Skip to main content

Advertisement

Log in

The Changes of Cytoskeletal Proteins Induced by the Fast Effect of Estrogen in Mouse Blastocysts and Its Roles in Implantation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

It is necessary for estrogen to activate mouse blastocysts, so that they can attach to endometrial epithelium in implantation and in our previous research, we have proved estrogen can induce a fast increase in intracellular calcium of mouse blastocysts through acting on G protein-coupled receptor 30 (GPR30), which further promotes their implantation. Moreover, there has been evidence that cytoskeletal proteins are involved in integrin-mediated adhesion of many kinds of cells, which also plays an important role in implantation. To prove estrogen induces rapidly the changes of cytoskeletal proteins in mouse blastocysts and its roles in implantation, we first used immunofluorescence staining and laser confocal microscopy to investigate the fast effect of estrogen on the expression and localization of cytoskeletal proteins in mouse blastocysts. Second, we used electroporation associated with RNA interference to knock down one of the important cytoskeletal proteins, talin, in the mouse blastocyst cells to investigate the fast effect of estrogen on the localization of integrins and the binding activity of integrins with their ligand fibronectin (FN). At last, mouse blastocysts with different treatments were cultured with FN or uterine epithelial cell line Ishikawa in vitro, respectively, and transferred into the bilateral uterine horns of recipient mice, to study the role of the fast effect of estrogen on cytoskeletal proteins in blastocysts adhesion and implantation. Our results indicated that estradiol (E2), E2 conjugated with bovine serum album (E2-BSA) and G-1 (a GPR30-specific agonist) could induce cytoskeletal protein talin, vinculin, and actin to cluster in the mouse blastocysts, while G15 (a GPR30-specific antagonist) and BAPTA (a calcium chelator) may block this effect induced by E2-BSA. Furthermore, E2-BSA could induce the clustering and relocalization of integrin β1 and β3 and increase the FN-binding activity of integrins in blastocyst cells, while E2-BSA could not induce these effects in the blastocysts pretreated with talin-small interfering RNA (siRNA). Meanwhile, the adhesion rate and implantation rate of blastocysts pretreated with talin-siRNA were significantly lower than those pretreated with control-siRNA. We provided the first evidence that the fast effect of estrogen might cause the clustering of the cytoskeletal proteins in mouse blastocyst cells and further induce the changes of localization and functional activity of integrins in the blastocyst cells, which play important roles in blastocyst implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993;90(21):10159–10162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoshinaga K, Adams CE. Delayed implantation in the spayed, progesterone treated adult mouse. J Reprod Fertil. 1966;12(3):593–595

    Article  CAS  PubMed  Google Scholar 

  3. Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100(5):2963–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilsson S, Makela S, Treuter E, et al. Mechanisms of estrogen action. Physiol Rev. 2001;81(4):1535–1565.

    Article  CAS  PubMed  Google Scholar 

  5. Norman AW, Mizwicki MT, Norman DP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.

    Article  CAS  PubMed  Google Scholar 

  6. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–1630.

    Article  CAS  Google Scholar 

  7. Qu T, Zhang SM, Yu LL, et al. Relocalisation and activation of integrins induced rapidly by oestrogen via G-protein-coupled receptor 30 in mouse blastocysts [Published online May 8, 2015]. Reprod Fertil Dev. doi:10.1071/RD14227.

    Google Scholar 

  8. Yu LL, Qu T, Zhang SM, et al. GPR30 mediates the fast effect of estrogen on mouse blastocyst and its role in implantation. Reprod Sci. 2015;22(10):1312–1320.

    Article  CAS  PubMed  Google Scholar 

  9. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  10. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 2000;275(30):22607–22610.

    Article  CAS  PubMed  Google Scholar 

  11. Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmem-brane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001;2(11):793–805.

    Article  CAS  PubMed  Google Scholar 

  12. Woodside DG, Liu S, Ginsberg MH. Integrin activation. J Thromb Haemost. 2001;86(1):316–323.

    Article  CAS  Google Scholar 

  13. Lessey BA. Integrins and the endometrium: new markers of uterine receptivity. Ann N Y Acad Sci. 1997;828:111–122.

    Article  CAS  PubMed  Google Scholar 

  14. Aplin JD. Adhesion molecules in implantation. Rev Reprod. 1997; 2(2):84–93.

    Article  CAS  PubMed  Google Scholar 

  15. Kaneko Y, Day ML, Murphy CR. Integrin β3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection. Hum Reprod. 2011;26(7):1665–1674.

    Article  CAS  PubMed  Google Scholar 

  16. Albiges-Rizo C, Frachet P, Block MR. Down regulation of talin alters cell adhesion and the processing of the alpha 5 beta 1 integrin. Cell Sci. 1995;108%(pt 10):3317–3329.

    Google Scholar 

  17. Critchley DR. Focal adhesions: the cytoskeletal connection. Curr Opin Cell Biol. 2000;12(1):133–139.

    Article  CAS  PubMed  Google Scholar 

  18. Critchley DR. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem Soc Trans. 2004; 32(pt 5):831–836.

    Article  CAS  PubMed  Google Scholar 

  19. Pfaff M, Liu S, Erle DJ, Ginsberg MH. Integrin beta cytoplasmic domains differentially bind to cytoskeletal proteins. J Biol Chem. 1998;273(11):6104–6109.

    Article  CAS  PubMed  Google Scholar 

  20. Gingras AR, Bate N, Goult BT, Liu H, Putz NS. The structure of the C-terminal actin-binding domain of talin. EMBO J. 2008; 27(2):458–469.

    Article  CAS  PubMed  Google Scholar 

  21. Bailly M. Connecting cell adhesion to the actin polymerization machinery: vinculin as the missing link? Trends Cell Biol. 2003; 13(4):163–165.

    Article  CAS  PubMed  Google Scholar 

  22. Calderwood DA. Integrin activation. J Cell Sci. 2004;117(pt 5): 657–666.

    Article  CAS  PubMed  Google Scholar 

  23. Priddle H, Hemmings L, Monkley S, et al. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J Cell Biol. 1998; 142(4):1121–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu W, Baribault H, Adamson ED. Vinculin knockout results in heart and brain defects during embryonic development. Develop-ment. 1998;125(2):327–337.

    CAS  Google Scholar 

  25. Santella L, Chun JT. Actin, more than just a housekeeping protein at the scene of fertilization. Sci China Life Sci. 2011;54(8):733–743.

    Article  CAS  PubMed  Google Scholar 

  26. Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction. 2005;129(3):263–268.

    Article  CAS  PubMed  Google Scholar 

  27. Aghamohammadzadeh S, Ayscough KR. Differential require-ments for actin during yeast and mammalian endocytosis. Nat Cell Biol, 2009;11(8):1039–1042.

    Article  CAS  PubMed  Google Scholar 

  28. Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc Natl Acad Sci U S A. 2000;97(11):5930–5935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giretti MS, Fu XD, De Rosa G, Sarotto I. Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal remodelling, migration and invasion. PLoS One. 2008;3(5):e2238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Krama´r EA, Chen LY, Brandon NJ, et al. Cytoskeletal changes underlie estrogen’s acute effects on synaptic transmission and plasticity. J Neurosci. 2009;29(41):12982–12993.

    Article  CAS  Google Scholar 

  31. Paz M, Lo´pez-Casas PP, Mazo JD. Changes in vinexin expression patterns in the mouse testis induced by developmental exposure to 17beta-estradiol. Biol Reprod. 2007;77(4):605–613.

    Article  CAS  PubMed  Google Scholar 

  32. Mermelstein CS, Rebello MI, Amaral LM, Costa ML. Changes in cell shape, cytoskeletal proteins and adhesion sites of cultured cells after extracellular Ca2+ chelation. Braz J Med Biol Res. 2003;36(8):1111–1116.

    Article  CAS  PubMed  Google Scholar 

  33. Yu LL, Zhang JH, He YP, Huang P, Yue LM. Fast action of estrogen on intracellular calcium in dormant mouse blastocyst and its possible mechanism. Fertil Steril. 2009;91(2):611–615.

    Article  CAS  PubMed  Google Scholar 

  34. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–373.

    Article  CAS  PubMed  Google Scholar 

  35. Schultz JF, Mayernik L, Rout UK, Armant DR. Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts. Dev Genet. 1997;21(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  36. Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development. 1993;119(4):1175–1186.

    CAS  PubMed  Google Scholar 

  37. Beliard A, Dinnez J, Nisolle M, Foidart JM. Localization of laminin, fibronectin, E-cadherin and integrins in endometrium and endometriosis. Fertil Steril. 1997;67(2):266–272.

    Article  CAS  PubMed  Google Scholar 

  38. O’Halloran T, Beckerle MC, Burridge K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature. 1985;317(6036):449–451.

    Article  PubMed  Google Scholar 

  39. Brown NH, Gregory SL, Rickoll WL, et al. Talin is essential for integrin function in Drosophila. Dev Cell. 2002;3(4):569–579.

    Article  CAS  PubMed  Google Scholar 

  40. Nuckolls GH, Romer LH, Burridge K. Microinjection of antibodies against talin inhibits the spreading and migration of fibroblasts. Cell Sci. 1992;102(pt 4):753–762.

    CAS  Google Scholar 

  41. Albigès-Rizo C, Frachet P, Block MR. Down regulation of talin alters cell adhesion and the processing of the α5β1 integrin. Cell Sci. 1995;108(pt 10):3317–3329.

    Google Scholar 

  42. Barsukov IL, Prescot A, Bate N, et al. PIP kinase type 1γ and β1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J Biol Chem. 2003;278(33):31202–31209.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-min Yue PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sm., Yu, Ll., Qu, T. et al. The Changes of Cytoskeletal Proteins Induced by the Fast Effect of Estrogen in Mouse Blastocysts and Its Roles in Implantation. Reprod. Sci. 24, 1639–1646 (2017). https://doi.org/10.1177/1933719117697126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117697126

Keywords

Navigation