Skip to main content

Advertisement

Log in

Molecular Mechanisms of Androstenediol in the Regulation of the Proliferative Process of Human Endometrial Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Proliferation in endometria of women with polycystic ovarian syndrome (PCOS) is increased, similar to the biosynthesis of androstenediol (estrogenic metabolite). As previously shown, in human endometrial cells, androstenediol increases CYCLIN Dl levels and KI67 and decreases P27 content. The objective of the present investigation was to determine the mechanisms by which androstenediol promotes endometrial cell-cycle progression. Estrogen receptor a (ERa) activation and changes in CYCLIN Dl and P27 levels were evaluated by Western blot in T-HESCand St-TIb endometrial cell lines, using receptor antagonists; activation of PI3K-protein kinase B (AKT) and mitogen-activated protein kinases-extracellular signal-regulated kinases (MAPK-ERK)l/2 pathways was evaluated using PI3K, MAPK/ERK kinase (MEK)l/2, and RNA-polymerase II inhibitors. The data showed that androstenediol treatment significantly increases CYCLIN Dl and decreases P27 levels through ERa activation (P <.05). In addition, an increase in AKT/ERKI/2 phosphorylations was determined (P <.05). In the presence of RNA-polymerase II inhibitor, phosphorylation of AKT/ERKI/2 decreased (P <.05), meaning that endometrial cells need transcriptional activity to activate the kinases involved. It was also observed that PI3K action is required for P27 and CYCLIN Dl changes. Therefore, the action of androstenediol in endometria depends on PI3K-AKT and MAPK-ERKI/2 pathways activation, together with cell transcriptional machinery. This could be of clinical significance, as in pathologies such as PCOS, increased endometrial levels of androstenediol together with a high prevalence of endometrial hyperplasia and adenocarcinoma have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poulin R, Labrie F. Stimulation of cell proliferation and estrogenic response by adrenal C195-steroids in the ZR-75 -1 human breast cancer cell line. Cancer Res. 1986;46(10):4933–4937.

    CAS  PubMed  Google Scholar 

  2. Aspinall SR, Stamp S, Davison A, Shenton BK, Lennard TWJ. The proliferative effects of 5-androstene-3ß, 17ß-diol and 5α-dihydrotestosterone on cell cycle analysis and cell proliferation in MCF7, T47D and MDAMB231 breast cancer cell lines. J Steroid Biochem Mol Biol. 2004;88(1):37–51.

    CAS  PubMed  Google Scholar 

  3. Baker ME, Uhb KY, Chandsawangbhuwana C. 3D models of human ERα and ERβ complexed with 5-androsten-3ß,17ß-diol. Steroids. 2012;77(12):1192–1197.

    CAS  PubMed  Google Scholar 

  4. Honma N, Saji S, Hirose M, et al. Sex steroid hormones in pairs of tumor and serum from breast cancer patients and pathobiological role of androstene-3β, 17β-diol. Cancer Sci. 2011;102(10): 1848–1854.

    CAS  PubMed  Google Scholar 

  5. Lasley BL, Chen J, Stanczyk FZ, et al. Androstenediol comple-ments estrogenic bioactivity during the menopausal transition. Menopause. 2012;19:650–657.

    PubMed  PubMed Central  Google Scholar 

  6. Plaza F, Gabier F, Romero C, Vantman D, Valladares L, Vega M. The conversion of dehydroepiandrosterone into androst-5-ene-3ß,17ß-diol (androstenediol) is increased in endometria from untreated women with polycystic ovarian syndrome. Steroids. 2010;75(12):810–817.

    CAS  PubMed  Google Scholar 

  7. Plaza-Parrochia F, Bacallao K, Poblete C, et al. The role of androst-5-ene-3ß,17ß-diol (androstenediol) in cell proliferation in endometrium of women with polycystic ovary syndrome. Steroids. 2014;89:11–19.

    CAS  PubMed  Google Scholar 

  8. Audet-Walsh E, Lépine J, Grégoire J, et al. Profiling of endo-genous estrogens, their precursors, and metabolites in endometrial cancer patients: association with risk and relationship to clinical characteristics. J Clin Endocrinol Metab. 2011;96(2): E330–E339.

    CAS  PubMed  Google Scholar 

  9. Giudice LC. Endometrium in PCOS: implantation and predispo-sition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235–244.

    CAS  PubMed  Google Scholar 

  10. Ehrmann DA. Medical progress; polycystic ovary syndrome. N Engl J Med. 2005;352(12):1223–1236.

    CAS  PubMed  Google Scholar 

  11. Fearnley EJ, Marquait L, Spurdle AB, Weinstein P, Webb PM; The Australian Ovarian Cancer Study Group and The Australian National Endometrial Cancer Study Group. Polycystic ovary syn-drome increases the risk of endometrial cancer in women aged less than 50 years: an Australian case-control study. Cancer Causes Control. 2010;21(12):2303–2308.

    PubMed  Google Scholar 

  12. Kilicdag EB, Haydardedeoglu B, Cok T, Parlakgumus AH, Simsek E, Bolat FA. Polycystic ovary syndrome and increased polyp numbers as risk factors for malignant transformation of endometrial polyps in premenopausal women. Int J Gynaecol Obstet. 2011;112(3):200–203.

    PubMed  Google Scholar 

  13. Shang K, Jia X, Qiao J, Kang J, Guan Y. Endometrial abnormality in women with polycystic ovary syndrome. Reprod Sci. 2012;19(7):674–683.

    PubMed  Google Scholar 

  14. Avellaira C, Villavicencio A, Bacallao K, et al. Expression of molecules associated with tissue homeostasis in secretory endo-metria from untreated women with polycystic ovary syndrome. Hum Reprod. 2006;21(12):3116–3121.

    CAS  PubMed  Google Scholar 

  15. Maliqueo M, Clementi M, Gabier F, et al. Expression of steroid receptors and proteins related to apoptosis in endometria of women with polycystic ovary syndrome. Fertil Steril. 2003; 80(suppl 2):812–819.

    PubMed  Google Scholar 

  16. Villavicencio A, Bacallao K, Gabler F, et al. Deregulation of tissue homeostasis in endometria from patients with polycystic ovarian syndrome with and without endometrial hyperplasia. Gynecol Oncol. 2007;104(2):290–295.

    CAS  PubMed  Google Scholar 

  17. Villavicencio A, Goyeneche A, Telleria C, et al. Involvement of Akt, Ras and cell cycle regulators in the potential development of endometrial hyperplasia in women with polycystic ovarian syn-drome. Gynecol Oncol. 2009;115(1):102–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan L, Wang A, Chen L, Shang W, Li M, Zhao Y. Expression of apoptosis-related genes in the endometrium of polycystic ovary syndrome patients during the window of implantation. Gene. 2012;506(2):350–354.

    CAS  PubMed  Google Scholar 

  19. Villavicencio A, Bacallao K, Avellaira C, Gabler F, Fuentes A, Vega M. Androgen and estrogen receptors and co-regulators lev-els in endometria from patients with polycystic ovarian syndrome with and without endometrial hyperplasia. Gynecol Oncol. 2006;103(1):307–314.

    CAS  PubMed  Google Scholar 

  20. Quezada S, Avellaira C, Johnson MC, Gabler F, Fuentes A, Vega M. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fert Steril. 2006;85(4):1017–1026.

    CAS  Google Scholar 

  21. Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2(4):339–345.

    CAS  PubMed  Google Scholar 

  22. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev. 1999;20(4):501–534.

    CAS  PubMed  Google Scholar 

  23. Kampa M, Castanas E. Membrane steroid receptor signaling in normal and neoplastic cells. Mol Cell Endocrinol. 2006;246(1–2): 76–82.

    CAS  PubMed  Google Scholar 

  24. Maddika S, Andea SR, Panigrahi S, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updates. 2007;10(1–2):13–29.

    CAS  Google Scholar 

  25. Guo R, Wei L, Qiao Y, Wang J, Tang J. Blockage of PI3K/PKB/ P27kipl signaling pathway can antagonize 17ß-estradiol-induced Ishikawa proliferation and cell cycle progression. Chin Med J. 2006;119(3):242–245.

    CAS  PubMed  Google Scholar 

  26. Krikun G, Mor G, Alvero A, et al. A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology. 2004;145(5):2291–2296.

    CAS  PubMed  Google Scholar 

  27. Salamecos A, Reimann K, Wittmann S, et al. Characterization of a novel telomerase-immortalized human endometrial stromal cell line, St-Tlb. Reprod Biol Endocrin. 2009;7:76.

    Google Scholar 

  28. Ormazáâbal P, Romero C, Quest AF, Vega M. Testosterone modulates the expression of molecules linked to insulin action and glucose uptake in endometrial cells. Horm Metab Res. 2013;45(9):640–645.

    Google Scholar 

  29. Plaza-Parrochia F, Poblete C, Gabler F, et al. Expression of ster-oid sulfated transporters and 3β-HSD activity in endometrium of women having polycystic ovary syndrome. Steroids. 2015;104: 189–195.

    CAS  PubMed  Google Scholar 

  30. Vlahost CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002). J Biol Chem. 1994;269(7):5241–5248.

    Google Scholar 

  31. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 1998;273(29):18623–18632.

    CAS  PubMed  Google Scholar 

  32. Labrie F, Luu-The V, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandroster-one. Endocr Rev. 2003;24(2):152–182.

    CAS  PubMed  Google Scholar 

  33. Sasano H, Miki Y, Nagasaki S, Suzuki T. In situ estrogen production and its regulation in human breast carcinoma: from endocrinology to intracrinology. Pathol Int. 2009;59(11):777–789.

    CAS  PubMed  Google Scholar 

  34. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epi-genetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod. 2010;16(5):297–310.

    CAS  PubMed  Google Scholar 

  35. Miller KKM, Al-Rayyan N, Ivanova MM, et al. DHEA metabo-lites activate estrogen receptors alpha and beta. Steroids. 2013; 78(1):15–25.

    PubMed  Google Scholar 

  36. Helguero LA, Faulds M, Gustafsson JA, Haldosén LA. Estrogen receptors alfa (ERα) and beta (ERß) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene. 2005;24(44):6605–6616.

    CAS  PubMed  Google Scholar 

  37. Bacallao K, Plaza-Parrochia F, Cerda A, et al. Levels of regulatory proteins associated with cell proliferation in endometria from untreated patients having polycystic ovarian syndrome with and without endometrial hyperplasia. Reprod Sci. 2016;23(2):211–218.

    CAS  PubMed  Google Scholar 

  38. Azziz R, Carmina E, Dewailly D, et al; Task Force on the Phe-notype of the Polycystic Ovary Syndrome of The Androgen Excess and PCOS Society. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–488.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Vega PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaza-Parrochia, F., Oróstica, L., Garc;ia, P. et al. Molecular Mechanisms of Androstenediol in the Regulation of the Proliferative Process of Human Endometrial Cells. Reprod. Sci. 24, 1079–1087 (2017). https://doi.org/10.1177/1933719116678689

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116678689

Keywords

Navigation