.

    CAS  PubMed  Google Scholar 

  7. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890.

    CAS  PubMed  Google Scholar 

  8. Tarin D. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev. 2013;32(3-4):553–566.

    CAS  PubMed  Google Scholar 

  9. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest. 2011; 121(2):468–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol. 2009;40(10):1365–1376.

    CAS  PubMed  Google Scholar 

  11. Mazzucchelli L. Protein S100A4: too long overlooked by pathologists? Am J Pathol. 2002;160(1):7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang P, Sun Y, Ma L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015;14(4):481–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartley J, Jülicher A, Hotz B, Mechsner S, Hotz H. Epithelial to mesenchymal transition (EMT) seems to be regulated differently in endometriosis and the endometrium. Arch Gynecol Obstet. 2014;289(4):871–881.

    CAS  PubMed  Google Scholar 

  14. Matsuzaki S, Darcha C. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod. 2012;27(3):712–721.

    CAS  PubMed  Google Scholar 

  15. Young VJ, Brown JK, Saunders PT, Duncan WC, Horne AW. The peritoneum is both a source and target of TGF-b in women with endometriosis. PLoS One. 2014;9(9):e106773.

    Google Scholar 

  16. Furuya M, Masuda H, Hara K, et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96(9):1128–1135.

    CAS  PubMed  Google Scholar 

  17. Baártek J, Baártkovaá J, Taylor-Papadimitriou J, et al. Differential expression of keratin 19 in normal human epithelial tissues revealed by monospecific monoclonal antibodies. Histochem J. 1986;18(10):565–575.

    Google Scholar 

  18. Kruitwagen RF, Poels LG, Willemsen WN, et al. Immunocyto-chemical markerprofile of endometriotic epithelial, endometrial epithelial, and mesothelial cells: a comparative study. Eur J Obstet Gynecol Reprod Biol. 1991;41(3):215–223.

    CAS  PubMed  Google Scholar 

  19. Stewart CJ, Crook ML, Lacey J, Louwen K. Cytokeratin 19 expression in normal endometrium and in low-grade endome-trioid adenocarcinoma of the endometrium. Int J Gynecol Pathol. 2011;30(5):484–491.

    PubMed  Google Scholar 

  20. Haas D, Chvatal R, Habelsberger A, Wurm P, Schimetta W, Oppelt P. Comparison of revised American Fertility Society and ENZIAN staging: a critical evaluation of classifications of endo-metriosis on the basis of our patient population. Fertil Steril. 2011;95(5):1574–1578.

    PubMed  Google Scholar 

  21. Konrad L, Scheiber JA, Völck-Badouin E, et al. Alternative splicing of TGF-betas and their high-affinity receptors TbRI, TbRII and TbRIII (Betaglycan) reveal new variants in human prostatic cells. BMC Genomics 2007;8:318.

    PubMed  PubMed Central  Google Scholar 

  22. Dharmaraj N, Chapela PJ, Morgado M, et al. Expression of the transmembrane mucins, MUC1, MUC4 and MUC16, in normal endometrium and in endometriosis. Hum Reprod. 2014;29(8): 1730–1738.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40(5):403–439.

    CAS  PubMed  Google Scholar 

  24. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Van der Linden PJ, Dunselman GA, de Goeij AF, van der Linden EP, Evers JL, Ramaekers FC. Epithelial cells in peritoneal fluid—of endometrial origin? Am J Obstet Gynecol. 1995; 173(2):566–570.

    PubMed  Google Scholar 

  26. Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–457.

    CAS  PubMed  Google Scholar 

  27. Thathiah A, Carson DD. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem J. 2004;382(pt 1): 363–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guaita S, Puig I, Franci C, et al. Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem. 2002;277(42): 39209–39216.

    CAS  PubMed  Google Scholar 

  29. Hey NA, Li TC, Devine PL, Graham RA, Saravelos H, Aplin JD. MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent patients. Hum Reprod. 1995;10(10):2655–2662.

    CAS  PubMed  Google Scholar 

  30. Budiu RA, Diaconu I, Chrissluis R, Dricu A, Edwards RP, Vlad AM. A conditional mouse model for human MUC1-positive endometrio-sis shows the presence of anti-MUC1 antibodies and Foxp3+ regulatory T cells. Dis Model Mech. 2009;2(11-12):593–603.

    CAS  PubMed  Google Scholar 

  31. Drapkin R, Crum CP, Hecht JL. Expression of candidate tumor markers in ovarian carcinoma and benign ovary: evidence of a link between epithelial phenotype and neoplasia. Hum Pathol. 2004;35(8):1014–1021.

    CAS  PubMed  Google Scholar 

  32. Kidd ME, Shumaker DK, Ridge KM. The role of vimentin inter-mediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.

    PubMed  PubMed Central  Google Scholar 

  33. Chai JY, Modak C, Mouazzen W, Narvaez R, Pham J. Epithelial or mesenchymal: Where to draw the line? Biosci Trends. 2010; 4(3):130–142.

    CAS  PubMed  Google Scholar 

  34. Nisolle M, Casanas-Roux F, Donnez J. Coexpression of cytokeratin and vimentin in eutopic endometrium and endometriosis throughout the menstrual cycle: evaluation by a computerized method. Fertil Steril. 1995;64(1):69–75.

    CAS  PubMed  Google Scholar 

  35. Song IO, Hong SR, Huh Y, Yoo KJ, et al. Expression of vimentin and cytokeratin in eutopic and ectopic endometrium of women with adenomyosis and ovarian endometrioma. Am J Reprod Immunol. 1998;40(1):26–31.

    CAS  PubMed  Google Scholar 

  36. Sanghvi-Shah R, Weber GF. Intermediate filaments at the junction of mechanotransduction, migration, and development. Front Cell Dev Biol. 2017;5:81.

    PubMed  PubMed Central  Google Scholar 

  37. Vosse BA, Seelentag W, Bachmann A, Bosman FT, Yan P. Back-ground staining of visualization systems in immunohistochemistry: comparison of the Avidin-Biotin Complex system and the EnVision+ system. Appl Immunohistochem Mol Morphol. 2007;15(1):103–107.

    CAS  PubMed  Google Scholar 

  38. Krebs AM, Mitschke J, Lasierra Losada M, et al. The EMT-activator Zeb1 is a key factor for cell plasticitiy and pormotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19(5):518–529.

    CAS  PubMed  Google Scholar 

  39. Konrad L, Kortum J, Nabham R, et al. Composition of the stroma in the human endometrium and endometriosis. Reprod Sci. 2017; doi:10.1177/1933719117734319

    Google Scholar 

  40. Goscinski MA, Xu R, Zhou F, et al. Nuclear, cytoplasmic, and stromal expression of ZEB1 in squamous and small cell carcinoma of the oesophagus. APMIS. 2015;123(12):1040–1047.

    CAS  PubMed  Google Scholar 

  41. Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006;131(3): 830–840.

    CAS  PubMed  Google Scholar 

  42. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21–45.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Konrad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konrad, L., Gronbach, J., Horné, F. et al. Similar Characteristics of Endometrial and Endometriotic Epithelial Cells. Reprod. Sci. 26, 49–59 (2019). https://doi.org/10.1177/1933719118756745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118756745

Keywords

Navigation