Skip to main content
Log in

Impact of Lactational Exposure to Polychlorinated Biphenyl Causes Epigenetic Modification and Impairs Sertoli Cells Functional Regulators in F1 Progeny

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polychlorinated biphenyl (PCB) is an endocrine-disrupting chemical. Sertoli cells (SCs) provide physical and nutritional support for developing germ cells. Dysfunction in SCs has adverse effects on spermatogenesis. Previously, we found that the lactational exposure of PCBs (1, 2, and 5 mg/kg birth weight/day, orally from postnatal days 1 to 20) decreased the follicle-stimulating hormone receptor (FSHR) and androgen receptor (AR) expression in SCs of F1 progeny. Transcription factors initiate and regulate the transcription of genes. DNA methylation plays an important role in epigenetic gene regulation. Hence, this study was aimed to identify the level of transcription factors regulating FSHR, AR gene expression, and DNA methylation in the promoter of these genes in SCs of both F1 prepuberal and puberal offspring. DNA methylation in the promoter of FSHR and AR genes was examined by sodium bisulfite conversion technique. The protein levels of transcription factors (steroidogenic factor 1 [SF1], upstream stimulatory factors 1 and 2, c-fos, c-jun, and CREB-binding protein) and enzymes DNA methyltransferases (Dnmt1, Dnmt3ab, Dnmt3l, and histone deacetylase 1 [HDAC1]) were analyzed by Western blotting. The transcription factors that regulate the FSHR and AR gene in SCs were decreased in both the PCB-exposed F1 progeny. Methylation was observed in the promoter of FSHR, AR, and SF1. The protein levels of Dnmt1, Dnmt3ab, Dnmt3l, and HDAC1 were increased in the PCBstreated groups. Subsequently, it leads to transcriptional repression of the genes in SCs. Our finding suggests that PCBs caused epigenetic change in SCs, thereby it impaired SCs function in F1 progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orth JM, Gunsalus GL, Lamperti AA. Evidence from Sertoli celldepleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology. 1988;122(3):787–794.

    CAS  PubMed  Google Scholar 

  2. Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125(6): 769–784.

    CAS  PubMed  Google Scholar 

  3. Choi MS, Park HJ, Oh JH, Lee EH, Park SM, Yoon S. Nonylphenol-induced apoptotic cell death in mouse TM4 Sertoli cells via the generation of reactive oxygen species and activation of the ERK signaling pathway. J Appl Toxicol. 2014;34(6): 628–636.

    CAS  PubMed  Google Scholar 

  4. Casati L, Sendra R, Poletti A, Negri-Cesi P, Celotti F. Androgen receptor activation by polychlorinated biphenyls: epigenetic effects mediated by the histone demethylase Jarid1b. Epigenetics. 2013;8(10):1061–1068.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61(5 pt 2):24R-29R.

    Google Scholar 

  6. Kafri T, Gao X, Razin A. Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci U S A. 1993;90(22):10558–10562.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Belzil VV, Bauer PO, Gendron TF, Murray ME, Dickson D, Petrucelli L. Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Res. 2014;1584:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–1093.

    CAS  Google Scholar 

  9. Lechner M, Boshoff C, Beck S. Cancer epigenome. Adv Genet. 2010;70:247–276.

    Google Scholar 

  10. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–1993.

    CAS  PubMed  Google Scholar 

  11. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev. 1999;9(2):158–163.

    CAS  PubMed  Google Scholar 

  12. Murugesan P, Muthusamy T, Balasubramanian K, Arunakaran J. Polychlorinated biphenyl (Aroclor 1254) inhibits testosterone biosynthesis and antioxidant enzymes in cultured rat Leydig cells. Reprod Toxicol. 2008; 25(4):447–454.

    CAS  PubMed  Google Scholar 

  13. Murugesan P, Senthilkumar J, Balasubramanian K, Aruldhas MM, Arunakaran J. Impact of polychlorinated biphenyl Aroclor 1254 on testicular antioxidant system in adult rats. Hum Exp Toxicol. 2005;24(2):61–66.

    CAS  PubMed  Google Scholar 

  14. Colciago A, Casati L, Mornati O, et al. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat. Part 2: effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offspring. Toxicol Appl Pharmacol. 2009;239(1):46–54.

    CAS  PubMed  Google Scholar 

  15. Jacobson JL, Jacobson SW. Developmental Effects of PCBs in the Fish Eater Cohort Studies. PCBs—Recent Advances in the Environmental Toxicology and Health Effects of PCBs. Lexington, KY: The University Press of Kentucky;2001:127–136.

    Google Scholar 

  16. Odland J, Deutch B, Hansen JC, Burkow IC. The importance of diet on exposure to and effect of persistent organic pollutants on human health in the Arctic. Acta Paediatr. 2003;92(11): 1255–1266.

    CAS  PubMed  Google Scholar 

  17. Sathish Kumar T, Sugantha Priya E, Raja Singh P, Arunakaran J. Lactational exposure of polychlorinated biphenyls downregulates critical genes in Leydig cells of F1 male progeny (PND21) [Published online October 26, 2016]. Andrologia. doi:10.1111/and. 12734.

  18. Hertz-Picciotto I, Jusko TA, Willman EJ, et al. A cohort study of in utero polychlorinated biphenyl (PCB) exposures in relation to secondary sex ratio. Environ Health. 2008;7(1):1–8.

    Google Scholar 

  19. Buck GM, Vena JE, Schisterman EF, et al. Parental consumption of contaminated sport fish from Lake Ontario and predicted fecundability. Epidemiology. 2000;11(4):388–393.

    CAS  PubMed  Google Scholar 

  20. Wu JP, Luo XJ, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ Int. 2008; 34(8):1109–1113.

    CAS  PubMed  Google Scholar 

  21. Arnold DL, Mes J, Bryce F, et al. A pilot study on the effects of Aroclor 1254 ingestion by rhesus and cynomolgus monkeys as a model for human ingestion of PCBs. Food Chem Toxicol. 1990; 28(12):847–857.

    CAS  PubMed  Google Scholar 

  22. Tabb MM, Blumberg B. New modes of action for endocrine disrupting chemicals. Mol Endocrinol. 2006;20(3):475–482.

    CAS  PubMed  Google Scholar 

  23. Desaulniers D, Xiao GH, Lian H, et al. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol. 2009;28(4):294–307.

    CAS  PubMed  Google Scholar 

  24. Sugantha Priya E, Sathish Kumar T, Balaji S, et al. Lactational exposure effect of polychlorinated biphenyl on rat Sertoli cell markers and functional regulators in prepuberal and puberal F1 offspring. J Endocrinol Invest. 2016;40(1);91–100.

    PubMed  Google Scholar 

  25. Majumdar SS, Tsuruta J, Griswold MD, Bartke A. Isolation and culture of Sertoli cells from the testes of adult Siberian hamsters: analysis of proteins synthesized and secreted by Sertoli cells cultured from hamsters raised in a long or a short photoperiod. Biol Reprod. 1995;52(3):658–666.

    CAS  PubMed  Google Scholar 

  26. Raychoudhury S, Thompson EW, Blackshaw A, Irving MG. Sertoli cells as paracrine modulators of DNA synthesis in rat peritubular myoid cells in culture. J Reprod Fertil. 1993;99(2): 513–518.

    CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265–275.

    CAS  Google Scholar 

  28. Krishnamoorthy G, Selvakumar K, Venkataraman P, Elumalai P, Arunakaran J. Lycopene supplementation prevents reactive oxygen species mediated apoptosis in Sertoli cells of adult albino rats exposed to polychlorinated biphenyls. Interdiscip Toxicol. 2013; 6(2):83–92.

    PubMed  PubMed Central  Google Scholar 

  29. Skinner MK, Schlitz SM, Anthony CT. Regulation of Sertoli cell differentiated function: testicular transferrin and androgenbinding protein expression. Endocrinology. 1989;124(6): 3015–3024.

    CAS  PubMed  Google Scholar 

  30. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19(2):187–191.

    CAS  PubMed  Google Scholar 

  31. Heckert LL, Daggett MA, Chen J. Multiple promoter elements contribute to activity of the follicle-stimulating hormone receptor (FSHR) gene in testicular Sertoli cells. Mol Endocrinol. 1998; 12(10):1499–1512.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Heckert LL. Activation of the rat follicle-stimulating hormone receptor promoter by steroidogenic factor 1 is blocked by protein kinase a and requires upstream stimulatory factor binding to a proximal E box element. Mol Endocrinol. 2001;15(5): 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Griswold MD, Kim JS. Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription. Biol Reprod. 2001;64(2):602–610.

    CAS  PubMed  Google Scholar 

  34. Wu S, Zhu J, Li Y, et al. Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol. 2010;106(2):118–123.

    CAS  PubMed  Google Scholar 

  35. Sekaran S, Jagadeesan A. In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny. J Cell Biochem. 2015;116(7):1466–1477.

    CAS  PubMed  Google Scholar 

  36. Chaudhary J, Skinner MK. E-box and cyclic adenosine monophosphate response elements are both required for folliclestimulating hormone-induced transferrin promoter activation in Sertoli cells. Endocrinology. 1999;140(3):1262–1271.

    CAS  PubMed  Google Scholar 

  37. Regadera J, Martinez-Garcia F, Gonzalez-Peramatao P, Serrano A, Nistal M, Suárez-Quian C. Androgen receptor expression in Sertoli cells as a function of seminiferous tubule maturation in the human cryptorchid testis. J Clin Endocrinol Metab. 2001;86(1):413–421.

    CAS  PubMed  Google Scholar 

  38. Karin M, Liu Z, Zandi E. AP1 function and regulation. Curr Opin Cell Biol. 1997:9(2):240–246.

    CAS  PubMed  Google Scholar 

  39. O’Shea EK, Rutkowski R, Kim PS. Mechanism of specificity in the Fos-jun oncoprotein heterodimer. Cell. 1992;68(4):699–708.

    PubMed  Google Scholar 

  40. Wise SC, Burmeister L A, Zhou XF, et al. Identification of domains of c-Jun mediating androgen receptor transactivation. Oncogene. 1998;16(15):2001–2010.

    CAS  PubMed  Google Scholar 

  41. Bubulya A, Chen SY, Fisher CJ, Zheng Z, Shen XQ, Shemshedini L. c-Jun potentiates the functional interaction between the amino and carboxyl termini of the androgen receptor. J Biol Chem. 2001; 276(48):44704–44711.

    CAS  PubMed  Google Scholar 

  42. Gaughan L, Logan IR, Cook S, Neal DE, Robson CN. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem. 2002;277(29):25904–25913.

    CAS  PubMed  Google Scholar 

  43. Shang YF, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell. 2002;9(3):601–610.

    CAS  PubMed  Google Scholar 

  44. Casati L, Sendra R, Sibilia V, et al. Endocrine disrupters: the new players able to affect the epigenome. Front Cell Dev Biol. 2015;3:37.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arunakaran PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugantha Priya, E., Sathish Kumar, T., Raja Singh, P. et al. Impact of Lactational Exposure to Polychlorinated Biphenyl Causes Epigenetic Modification and Impairs Sertoli Cells Functional Regulators in F1 Progeny. Reprod. Sci. 25, 818–829 (2018). https://doi.org/10.1177/1933719117699707

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117699707

Keywords

Navigation