Skip to main content
Log in

Cardiovascular and Metabolic Health of 74 Children From Women Previously Diagnosed With Polycystic Ovary Syndrome in Comparison With a Population-Based Reference Cohort

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Women with polycystic ovary syndrome (PCOS) have compromised cardiovascular health profiles and an increased risk of pregnancy complications. In order to evaluate potential consequences, we aim to compare the cardiovascular and metabolic health of the children from women with PCOS with a population-based reference cohort. We included children from women with PCOS between the age of 2.5 to 4 years (n = 42) and 6 to 8 years (n = 32). The reference groups consisted of 168 (3–4 years old) and 130 children (7–8 years old). In an extensive cardiovascular screening program, we measured anthropometrics and blood pressure (all children), heart function and vascular rigidity (young children), metabolic laboratory assessment and carotid intima thickness (old age-group). Results showed that young PCOS offspring have a significantly lower diastolic blood pressure (β = 2.3 [95% confidence interval, CI: 0.5–4.0]) and higher aortic pulse pressure (β = −1.4 [95% CI: −2.5 to −0.2]), compared to the reference population. Furthermore, a higher left ventricle internal diameter but a lower tissue Doppler imaging of the right wall in systole compared to the reference group was found. Older offspring of women with PCOS presented with a significantly lower breast and abdominal circumference, but higher triglycerides (β = −0.1 [95% CI: −0.2 to −0.1]), LDL-cholesterol (β= −0.4 [95% CI: −0.6 to −0.1]), and higher carotid intima-media thickness (β = −31.7 [95% CI: −46.6 to — 16.9]) compared to the reference group. In conclusion, we observe subtle but distinct cardiovascular and metabolic abnormalities already at an early age in PCOS offspring compared to a population-based reference group, despite a lower diastolic blood pressure, breast, and abdominal circumference. These preliminary findings require confirmation in independent data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370(9588):685–697.

    Article  CAS  PubMed  Google Scholar 

  2. Fauser BC, Tarlatzis BC, Rebar RW, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012;97(1):28–38.e25.

    Article  PubMed  Google Scholar 

  3. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47.

    Article  Google Scholar 

  4. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91(6):2100–2104.

    Article  CAS  PubMed  Google Scholar 

  5. Crosignani PG, Nicolosi AE. Polycystic ovarian disease: heritability and heterogeneity. Hum Reprod Update. 2001;7(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373(1-2):29–38.

    Article  CAS  PubMed  Google Scholar 

  7. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–363.

    Article  CAS  PubMed  Google Scholar 

  8. Koster MP, de Wilde MA, Veltman-Verhulst SM, et al. Placental characteristics in women with polycystic ovary syndrome. Hum Reprod. 2015;30(12):2829–2837.

    CAS  PubMed  Google Scholar 

  9. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–592.

    Article  PubMed  Google Scholar 

  10. Barker DJ. The intrauterine environment and adult cardiovascular disease. Ciba Found Symp. 1991;156:3–10.

    CAS  PubMed  Google Scholar 

  11. Kent SC, Gnatuk CL, Kunselman AR, Demers LM, Lee PA, Legro RS. Hyperandrogenism and hyperinsulinism in children of women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab. 2008;93(5):1662–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Recabarren SE, Smith R, Rios R, et al. Metabolic profile in sons of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(5):1820–1826.

    Article  CAS  PubMed  Google Scholar 

  13. Sir-Petermann T, Codner E, Pe´rez V, et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009; 94(6):1923–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strong JP, Malcom GT, McMahan CA, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the pathobiological determinants of atherosclerosis in youth study. JAMA. 1999;281(8):727–735.

    Article  CAS  PubMed  Google Scholar 

  16. Legro RS, Kunselman AR, Stetter CM, et al. Normal pubertal development in daughters of women with PCOS: a controlled study. J Clin Endocrinol Metab. 2017;102(1):122–131.

    PubMed  Google Scholar 

  17. Battaglia C, Mancini F, Cianciosi A, et al. Cardiovascular risk in normal weight, eumenorrheic, nonhirsute daughters of patients with polycystic ovary syndrome: a pilot study. Fertil Steril. 2009;92(1):240–249.

    Article  PubMed  Google Scholar 

  18. Sir-Petermann T, Maliqueo M, Codner E, et al. Early metabolic derangements in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92(12):4637–4642.

    Article  CAS  PubMed  Google Scholar 

  19. Daan NM, Louwers YV, Koster MP, et al. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk? Fertil Steril. 2014; 102(5):1444–1451.e3.

    Article  PubMed  Google Scholar 

  20. Grobbee DE, Hoes AW, Verheij TJ, Schrijvers AJP, van Ameijden EJ, Numans ME. The Utrecht health project: optimization of routine healthcare data for research. Eur J Epidemiol. 2005; 20(3):285–287.

    Article  PubMed  Google Scholar 

  21. Katier N, Uiterwaal CS, de Jong BM, et al. The Wheezing Illnesses Study Leidsche Rijn (WHISTLER): rationale and design. Eur J Epidemiol. 2004;19(9)895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evelein AM, Geerts CC, Visseren FL, et al. The association between breastfeeding and the cardiovascular system in early childhood. Am J Clin Nutr. 2011;93(4):712–718.

    Article  CAS  PubMed  Google Scholar 

  23. Dalla Pozza R, Ehringer-Schetitska D, Fritsch P, et al. Intima media thickness measurement in children: a statement from the Association for European Paediatric Cardiology (AEPC) Working Group on Cardiovascular Prevention endorsed by the Association for European Paediatric Cardiology. Atherosclerosis. 2015; 238(2):380–387.

    Article  CAS  PubMed  Google Scholar 

  24. Eising JB, Van Der Ent CK, Van Der Gugten AC, et al. Life-course of cardio-respiratory associations. Eur J Prev Cardiol. 2015; 22(2):140–149.

    Article  PubMed  Google Scholar 

  25. Lai WW, Geva T, Shirali GS, et al; Task Force of the Pediatric Council of the American Society of Echocardiography; Pediatric Council of the American Society of Echocardiography. Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the pediatric council of the American society of echocardiography. J Am Soc Echocardiogr. 2006;19(12):1413–1430.

    Article  PubMed  Google Scholar 

  26. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–495.

    Article  PubMed  Google Scholar 

  27. Geerts CC, Evelein AM, Bots ML, Van Der Ent CK, Grobbee DE, Uiterwaal CS. Body fat distribution and early arterial changes in healthy 5-year-old children. Ann Med. 2012;44(4):350–359.

    Article  PubMed  Google Scholar 

  28. Brands PJ, Hoeks AP, Willigers J, Willekes C, Reneman RS. An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. Eur J Ultrasound. 1999;9(3):257–266.

    Article  CAS  PubMed  Google Scholar 

  29. Daan NM, Jaspers L, Koster MP, et al. Androgen levels in women with various forms of ovarian dysfunction: associations with cardiometabolic features. Hum Reprod. 2015;30(10):2376–2386.

    Article  CAS  PubMed  Google Scholar 

  30. Scherrer U, Rimoldi SF, Rexhaj E, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125(15):1890–1896.

    Article  PubMed  Google Scholar 

  31. Schulz KF, Grimes DA. Case-control studies: research in reverse. Lancet. 2002;359(9304):431–434.

    Article  PubMed  Google Scholar 

  32. Rothman KJ, Greenland S, Lash TL. Design Strategies to Improve Study Accuracy. Modern Epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  33. Pearce N. Analysis of matched case-control studies. BMJ. 2016; 352:1969.

    Google Scholar 

  34. Kampmann C, Wiethoff CM, Wenzel A, et al. Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart. 2000; 83(6):667–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hill DJ, Milner RD. Insulin as a growth factor. Pediatr Res. 1985; 19(9):879–886.

    Article  CAS  PubMed  Google Scholar 

  36. Ito H, Hiroe M, Hirata Y, et al. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993; 87(5):1715–1721.

    Article  CAS  PubMed  Google Scholar 

  37. Vyas AK, Hoang V, Padmanabhan V, Gilbreath E, Mietelka KA. Prenatal programming: adverse cardiac programming by gestational testosterone excess. Sci Rep. 2016;6:28335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kapusta L, Thijssen JM, Groot-Loonen J, Antonius T, Mulder J, Daniels O. Tissue Doppler imaging in detection of myocardial dysfunction in survivors of childhood cancer treated with anthra-cyclines. Ultrasound Med Biol. 2000;26(7):1099–1108.

    Article  CAS  PubMed  Google Scholar 

  39. Raitakari OT, Juonala M, Kahonen M, et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA. 2003;290(17):2277–2283.

    Article  CAS  PubMed  Google Scholar 

  40. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. the Bogalusa Heart Study. N Engl J Med. 1998; 338(23):1650–1656.

    Article  CAS  PubMed  Google Scholar 

  41. Roseboom TJ, Van Der Meulen JH, Osmond C, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart. 2000;84(6):595–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarrevan de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93(5):1682–1688.

    Article  CAS  PubMed  Google Scholar 

  43. Pontesilli M, Painter RC, Grooten IJ, et al. Subfertility and assisted reproduction techniques are associated with poorer cardiometabolic profiles in childhood. Reprod Biomed Online. 2015; 30(3):258–267.

    Article  PubMed  Google Scholar 

  44. Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(6):673–683.

    Article  CAS  PubMed  Google Scholar 

  45. Kjerulff LE, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol. 2011;204(6):558.e1-6.

    Article  PubMed  Google Scholar 

  46. Qin JZ, Pang LH, Li MJ, Fan XJ, Huang RD, Chen HY. Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2013; 11:56. doi:10.1186/1477-7827-11-56

    Article  PubMed  PubMed Central  Google Scholar 

  47. Elmekkawi SF, Mansour GM, Elsafty MSE, Hassanin AS, Laban M, Elsayed HM. Prediction of fetal hypertrophic cardiomyopathy in diabetic pregnancies compared with postnatal outcome. Clin Med Insights Womens Health. 2015;8:39–43.

    PubMed  PubMed Central  Google Scholar 

  48. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005; 308(5728):1583–1587.

    Article  CAS  PubMed  Google Scholar 

  49. Bruns CM, Baum ST, Colman RJ, et al. Insulin resistance and impaired insulin secretion in prenatally androgenized male rhesus monkeys. J Clin Endocrinol Metab. 2004;89(12):6218–6223.

    Article  CAS  PubMed  Google Scholar 

  50. Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol Metab. 1998;9(2):62–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlise N. Gunning MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Wilde, M.A., Eising, J.B., Gunning, M.N. et al. Cardiovascular and Metabolic Health of 74 Children From Women Previously Diagnosed With Polycystic Ovary Syndrome in Comparison With a Population-Based Reference Cohort. Reprod. Sci. 25, 1492–1500 (2018). https://doi.org/10.1177/1933719117749761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117749761

Keywords

Navigation