Skip to main content

Advertisement

Log in

SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is currently thought to be characterized by oxidative stress which may lead to endothelial dysfunction. The normal function of vascular endothelium is essential to vascular homeostasis. Previous studies have shown that steroid receptor coactivator 3 (SRC-3) interacts with estrogen receptors (ERs) which are involved in the vasoprotective effects of estrogen and is also associated with cell migration, invasion, and inflammation; however, its role in PE remains unclear. The main purpose of this study is to identify the role of SRC-3 in the function of human umbilical vein endothelial cells (HUVECs) during the development of PE. Our study demonstrated that the expression of SRC-3 was significantly decreased in PE placentas compared to normal placentas. Additionally, lentivirus short hairpin RNA against SRC-3 and hypoxia/reoxygenation treatments attenuated migration and tube formation abilities and enhanced HUVEC apoptosis. Furthermore, we detected possible downstream in the PI3K/Akt/ mammalian target of rapamycin (mTOR) signal pathway activity, which is involved in SRC-3-mediated HUVEC function. Our data suggest that oxidative stress plays a crucial role in controlling SRC-3 expression, which influences the migration and tube formation abilities of endothelial cells through the PI3K/Akt/mTOR signaling pathways. This action may then result in PE pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Preeclampsia. Lancet. 2010;376(9741):631–644.

    PubMed  Google Scholar 

  2. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1): 1–7.

    PubMed  Google Scholar 

  3. Walsh SW. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol. 1998; 16(1):93–104.

    CAS  PubMed  Google Scholar 

  4. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):287–299.

    PubMed  PubMed Central  Google Scholar 

  5. Suen CS, Berrodin TJ, Mastroeni R, Cheskis BJ, Lyttle CR, Frail DE. A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J Biol Chem. 1998;273(42):27645–27653.

    CAS  PubMed  Google Scholar 

  6. Anzick SL, Kononen J, Walker RL, et al. AIB1, a novel estrogen receptor co-activator amplified in breast and ovarian cancer. Science. 1997;277(5328):965–968.

    CAS  PubMed  Google Scholar 

  7. Yoshida H, Liu J, Samuel S, Cheng W, Rosen D, Naora H. Steroid receptor coactivator-3, a homolog of taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell Endocrinol. 2005; 245(1–2):77–85.

    CAS  PubMed  Google Scholar 

  8. Xu FP, Xie D, Wen JM, et al. SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 2007 8;245(1–2):69–74.

    CAS  PubMed  Google Scholar 

  9. Mo P, Zhou Q, Guan L, et al. Amplified in breast cancer 1 pro-motes colorectal cancer progression through enhancing notch sig-naling. Oncogene. 2015;34(30):3935–3945.

    CAS  PubMed  Google Scholar 

  10. Cai D, Shames DS, Raso MG, et al. Steroid receptor coactivator-3 expression in lung cancer and its role in the regulation of cancer cell survival and proliferation. Cancer Res. 2010;70(16): 6477–6485.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai J, Uehara Y, Montell DJ. Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell. 2000;103(7): 1047–1058.

    CAS  PubMed  Google Scholar 

  12. Lahusen T, Fereshteh M, Oh A, Wellstein A, Riegel AT. Epidermal growth factor receptor tyrosine phosphorylation and signaling controlled by a nuclear receptor coactivator, amplified in breast cancer 1. Cancer Res. 2007;67(15):7256–7265.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fereshteh MP, Tilli MT, Kim SE, et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res. 2008;68(10):3697–3706.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oh A, List HJ, Reiter R, et al. The nuclear receptor coactivator AIB1 mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells. Cancer Res. 2004;64(22): 8299–8308.

    CAS  PubMed  Google Scholar 

  15. Al-Otaiby M, Tassi E, Schmidt MO, et al. Role of the nuclear receptor coactivator AIB1/SRC-3 in angiogenesis and wound healing. Am J Pathol. 2012;180(4):1474–1484.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan Y, Liao L, Tulis DA, Xu J. Steroid receptor coactivator-3 is required for inhibition of neointima formation by estrogen. Circulation. 2002;105(22):2653–2659.

    CAS  PubMed  Google Scholar 

  17. Roberts JM., Taylor RN, Goldfien A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertens. 1991;4(8):700–708.

    CAS  PubMed  Google Scholar 

  18. Roberts JM, Taylor RN, Musci TJ, Rogers GM, Hubel CA, McLaughlin MK. Preeclampsia. An endothelial cell disorder. Am J Obstet Gynecol. 1989;161(5):1200–1204.

    CAS  PubMed  Google Scholar 

  19. Hung TH, Skepper JN, Burton GJ. In vitro ischemia-reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol. 2001;159(3):1031–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cudmore M, Ahmad S, Al-Ani B, et al. Negative regulation of soluble Flt-1 and soluble endoglin release by heme oxygenase-1. Circulation. 2001; 15(13): 1789–1797.

    Google Scholar 

  21. Qiu Q, Yang M, Tsang BK, Gruslin A. EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3 K and MAPK signalling pathways. Reproduction. 2004;128(3): 355–363.

    CAS  PubMed  Google Scholar 

  22. Jia RZ, Ding GC, Gu CM, Huang T, Rui C, Wang YX, Lu Q. CDX2 enhances HTR-8/SVneo trophoblast cell invasion by altering the expression of matrix metalloproteinases. Cell Physiol Biochem. 2014;34(3):628–636.

    CAS  PubMed  Google Scholar 

  23. Cudmore MJ, Ahmad S, Sissaoui S, et al. Loss of Akt activity increases circulating soluble endoglin release in preeclampsia: identification of inter-dependency between Akt-1 and heme oxy-genase-1. Eur Heart J. 2012;33(9):1150–1158.

    CAS  PubMed  Google Scholar 

  24. Ying H, Furuya F, Willingham MC, Xu J, O’Malley BW, Cheng SY. Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone. Mol Cell Biol. 2005; 25(17):7687–7895.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Torres-Arzayus MI, Font de Mora J, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell. 2004;6(3):263–274.

    CAS  PubMed  Google Scholar 

  26. Leach RE, Kilburn BA, Petkova A, Romero R, Armant DR. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding EGF-like growth factor. Am J Obstet Gynecol. 2008;198(4):471.el-471.e8.

    PubMed  PubMed Central  Google Scholar 

  27. Hung TH, Burton GJ. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J Obstet Gynecol. 2006;45(3): 189–200.

    PubMed  Google Scholar 

  28. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993; 72(6):835–846.

    CAS  PubMed  Google Scholar 

  29. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl AcadSci USA. 1993;90(16):7533–7537.

    CAS  Google Scholar 

  30. Plate KH, Breier G, Millauer B, Ullrich A, Risau W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res. 1993;53(23):5822–5827.

    CAS  PubMed  Google Scholar 

  31. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502.

    PubMed  PubMed Central  Google Scholar 

  32. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee YW, Kuhn H, Hennig B, Neish AS, Toborek M. IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. JMol Cell Cardiol. 2001;33(1):83–94.

    CAS  Google Scholar 

  34. Sanchez-Aranguren LC, Prada CE, Riano-Medina CE, Lopez M. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front Physiol. 2014;5:372.

    PubMed  PubMed Central  Google Scholar 

  35. Lash GE, Naruse K, Innes BA, Robson SC, Searle RF, Bulmer JN. Secretion of angiogenic growth factors by villous cytotrophoblast and extravillous trophoblast in early human pregnancy. Placenta. 2010;31(6):545–548.

    CAS  PubMed  Google Scholar 

  36. Kim SC, Park MN, Lee YJ, Joo JK, An BS. Interaction of steroid receptor coactivators and estrogen receptors in the human placenta. J Mol Endocrinol. 2016;56(3):239–247.

    CAS  PubMed  Google Scholar 

  37. Douglas NC, Tang H, Gomez R, et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) functions to promote uterine decidual angiogenesis during early pregnancy in the mouse. Endocrinology. 2009;150(8):3845–3854.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meric-Bernstam F, Akcakanat A, Chen H, et al. PIK3CA/ PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR Inhibitors. Clin Cancer Res. 2012;18(6): 1777–1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou G, Hashimoto Y, Kwak I, Tsai SY, Tsai MJ. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol. 2003;23(21):7742–7755.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340(23): 1801–1811.

    CAS  PubMed  Google Scholar 

  41. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendel-sohn ME, Shaul PW. ERa mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999; 103(3):401–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bakir S, Mori T, Durand J, Chen YF, Thompson JA, Oparil S. Estrogen-induced vaso-protection is ER dependent: evidence from the balloon-injured rat carotid artery model. Circulation. 2000;101(20):2342–2344.

    CAS  PubMed  Google Scholar 

  43. Jobe SO, Tyler CT, Magness RR. Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction. Hypertension. 2013;61(2):480–487.

    CAS  PubMed  Google Scholar 

  44. Schiessl B, Mylonas I, Hantschmann P, et al. Expression of endothelial NO synthase, inducible NO synthase, and estrogen receptors alpha and beta in placental tissue of normal, preeclamptic, and intrauterine growth-restricted pregnancies. J Histochem Cytochem. 2005;53(12):1441–1449.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Qi MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Shan, N., Tan, B. et al. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia. Reprod. Sci. 25, 748–758 (2018). https://doi.org/10.1177/1933719117725818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117725818

Keywords

Navigation