Skip to main content
Log in

Postnatal Cardiovascular Consequences in the Offspring of Pregnant Rats Exposed to Smoking and Smoking Cessation Pharmacotherapies

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Approximately 20% of pregnant women smoke despite intentions to quit. Smoking cessation drugs, such as nicotine replacement therapy (NRT) and bupropion, are recommended treatments. Adverse cardiovascular outcomes in offspring have raised concerns about NRT’s safety during pregnancy. However, the effect of bupropion is unknown. Using a rat model, we determined whether NRT and bupropion interventions during pregnancy are safer than continued smoking on offspring’s cardiovascular function. Male offspring of controls and dams exposed to cigarette smoke (1.6 packs/day, inhalation), nicotine (2 mg/kg/d subcutaneously), and bupropion (13 mg/kg twice daily orally) were assessed for fetoplacental weight, cardiac function, blood pressure, and vascular reactivity. Fetoplacental weights were decreased and spontaneous beating and intracellular calcium in neonatal cardiomyocytes were increased in smoking, nicotine, and bupropion offspring; however, these effects were more accentuated in smoking followed by nicotine and bupropion offspring. Increased heart rate and decreased cardiac output, stroke volume, and left ventricular percent posterior wall thickening were observed in smoking, nicotine, and bupropion offspring. The left ventricular mass was reduced in smoking and nicotine but not in bupropion offspring. Blood pressure was higher with decreased endothelium-dependent relaxation and exaggerated vascular contraction to angiotensin II in smoking and nicotine offspring, with more pronounced dysfunctions in smoking than nicotine offspring. Maternal bupropion did not impact offspring’s blood pressure, endothelium-dependent relaxation, and vascular contraction. In conclusion, maternal nicotine intervention adversely affects offspring’s cardiovascular outcomes, albeit less severely than continued smoking. However, bupropion causes cardiac derangement in offspring but does not adversely affect blood pressure and vascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einarson A, Riordan S. Smoking in pregnancy and lactation: a review of risks and cessation strategies. Eur J Clin Pharmacol. 2009;65(4):325–330.

    Article  PubMed  Google Scholar 

  2. Rogers J. Tobacco and pregnancy. Reprod Toxicol. 2009;28(2):152–160.

    Article  CAS  PubMed  Google Scholar 

  3. Horta BL, Victora CG, Menezes AM, Halpern R, Barros FC. Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. Paediatr Perinat Epidemiol. 1997;11(2):140–151.

    Article  CAS  PubMed  Google Scholar 

  4. Antonopoulos CN, Sergentanis TN, Papadopoulou C, et al. Maternal smoking during pregnancy and childhood lymphoma: a metaanalysis. M J Cancer. 2011;129(11):2694–2703.

    CAS  Google Scholar 

  5. Durmus B, Kruithof CJ, Gillman MH, et al. Parental smoking during pregnancy, early growth, and risk of obesity in preschool children: the Generation R Study. Am J Clin Nutr. 2011;94(1):164–171.

    Article  CAS  PubMed  Google Scholar 

  6. Haynes A, Cooper MN, Bower C, Jones TW, Davis EA. Maternal smoking during pregnancy and the risk of childhood type 1 diabetes in Western Australia. Diabetologia. 2014;57(3):469–472.

    Article  CAS  PubMed  Google Scholar 

  7. Blake KV, Gurrin LC, Evans SF, et al. Maternal cigarette smoking during pregnancy, low birth weight and subsequent blood pressure in early childhood. Early Hum Dev. 2000;57(2):137–147.

    Article  CAS  PubMed  Google Scholar 

  8. Lawlor DA, Najman JM, Sterne J, Williams GM, Ebrahim S, Davey SG. Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: findings from the Mater-University study of pregnancy and its outcomes. Circulation. 2004;110(16):2417–2423.

    Article  PubMed  Google Scholar 

  9. Oken E, Huh SY, Taveras EM, Rich-Edwards JW, Gillman MW. Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes Res. 2005;13(11):2021–2028.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lawlor DA, Smith GD. Early life determinants of adult blood pressure. Curr Opin Nephrol Hypertens. 2005;14(3):259–264.

    Article  PubMed  Google Scholar 

  11. Geerts CC, Grobbee DE, van der Ent CK, et al. Tobacco smoke exposure of pregnant mothers and blood pressure in their newborns: results from the wheezing illnesses study Leidsche Rijn Birth Cohort. Hypertension. 2007;50(3):572–578.

    Article  CAS  PubMed  Google Scholar 

  12. Hogberg L, Cnattingius S, Lundholm C, D’Onofrio BM, Langstrom N, Iliadou AN. Effects of maternal smoking during pregnancy on offspring blood pressure in late adolescence. J Hypertens. 2012;30(4):693–699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Brion MJ, Leary SD, Smith GD, Ness AR. Similar associations of parental prenatal smoking suggest child blood pressure is not influenced by intrauterine effects. Hypertension. 2007;49(6):1422–1428.

    Article  CAS  PubMed  Google Scholar 

  14. Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996;14(8):935–941.

    Article  CAS  PubMed  Google Scholar 

  15. Whincup PH, Cook DG, Shaper AG. Early influences on blood pressure: a study of children aged 5-7 years. BMJ. 1989;299(6699):587–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morley R, Leeson PC, Lister G, Lucas A. Maternal smoking and blood pressure in 7.5 to 8 year old offspring. Arch Dis Child. 1995;72(2):120–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brion MJ, Leary SD, Lawlor DA, Smith GD, Ness AR. Modifiable maternal exposures and offspring blood pressure: a review of epidemiological studies of maternal age, diet, and smoking. Pediatr Res. 2008;63(6):593–598.

    Article  PubMed  Google Scholar 

  18. Breslau N. Psychiatric comorbidity of smoking and nicotine dependence. Behav Genet. 1995;25(2):95–101.

    Article  CAS  PubMed  Google Scholar 

  19. Lumley J, Chamberlain C, Dowswell T, Oliver S, Oakley L, Watson L. Interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev. 2009;(3):CD001055.

    Google Scholar 

  20. Filion KB, Abenhaim HA, Mottillo S, et al. The effect of smoking cessation counselling in pregnant women: a meta-analysis of randomised controlled trials. BJOG. 2011;118(12):1422–1428.

    Article  CAS  PubMed  Google Scholar 

  21. Wong S, Ordean A, Kahan M. Substance use in pregnancy. J Obstet Gynaecol Can. 2011;33(4):367–384.

    Article  PubMed  Google Scholar 

  22. Cooper S, Lewis S, Thornton JG, et al. The SNAP trial: a randomised placebo-controlled trial of nicotine replacement therapy in pregnancy-clinical effectiveness and safety until 2 years after delivery, with economic evaluation. Health Technol Assess. 2014;18(54):1–128.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oncken CA, Hardardottir H, Hatsukami DK, Lupo VR, Rodis JF, Smeltzer JS. Effects of transdermal nicotine or smoking on nicotine concentrations and maternal-fetal hemodynamics. Obstet Gynecol. 1997;90(4 pt 1):569–574.

    Article  CAS  PubMed  Google Scholar 

  24. Lindblad A, Marsal K, Andersson KE. Effect of nicotine on human fetal blood flow. Obstet Gynecol. 1988;72(3 pt 1): 371–382.

    CAS  PubMed  Google Scholar 

  25. Windsor R, Oncken C, Henningfield J, Hartmann K, Edwards N. Behavioral and pharmacological treatment methods for pregnant smokers: issues for clinical practice. J Am Med Womens Assoc. 2000;55(5):304–310.

    CAS  Google Scholar 

  26. Swamy GK, Roelands JJ, Peterson BL, et al. Predictors of adverse events among pregnant smokers exposed in a nicotine replacement therapy trial. Am J Obstet Gynecol. 2009;201(4):354–357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xiao D, Xu Z, Huang X, Longo LD, Yang S, Zhang L. Prenatal gender-related nicotine exposure increases blood pressure response to angiotensin II in adult offspring. Hypertension. 2008;51(4):1239–1247.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao D, Huang X, Lawrence J, Yang S, Zhang L. Fetal and neonatal nicotine exposure differentially regulates vascular contractility in adult male and female offspring. J Pharmacol Exp Ther. 2007;320(2):654–661.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao D, Dasgupta C, Li Y, Huang X, Zhang L. Perinatal nicotine exposure increases angiotensin ii receptor-mediated vascular contractility in adult offspring. PLoS One. 2014;9(9):e108161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bruin JE, Gerstein HC, Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci. 2010;116(2):364–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao D, Wang L, Huang X, Li Y, Dasgupta C, Zhang L. Protective effect of antenatal antioxidant on nicotine-induced heart ischemia-sensitive phenotype in rat offspring. PLoS One. 2016;11(2):e0150557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xiao D, Huang X, Li Y, Dasgupta C, Wang L, Zhang L. Antenatal antioxidant prevents nicotine-mediated hypertensive response in rat adult offspring. Biol Reprod. 2015;93(3):66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Xiao D, Huang X, Yang S, Zhang L. Direct effects of nicotine on contractility of the uterine artery in pregnancy. J Pharmacol Exp Ther. 2007;322(1):180–185.

    Article  CAS  PubMed  Google Scholar 

  34. Lawrence J, Xiao D, Xue Q, Rejali M, Yang S, Zhang L. Prenatal nicotine exposure increases heart susceptibility to ischemia/reper-fusion injury in adult offspring. J Pharmacol Exp Ther. 2008;324(1):331–341.

    Article  CAS  PubMed  Google Scholar 

  35. Stedman RL. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968;68(2):153–207.

    Article  CAS  PubMed  Google Scholar 

  36. Swauger JE, Steichen TJ, Murphy PA, Kinsler S. An analysis of the mainstream smoke chemistry of samples of the U.S. cigarette market acquired between 1995 and 2000. Regul Toxicol Pharmacol. 2002;35(2 pt 1):142–156.

    Article  CAS  PubMed  Google Scholar 

  37. Brose LS, McEwen A, West R. Association between nicotine replacement therapy use in pregnancy and smoking cessation. Drug Alcohol Depend. 2013;132(3):660–664.

    Article  CAS  PubMed  Google Scholar 

  38. Alwan S, Reefhuis J, Rasmussen SA, Friedman JM; National Birth Defects Prevention Study. Patterns of antidepressant medication use among pregnant women in a United States population. J Clin Pharmacol. 2011;51(2):264–270.

    Article  PubMed  Google Scholar 

  39. Hughes JR, Stead LF, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2007;(1):CD000031.

    Google Scholar 

  40. Jorenby DE, Leischow SJ, Nides MA, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med. 1999;340(9):685–691.

    Article  CAS  PubMed  Google Scholar 

  41. Chan B, Einarson A, Koren G. Effectiveness of bupropion for smoking cessation during pregnancy. J Addict Dis. 2005;24(2):19–23.

    Article  PubMed  Google Scholar 

  42. Paterson NE. Behavioural and pharmacological mechanisms of bupropion’s anti-smoking effects: recent preclinical and clinical insights. Eur J Pharmacol. 2009;603(1-3):1–11.

    Article  CAS  PubMed  Google Scholar 

  43. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther. 2000;295(1):321–327.

    CAS  PubMed  Google Scholar 

  44. Cressman AM, Pupco A, Kim E, Koren G, Bozzo P. Smoking cessation therapy during pregnancy. Can Fam Physician. 2012;58(5):525–527.

    PubMed  PubMed Central  Google Scholar 

  45. Coleman T, Chamberlain C, Davey MA, Cooper SE, LeonardiBee J. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev. 2012;(9):CD010078.

    Google Scholar 

  46. Rigotti NA, Park ER, Chang Y, Regan S. Smoking cessation medication use among pregnant and postpartum smokers. Obstet Gynecol. 2008;111(2 pt 1):348–355.

    Article  PubMed  Google Scholar 

  47. Anderka M, Romitti PA, Sun L, Druschel C, Carmichael S, Shaw G; National Birth Defects Prevention Study. Patterns of tobacco exposure before and during pregnancy. Acta Obstet Gynecol Scand. 2010;89(4):505–514.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nekhayeva IA, Nanovskaya TN, Pentel PR, Keyler DE, Hankins GD, Ahmed MS. Effects of nicotine-specific antibodies, Nic311 and Nic-IgG, on the transfer of nicotine across the human placenta. Biochem Pharmacol. 2005;70(11):1664–1672.

    Article  CAS  PubMed  Google Scholar 

  49. Earhart AD, Patrikeeva S, Wang X, et al. Transplacental transfer and metabolism of bupropion. J Matern Fetal Neonatal Med. 2010;23(5):409–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Abdelrahman DR, Zharikova OL, et al. Bupropion metabolism by human placenta. Biochem Pharmacol. 2010;79(11):1684–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lichtensteiger W, Ribary U, Schlumpf M, Odermatt B, Widmer HR. Prenatal adverse effects of nicotine on the developing brain. Prog Brain Res. 1988;73:137–157.

    Article  CAS  PubMed  Google Scholar 

  52. Slotkin TA. Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther. 1998;285(3):931–945.

    CAS  PubMed  Google Scholar 

  53. Benowitz NL, Zevin S, Jacob P III. Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol. 1997;43(3):259–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gariti P, Alterman AI, Barber W, Bedi N, Luck G, Cnaan A. Cotinine replacement levels for a 21 mg/day transdermal nicotine patch in an outpatient treatment setting. Drug Alcohol Depend. 1999;54(2):111–116.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu AZ, Cox LS, Nollen N, et al. CYP2B6 and bupropion’s smoking-cessation pharmacology: the role of hydroxybupropion. Clin Pharmacol Ther. 2012;92(6):771–777.

    Article  CAS  PubMed  Google Scholar 

  56. Suckow RF, Smith TM, Perumal AS, Cooper TB. Pharmacokinetics of bupropion and metabolites in plasma and brain of rats, mice, and guinea pigs. Drug Metab Dispos. 1986;14(6):692–697.

    CAS  PubMed  Google Scholar 

  57. Wang X, Vernikovskaya DI, Abdelrahman DR, Hankins GD, Ahmed MS, Nanovskaya TN. Simultaneous quantitative determination of bupropion and its three major metabolites in human umbilical cord plasma and placental tissue using high-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2012;70:320–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peng M, Huang L, Xie Z, Huang WH, Askari A. Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes. J Biol Chem. 1996;271(17):10372–10378.

    Article  CAS  PubMed  Google Scholar 

  59. Gopalakrishnan K, Morgan EE, Yerga-Woolwine S, et al. Augmented rififylin is a risk factor linked to aberrant cardiomyocyte function, short-QT interval and hypertension. Hypertension. 2011;57(4):764–771.

    Article  CAS  PubMed  Google Scholar 

  60. Webster DR, Patrick DL. Beating rate of isolated neonatal cardiomyocytes is regulated by the stable microtubule subset. Am J Physiol Heart Circ Physiol. 2000;278(5):H1653-H1661.

    Google Scholar 

  61. Sathishkumar K, Yallampalli U, Elkins R, Yallampalli C. Raf-1 kinase regulates smooth muscle contraction in the rat mesenteric arteries. J Vasc Res. 2010;47(5):384–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poole AT, Vincent KL, Olson GL, et al. Effect of lactation on maternal postpartum cardiac function and adiposity: a murine model. Am J Obstet Gynecol. 2014;211(4):424.e1–e7.

    Article  Google Scholar 

  63. Chinnathambi V, Yallampalli C, Sathishkumar K. Prenatal testosterone induces sex-specific dysfunction in endothelium-dependent relaxation pathways in adult male and female rats. Biol Reprod. 2013;89(4):1–9.

    Article  CAS  Google Scholar 

  64. Chinnathambi V, Selvanesan BC, Vincent KL, et al. Elevated testosterone levels during rat pregnancy cause hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in uterine arteries. Hypertension. 2014;64(2):405–414.

    Article  CAS  PubMed  Google Scholar 

  65. Andres RL, Day MC. Perinatal complications associated with maternal tobacco use. Semin Neonatol. 2000;5(3):231–241.

    Article  CAS  PubMed  Google Scholar 

  66. Abel EL. Smoking during pregnancy: a review of effects on growth and development of offspring. Hum Biol. 1980;52(4):593–625.

    CAS  PubMed  Google Scholar 

  67. Perkins SL, Belcher JM, Livesey JF. A Canadian tertiary care centre study of maternal and umbilical cord cotinine levels as markers of smoking during pregnancy: relationship to neonatal effects. Can J Public Health. 1997;88(4):232–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De LN, Hyslop JR, Nicholson CJ, Morrison KM, Gerstein HC, Holloway AC. Postnatal metabolic and reproductive consequences of fetal and neonatal exposure to the smoking cessation drug bupropion. Reprod Sci. 2013;20(10):1156–1161.

    Article  CAS  Google Scholar 

  69. Piasek M, Blanusa M, Kostial K, Laskey JW. Placental cadmium and progesterone concentrations in cigarette smokers. Reprod Toxicol. 2001;15(6):673–681.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu BT, Cai MX, Spink DC, et al. Stimulatory effect of cigarette smoking on the 15 alpha-hydroxylation of estradiol by human term placenta. Clin Pharmacol Ther. 2002;71(5):311–324.

    Article  CAS  PubMed  Google Scholar 

  71. Pastrakuljic A, Derewlany LO, Koren G. Maternal cocaine use and cigarette smoking in pregnancy in relation to amino acid transport and fetal growth. Placenta. 1999;20(7):499–512.

    Article  CAS  PubMed  Google Scholar 

  72. Resnik R, Brink GW, Wilkes M. Catecholamine-mediated reduction in uterine blood flow after nicotine infusion in the pregnant ewe. J Clin Invest. 1979;63(6):1133–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. Semin Perinatol. 1996;20(2):115–126.

    Article  CAS  PubMed  Google Scholar 

  74. Luck W, Nau H, Hansen R, Steldinger R. Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev Pharmacol Ther. 1985;8(6):384–395.

    Article  CAS  PubMed  Google Scholar 

  75. Fokina VM, West H, Oncken C, et al. Bupropion therapy during pregnancy: the drug and its major metabolites in umbilical cord plasma and amniotic fluid. Am J Obstet Gynecol. 2016;215(4):497.e1–7.

    Article  CAS  Google Scholar 

  76. Quattrocki E, Baird A, Yurgelun-Todd D. Biological aspects of the link between smoking and depression. Harv Rev Psychiatry. 2000;8(3):99–110.

    Article  CAS  PubMed  Google Scholar 

  77. Pauly JR, Slotkin TA. Maternal tobacco smoking, nicotine replacement and neurobehavioural development. Acta Paediatr. 2008;97(10):1331–1337.

    Article  PubMed  Google Scholar 

  78. Janes AC, Jensen JE, Farmer SL, Frederick BD, Pizzagalli DA, Lukas SE. GABA levels in the dorsal anterior cingulate cortex associated with difficulty ignoring smoking-related cues in tobacco-dependent volunteers. Neuropsychopharmacology. 2013;38(6):1113–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oncken C, Kranzler H, O’Malley P, Gendreau P, Campbell WA. The effect of cigarette smoking on fetal heart rate characteristics. Obstet Gynecol. 2002;99(5 pt 1):751–755.

    PubMed  Google Scholar 

  80. Feng Y, Caiping M, Li C, et al. Fetal and offspring arrhythmia following exposure to nicotine during pregnancy. J Appl Toxicol. 2010;30(1):53–58.

    Article  PubMed  CAS  Google Scholar 

  81. Jolma CD, Samson RA, Klewer SE, Donnerstein RL, Goldberg SJ. Acute cardiac effects of nicotine in healthy young adults. Echocardiography. 2002;19(6):443–448.

    Article  PubMed  Google Scholar 

  82. Leventhal K, Byatt N, Lundquist R. Fetal cardiac arrhythmia during bupropion use. Acta Obstet Gynecol Scand. 2010;89(7):980–981.

    Article  PubMed  Google Scholar 

  83. Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res. 2000;87(4):275–281.

    Article  CAS  PubMed  Google Scholar 

  84. Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M. Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res. 2003;92(6):617–622.

    Article  CAS  PubMed  Google Scholar 

  85. Steinberg SF, Goldberg M, Rybin VO. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol. 1995;27(1):141–153.

    Article  CAS  PubMed  Google Scholar 

  86. Kuwahara K, Wang Y, McAnally J, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest. 2006;116(12):3114–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu X, Eder P, Chang B, Molkentin JD. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A. 2010;107(145):7000–7005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li N, Si B, Ju JF, et al. Nicotine induces cardiomyocyte hypertrophy through TRPC3-mediated Ca/NFAT signalling pathway. Can J Cardiol. 2016;32(10):1260.e1–1260.e10.

    Article  Google Scholar 

  89. Brain KL, Trout SJ, Jackson VM, Dass N, Cunnane TC. Nicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores. Neuroscience. 2001;106(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  90. Abreu-Villaca Y, Seidler FJ, Slotkin TA. Does prenatal nicotine exposure sensitize the brain to nicotine-induced neurotoxicity in adolescence? Neuropsychopharmacology. 2004;29(8):1440–1450.

    Article  CAS  PubMed  Google Scholar 

  91. Chou HC, Chen CM. Maternal nicotine exposure during gestation and lactation induces cardiac remodeling in rat offspring. Reprod Toxicol. 2014;50:4–10.

    Article  CAS  PubMed  Google Scholar 

  92. Anblagan D, Jones NW, Costigan C, et al. Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study. PLoS One. 2013;8(7):e67223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sullivan PM, Dervan LA, Reiger S, Buddhe S, Schwartz SM. Risk of congenital heart defects in the offspring of smoking mothers: a population-based study. J Pediatr. 2015;166(4):978–984.

    Article  PubMed  Google Scholar 

  94. Williams S, Poulton R. Twins and maternal smoking: ordeals for the fetal origins hypothesis? A cohort study. BMJ. 1999;318(7188):897–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao YJ, Holloway AC, Su LY, Takemori K, Lu C, Lee RM. Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life. Eur J Pharmacol. 2008;590(1-3):264–268.

    Article  CAS  PubMed  Google Scholar 

  96. Pausova Z, Paus T, Sedova L, Beruhe J. Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: a case of gene-environment interaction. Kidney Int. 2003;64(3):829–835.

    Article  CAS  PubMed  Google Scholar 

  97. Fox KA, Longo M, Tamayo E, et al. Sex-specific effects of nicotine exposure on developmental programming of blood pressure and vascular reactivity in the C57B1/6J mouse. Am J Obstet Gynecol. 2012;207(3):208.e1–9.

    Article  CAS  Google Scholar 

  98. Hays JT, Ebbert JO. Bupropion for the treatment of tobacco dependence: guidelines for balancing risks and benefits. CNS Drugs. 2003;17(2):71–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Kumar PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, K., More, A.S., Hankins, G.D. et al. Postnatal Cardiovascular Consequences in the Offspring of Pregnant Rats Exposed to Smoking and Smoking Cessation Pharmacotherapies. Reprod. Sci. 24, 919–933 (2017). https://doi.org/10.1177/1933719116673199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116673199

Keywords

Navigation