Skip to main content

Advertisement

Log in

Literature Review on the Role of Uterine Fibroids in Endometrial Function

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine fibroids are benign uterine smooth muscle tumors that are present in up to 8 out of 10 women by the age of 50. Many of these women experience symptoms such as heavy and irregular menstrual bleeding, early pregnancy loss, and infertility. Traditionally believed to be inert masses, fibroids are now known to influence endometrial function at the molecular level. We present a comprehensive review of published studies on the effect of uterine fibroids on endometrial function. Our goal was to explore the current knowledge about how uterine fibroids interact with the endometrium and how these interactions influence clinical symptoms. Our review shows that submucosal fibroids produce a blunted decidualization response with decreased release of cytokines critical for implantation such as leukocyte inhibitory factor and cell adhesion molecules. Furthermore, fibroids alter the expression of genes relevant for implantation, such as bone morphogenetic protein receptor type II, glycodelin, among others. With regard to heavy menstrual bleeding, fibroids significantly alter the production of vasoconstrictors in the endometrium, leading to increased menstrual blood loss. Fibroids also increase the production of angiogenic factors such as basic fibroblast growth factor and reduce the production of coagulation factors resulting in heavy menses. Understanding the crosstalk between uterine fibroids and the endometrium will provide key insights into implantation and menstrual biology and drive the development of new and innovative therapeutic options for the management of symptoms in women with uterine fibroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1): 100–107.

    PubMed  Google Scholar 

  2. ACOG Practice Bulletin. Alternatives to hysterectomy in the management of leiomyomas. Obstet Gynecol. 2008; 112(2 pt 1): 387–400.

    Google Scholar 

  3. Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Womens Health. 2012;12:6.

    PubMed  PubMed Central  Google Scholar 

  4. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206(3):211.e1–e9.

    Google Scholar 

  5. Rackow BW, Taylor HS. Submucosal uterine leiomyomas have a global effect on molecular determinants of endometrial receptivity. Fertil Steril. 2010;93(6):2027–2034.

    CAS  PubMed  Google Scholar 

  6. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14): 1344–1355.

    CAS  PubMed  Google Scholar 

  7. Yin P, Ono M, Moravek MB, et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab. 2015;100(4):E601–E606.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ono M, Maruyama T, Masuda H, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci USA. 2007;104(47):18700–18705.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mas A, Cervello I, Fernandez-Alvarez A, et al. Overexpression of the truncated form of high mobility group A proteins (HMGA2) in human myometrial cells induces leiomyoma-like tissue formation. MolHum Reprod. 2015;21(4):330–338.

    CAS  Google Scholar 

  10. Ono M, Qiang W, Serna VA, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7(5):e36935.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Medl2 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015;125(8):3280–3284.

    PubMed  PubMed Central  Google Scholar 

  12. Yang Q, Diamond MP, Al-Hendy A. Early life adverse environ-mental exposures increase the risk of uterine fibroid development: role of epigenetic regulation. Front Pharmacol. 2016;7:40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Katz TA, Yang Q, Trevino LS, Walker CL, Al-Hendy A. Endocrine-disrupting chemicals and uterine fibroids. Fertil Steril. 2016;106(4):967–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Q, Diamond MP, Al-Hendy A. Converting of myome-trial stem cells to tumorinitiating cells: mechanism of uterine fibroid development. Cell Stem Cells Regen Med. 2016;2(1) PMID: 28042616.

    Google Scholar 

  15. Mas A, Stone L, O’Connor PM, et al. Developmental exposure to endocrine disrupters expands murine myometrial stem cell compartment as a prerequisite to leiomyoma tumorigenesis. Stem Cells. 2017;35(3):666–678.

    CAS  PubMed  Google Scholar 

  16. Andersen J, DyReyes VM, Barbieri RL, Coachman DM, Mik-sicek RJ. Leiomyoma primary cultures have elevated tran-scriptional response to estrogen compared with autologous myometrial cultures. J Soc Gynecol Investig. 1995;2(3): 542–551.

    CAS  PubMed  Google Scholar 

  17. Pedeutour F, Quade BJ, Weremowicz S, Dal Cin P, Ali S, Morton CC. Localization and expression of the human estrogen receptor beta gene in uterine leiomyomata. Genes Chromosomes Cancer. 1998;23(4):361–366.

    CAS  PubMed  Google Scholar 

  18. Bulun SE, Simpson ER, Word RA. Expression of the CYP19 gene and its product aromatase cytochrome P450 in human uterine leiomyoma tissues and cells in culture. J Clin Endocrinol Metab. 1994;78(3):736–743.

    CAS  PubMed  Google Scholar 

  19. Rocha PP, Scholze M, Bleiss W, Schrewe H. Medl2 is essential for early mouse development and for canonical WNT and WNT/ PCP signaling. Development. 2010;137(16):2723–2731.

    CAS  PubMed  Google Scholar 

  20. Kim S, Xu X, Hecht A, Boyer TG. Mediator is a transducer of WNT/betacatenin signaling. J Biol Chem. 2006;281(20): 14066–14075.

    CAS  PubMed  Google Scholar 

  21. Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of WNT target gene activation. Nat Rev Mol Cell Biol. 2009;10(4):276–286.

    CAS  PubMed  Google Scholar 

  22. Tanwar PS, Lee HJ, Zhang L, et al. Constitutive activation of betacatenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81(3):545–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Haider SK. Silencing Medl2 gene reduces proliferation of human leiomyoma cells mediated via WNT/beta-catenin signaling path-way. Endocrinology. 2017;158(3):592–603.

    CAS  PubMed  Google Scholar 

  24. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5): 1006–1011.

    CAS  PubMed  Google Scholar 

  25. Doherty LF, Taylor HS. Leiomyoma-derived transforming growth factor-beta impairs bone morphogenetic protein-2-mediated endometrial receptivity. Fertil Steril. 2015;103(3): 845–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinclair DC, Mastroyannis A, Taylor HS. Leiomyoma simultaneously impair endometrial BMP-2-mediated decidualization and anticoagulant expression through secretion of TGF-beta3. J Clin Endocrinol Metab. 2011;96(2):412–421.

    CAS  PubMed  Google Scholar 

  27. Cook H, Ezzati M, Segars JH, McCarthy K. The impact of uterine leiomyomas on reproductive outcomes. Minerva Ginecol. 2010; 62(3):225–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo XC, Segars JH. The impact and management of fibroids for fertility: an evidence-based approach. Obstet Gynecol Clin North Am. 2012;39(4):521–533.

    PubMed  PubMed Central  Google Scholar 

  29. Surrey ES, Minjarez DA, Stevens JM, Schoolcraft WB. Effect of myomectomy on the outcome of assisted reproductive technolo-gies. Fertil Steril. 2005;83(5): 1473–1479.

    PubMed  Google Scholar 

  30. Klatsky PC, Tran ND, Caughey AB, Fujimoto VY. Fibroids and reproductive outcomes: a systematic literature review from con-ception to delivery. Am J Obstet Gynecol. 2008;198(4):357–366.

    PubMed  Google Scholar 

  31. Casini ML, Rossi F, Agostini R, Unfer V. Effects of the position of fibroids on fertility. Gynecol Endocrinol. 2006;22(2):106–109.

    PubMed  Google Scholar 

  32. Eldar-Geva T, Meagher S, Healy DL, MacLachlan V, Breheny S, Wood C. Effect of intramural, subserosal, and submucosal uterine fibroids on the outcome of assisted reproductive technology treatment. Fertil Steril. 1998;70(4):687–691.

    CAS  PubMed  Google Scholar 

  33. Farhi J, Ashkenazi J, Feldberg D, Dicker D, Orvieto R, Ben Rafael Z. Effect of uterine leiomyomata on the results of in-vitro fertilization treatment. Hum Reprod. 1995; 10(10): 2576–2578.

    CAS  PubMed  Google Scholar 

  34. Pritts EA, Parker WH, Olive DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009; 91(4):1215–1223.

    PubMed  Google Scholar 

  35. Christopoulos G, Vlismas A, SalimR, Islam R, Trew G, Lavery S. Fibroids that do not distort the uterine cavity and IVF success rates: an observational study using extensive matching criteria. BJOG. 2017;124(4):615–621.

    CAS  PubMed  Google Scholar 

  36. Sagi-Dain L, Ojha K, Bider D, et al. Pregnancy outcomes in oocyte recipients with fibroids not impinging uterine cavity. Arch Gynecol Obstet. 2017;295(2):497–502.

    PubMed  Google Scholar 

  37. Klatsky PC, Lane DE, Ryan IP, Fujimoto VY. The effect of fibroids without cavity involvement on ART outcomes indepen-dent of ovarian age. Hum Reprod. 2007;22(2):521–526.

    CAS  PubMed  Google Scholar 

  38. Styer AK, Jin S, Liu D, et al. Association of uterine fibroids and pregnancy outcomes after ovarian stimulation-intrauterine inse-mination for unexplained infertility. Fertil Steril. 2017;107(3): 756–62.e3.

    PubMed  PubMed Central  Google Scholar 

  39. Bosteels J, Kasius J, Weyers S, Broekmans FJ, Mol BW, D’Hooghe TM. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev. 2013;(1):CD009461. PMID: 23440838.

  40. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6):731–746.

    PubMed  Google Scholar 

  41. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr ev. 2004;25(3):341–373.

    CAS  Google Scholar 

  42. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in HOXAlO-deficient mice. Nature. 1995;374(6521): 460–463.

    CAS  PubMed  Google Scholar 

  43. Makker A, Goel MM, Nigam D, et al. Endometrial expression of homeobox genes and cell adhesion molecules in infertile women with intramural fibroids during window of implantation. Reprod Sci. 2017;24(3):435–444.

    CAS  PubMed  Google Scholar 

  44. Matsuzaki S, Canis M, Darcha C, Pouly JL, Mage G. HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility. Hum Reprod. 2009;24(12):3180–3187.

    CAS  PubMed  Google Scholar 

  45. Urdu C, Celik O, Celik N, Otlu B. Expression of endometrial receptivity genes increase after myomectomy of intramural leiomyomas not distorting the endometrial cavity. Reprod Sci. 2016; 23(1):31–41.

    Google Scholar 

  46. Ben-Nagi J, Miell J, Mavrelos D, Naftalin J, Lee C, Jurkovic D. Endometrial implantation factors in women with submucous uter-ine fibroids. Reprod Biomed Online. 2010;21(5):610–615.

    CAS  PubMed  Google Scholar 

  47. Horcajadas JA, Goyri E, Higon MA, et al. Endometrial receptivity and implantation are not affected by the presence of uterine intra-mural leiomyomas: a clinical and functional genomics analysis. J Clin Endocrinol Metab. 2008;93(9):3490–3498.

    CAS  PubMed  Google Scholar 

  48. Fritz MA, Speroff L. Clinical Gynecologic Endocrinology and Infertility. 8th ed. Philadelphia, PA: Wolters Kluwer Health/Lip-pincott Williams & Wilkins; 2011.

    Google Scholar 

  49. Dimitriadis E, Stoikos C, Baca M, Fairlie WD, McCoubrie JE, Salamonsen LA. Relaxin and prostaglandin E(2) regulate inter-leukin 11 during human endometrial stromal cell decidualization. J Clin Endocrinol Metab. 2005;90(6):3458–3465.

    CAS  PubMed  Google Scholar 

  50. Karpovich N, Klemmt P, Hwang JH, et al. The production of interleukin-11 and decidualization are compromised in endometrial stromal cells derived from patients with infertility. J Clin Endocrinol Metab. 2005;90(3): 1607–1612.

    CAS  PubMed  Google Scholar 

  51. Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905.

    CAS  PubMed  Google Scholar 

  52. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell. 1994;76(2):253–262.

    CAS  PubMed  Google Scholar 

  53. Ernst M, Inglese M, Waring P, et al. Defective gp 130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med. 2001;194(2): 189–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359(6390):76–79.

    CAS  PubMed  Google Scholar 

  55. Hasegawa E, Ito H, Hasegawa F, et al. Expression of leukemia inhibitory factor in the endometrium in abnormal uterine cavities during the implantation window. Fertil Steril. 2012;97(4): 953–958.

    CAS  PubMed  Google Scholar 

  56. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol. 1998; 39(2):137–143.

    CAS  PubMed  Google Scholar 

  57. Robb L, Li R, Hartley L, Nandurkar HH, Roentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med. 1998;4(3):303–308.

    CAS  PubMed  Google Scholar 

  58. Zenclussen AC, Hammerling GJ. Cellular regulation of the uterine microenvironment that enables embryo implantation. Front Immunol. 2015;6:321.

    PubMed  PubMed Central  Google Scholar 

  59. Paiva P, Salamonsen LA, Manuelpillai U, Dimitriadis E. Inter-leukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during pla-centation. Biol Reprod. 2009;80(2):302–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Q, Kannan A, Das A, et al. WNT4 acts downstream of BMP2 and functions via beta-catenin signaling pathway to regulate human endometrial stromal cell differentiation. Endocrinology. 2013;154(1):446–457.

    CAS  PubMed  Google Scholar 

  61. Paria BC, Ma W, Tan J, et al. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci USA. 2001;98(3): 1047–1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Q, Kannan A, Wang W, et al. Bone morphogenetic protein 2 functions via a conserved signaling pathway involving WNT4 to regulate uterine decidualization in the mouse and the human. J Biol Chem. 2007;282(43):31725–31732.

    CAS  PubMed  Google Scholar 

  63. Lee KY, Jeong JW, Wang J, et al. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol. 2007;27(15):5468–5478.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Franco HL, Dai D, Lee KY, et al. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. FASEBJ. 2011;25(4):1176–1187.

    CAS  Google Scholar 

  65. Miura S, Khan KN, Kitajima M, et al. Differential infiltration of macrophages and prostaglandin production by different uterine leiomyomas. Hum Reprod. 2006;21(10):2545–2554.

    CAS  PubMed  Google Scholar 

  66. Jensen AL, Collins J, Shipman EP, Wira CR, Guyre PM, Pioli PA. A subset of human uterine endometrial macrophages is alternatively activated. Am J Reprod Immunol. 2012;68(5):374–386.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Helige C, Ahammer H, Moser G, et al. Distribution of decidual natural killer cells and macrophages in the neighbourhood of the trophoblast invasion front: a quantitative evaluation. Hum Reprod. 2014;29(1):8–17.

    CAS  PubMed  Google Scholar 

  68. Lee SK, Kim CJ, Kim DJ, Kang JH. Immune cells in the female reproductive tract. Immune Netw. 2015;15(1):16–26.

    PubMed  PubMed Central  Google Scholar 

  69. Tayade C, Hilchie D, He H, et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol. 2007; 178(7):4267–4275.

    CAS  PubMed  Google Scholar 

  70. Wang C, Umesaki N, Nakamura H, et al. Expression of vascular endothelial growth factor by granulated metrial gland cells in pregnant murine uteri. Cell Tissue Res. 2000;300(2):285–293.

    CAS  PubMed  Google Scholar 

  71. King A. Uterine leukocytes and decidualization. Hum Reprod Update. 2000;6(1):28–36.

    CAS  PubMed  Google Scholar 

  72. Kitaya K, Yasuo T. Leukocyte density and composition in human cycling endometrium with uterine fibroids. Hum Immunol. 2010; 71(2):158–163.

    CAS  PubMed  Google Scholar 

  73. Rogers R, Norian J, Malik M, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198(4): 474.e1–e11.

    Google Scholar 

  74. Payson M, Malik M, Siti-Nur Morris S, Segars JH, Chason R, Catherino WH. Activating transcription factor 3 gene expression suggests that tissue stress plays a role in leiomyoma development. Fertil Steril. 2009;92(2):748–755.

    CAS  PubMed  Google Scholar 

  75. Norian JM, Owen CM, Taboas J, et al. Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol. 2012;31(1):57–65.

    CAS  PubMed  Google Scholar 

  76. Orisaka M, Kurokawa T, Shukunami K, et al. A comparison of uterine peristalsis in women with normal uteri and uterine leiomyoma by cine magnetic resonance imaging. Eur J Obstet Gynecol Reprod Biol. 2007;135(1): 111–115.

    PubMed  Google Scholar 

  77. Yoshino O, Hayashi T, Osuga Y, et al. Decreased pregnancy rate is linked to abnormal uterine peristalsis caused by intramural fibroids. Hum Reprod. 2010;25(10):2475–2479.

    CAS  PubMed  Google Scholar 

  78. National Institute for Health and Clinical Excellence. Heavy Menstrual Bleeding: Assessment and Management. NICE Guidelines (CG44). 2007. Available at: https://www.nice.org.uk/guidance/cg44

    Google Scholar 

  79. Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015; 21(6):748–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Masaki T. Endothelins: homeostatic and compensatory actions in the circulatory and endocrine systems. Endocr Rev. 1993;14(3): 256–268.

    CAS  PubMed  Google Scholar 

  81. Pekonen F, Nyman T, Rutanen EM. Differential expression of mRNAs for endothelin-related proteins in human endometrium, myometrium and leiomyoma. Mol Cell Endocrinol. 1994;103(1-2):165–170.

    CAS  PubMed  Google Scholar 

  82. Farrer-Brown G, Beilby JO, Tarbit MH. Venous changes in the endometrium of myomatous uteri. Obstet Gynecol. 1971;38(5): 743–751.

    CAS  PubMed  Google Scholar 

  83. Anania CA, Stewart EA, Quade BJ, Hill JA, Nowak RA. Expression of the fibroblast growth factor receptor in women with leiomyomas and abnormal uterine bleeding. Mol Hum Reprod. 1997; 3(8):685–691.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar E. Bulun MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhena, D.E., Bulun, S.E. Literature Review on the Role of Uterine Fibroids in Endometrial Function. Reprod. Sci. 25, 635–643 (2018). https://doi.org/10.1177/1933719117725827

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725827

Keywords

Navigation