Skip to main content
Log in

Both the Suprachiasmatic Nucleus and the Superior Ovarian Nerve Contribute to the Processes of Ovulation and Steroid Hormone Secretion on Proestrus

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The aims of the present study were to analyze if the superior ovarian nerve (SON) plays a role in the neural signals from suprachiasmatic nucleus (SCN) that lead to ovulation and ovarian steroids secretion on proestrus day. Rats on proestrus day were treated at 11.00 to 11.30 or 17.00 to 17.30 hours with 1 of the 3 experimental procedures (1) unilateral or bilateral SON sectioning, (2) unilateral or bilateral injury to the SCN, or (3) unilateral injury to the SCN followed by unilateral sectioning of the SON ipsilateral to the treated SCN. Treatments were evaluated 24 hours after surgical procedures. Compared to laparotomized animals, right or bilateral SON sectioning treatment at 17.00 hours resulted in lower ovulation rates and number of ova shed by the right ovary. The ovaries of nonovulating animals showed early follicular luteinization signs and trapped ova. Bilateral SCN injury treatment at 11.00 hours resulted in anovulation; whereas right SCN injury treatment, with or without right SON sectioning, resulted in a lower number of ova shed. Injecting luteinizing hormone-releasing hormone to animals with bilateral SCN injury restored ovulation. In rats with unilateral or bilateral SON sectioning, or with injury to the SCN with or without unilateral sectioning of the SON, the effects on hormone levels depended of the hormone studied and the time of day treatment was performed. The present results suggest that on proestrus day, the role of the right or both SON in ovulation and steroid hormone secretion regulation takes place through different neuroendocrine mechanisms from SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herbison AE. Physiology of the gonadotropin-releasing hormone neuronal network. In: Neill JD, ed. Knobil and Neill’s Physiology of Reproduction. Amsterdam, the Netherlands: Elsevier; 2006: 1415–1482.

    Chapter  Google Scholar 

  2. Miller BH, Takahashi JS. Central circadian control of female reproductive function. Front Endocrinol (Lausanne). 2014;4: 195–203.

    Article  Google Scholar 

  3. Lawrence IE Jr, Burden HW. The origin of the extrinsic adrenergic innervation to the rat ovary. Anat Rec. 1980;196(1):51–59.

    Article  CAS  PubMed  Google Scholar 

  4. Klein CM, Burden HW. Anatomical localization of afferent and postganglionic sympathetic neurons innervating the rat ovary. Neurosci Lett. 1988;85(2):217–222.

    Article  CAS  PubMed  Google Scholar 

  5. Dissen GA, Ojeda SR. Ovarian innervation. In: Knobil E, Neill JD, eds. Encyclopedia of Reproduction. San Diego, CA: Academic Press; 1999:583–589.

    Google Scholar 

  6. Aguado LI. Role of the central and peripheral nervous system in the ovarian function. Microsc Res Tech. 2002;59(6):462–473.

    Article  CAS  PubMed  Google Scholar 

  7. Chávez R, Morales L, González ME, Domínguez R. Ovarian norepinephrine content in prepubertal rats with superior ovarian nerve section: temporal studies. Med Sci Res. 1994;22: 789–790.

    Google Scholar 

  8. Aguado LI, Ojeda SR. Ovarian adrenergic nerves play a role in maintaining preovulatory steroid secretion. Endocrinology. 1984;114(5):1944–1946.

    Article  CAS  PubMed  Google Scholar 

  9. Flores A, Velasco J, Gallegos AI, Mendoza FD, Everardo PM, Cruz ME. Acute effects of unilateral sectioning the superior ovarian nerve of rats with unilateral ovariectomy on ovarian hormones (progesterone, testosterone and estradiol) levels vary during the estrous cycle. Reprod Biol Endocrinol. 2011;9:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kagitani F, Uchida S, Hotta H. Effects of electrical stimulation of the superior ovarian nerve and the ovarian plexus nerve on the ovarian estradiol secretion rate in rats. J Physiol Sci. 2008;58(2):133–138.

    Article  CAS  PubMed  Google Scholar 

  11. Uchida S, Kagitani F. Effects of electrical stimulation of auto-nomic nerves to the ovary on the ovarian testosterone secretion rate in rats. Auton Neurosci. 2014;180:48-52.

    Article  CAS  PubMed  Google Scholar 

  12. Kennaway DJ. The role of circadian rhythmicity in reproduction. Hum Reprod Update. 2005;11(1):91–101.

    Article  PubMed  Google Scholar 

  13. Sellix MT. Circadian clock function in the mammalian ovary. J Biol Rhythms. 2015;30(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  14. Cruz ME, Jaramillo LP, Domínguez R. Asymmetric ovulatory response induced by a unilateral implant of atropine in the anterior hypothalamus of the cyclic rat. J Endocrinol. 1989;123(3):437–439.

    Article  CAS  PubMed  Google Scholar 

  15. Williams WP III, Kriegsfeld LJ. Circadian control of neuroendo-crine circuits regulating female reproductive function. Front Endocrinol. 2012;3:60.

    Google Scholar 

  16. Simonneaux V, Bahougne T. A multioscillatory circadian system times female reproduction. Front Endocrinol. 2015;6:157.

    Article  Google Scholar 

  17. Antunes-Rodrigues J, McCann SM. Effects of suprachiasmatic lesions on the regulation of luteinizing hormone secretion in the female rat. Endocrinology. 1967;81(3):666–670.

    Article  CAS  PubMed  Google Scholar 

  18. Brown-Grant K, Raisman G. Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc R Soc Lond B Biol Sci. 1977;198(11312):279–296.

    CAS  PubMed  Google Scholar 

  19. Wiegand SJ, Terasawa E, Bridson WE, Goy RW. Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology. 1980;31(2):147–157.

    CAS  PubMed  Google Scholar 

  20. Wiegand SJ, Terasawa E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology. 1982;34(6):395–404.

    Article  CAS  PubMed  Google Scholar 

  21. Ma YJ, Kelly MJ, Ronnekleiv OK. Progonadotropin-releasing hormone (pro-GnRH) and GnRH content in the preoptic nucleus/suprachiasmatic nucleus lesioned rats. Endocrinology. 1990;127(6):2654–2664.

    Article  CAS  PubMed  Google Scholar 

  22. Terasawa EI, Wiegand SJ, Bridson WE. A role for medial pre-optic nucleus on afternoon of proestrus in female rats. Am J Physiol. 1980;238(6):E533–E539.

    CAS  PubMed  Google Scholar 

  23. Kimura F, Kawakami M. Reanalysis of the preoptic afferents and efferents involved in the surge of LH, FSH and prolactin release in the proestrous rat. Neuroendocrinology. 1978;27(1-2): 74–85.

    Article  CAS  PubMed  Google Scholar 

  24. Gerendai I, Tóth IE, Boldogköi Z, Halász B. Recent findings on the organization of central nervous system structures involved in the innervation of endocrine glands and other organs; observations obtained by the transneuronal viral double-labeling technique. Endocrine. 2009;36(2):179–188.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Aguilar-Roblero R. Asymmetrical electrical activity between the suprachiasmatic nuclei in vitro. NeuroReport. 1995;6(3):537–540.

    Article  CAS  PubMed  Google Scholar 

  26. de la Iglesia HO, Meyer J, Carpino A Jr, Schwartz WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science. 2000;290(5492):799–801.

    Article  PubMed  Google Scholar 

  27. de la Iglesia HO, Meyer J, Schwartz WJ. Lateralization of circadian pacemaker output: activation of left-and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than humoral pathway. J Neurosci. 2003;23(19):7412–7414.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bartness TJ, Song CK, Demas GE. SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms. 2001;16(3):196–204.

    Article  CAS  PubMed  Google Scholar 

  29. Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci. 2004;24(35):7604–7613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517-549.

    Article  CAS  PubMed  Google Scholar 

  31. Morales-Ledesma L, Vieyra E, Ramírez DA, et al. Effects on steroid hormones secretion resulting from the acute stimulation of sectioning the superior ovarian nerve to pre-pubertal rats. Reprod Biol Endocrinol. 2012;10:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. New York, NY: Elsevier Academic Press; 2004.

    Google Scholar 

  33. Chávez R, Carrizosa L, Domínguez R. Effects of superior ovarian nerve section on spontaneous and induced ovulation in adult rats. Med Sci Res. 1991;19:41–42.

    Google Scholar 

  34. Domínguez R, Cruz ME, Chávez R. Differences in the ovulatory ability between the right and left ovary are related to ovarian innervation. In: Hirshfield AN, ed. Growth Factors and the Ovary. New York, NY: Plenum Press; 1989:321–325.

    Chapter  Google Scholar 

  35. Morales L, Chávez R, Ayala ME, Domínguez R. Effects of unilateral or bilateral superior ovarian nerve section in prepubertal rats on the ovulatory response to gonadotrophin administration. J Endocrinol. 1998;158(2):213–219.

    Article  CAS  PubMed  Google Scholar 

  36. Espey L. Ovulation as an inflammatory reaction—a hypothesis. Biol Reprod. 1980;22(1):73–106.

    Article  CAS  PubMed  Google Scholar 

  37. Zackrisson U, Mikuni M, Peterson MC, Nilsson B, Janson PO, Brännström M. Evidence for the involvement of blood flow-related mechanisms in the ovulatory process of the rat. Hum Reprod. 2000;15(2):264–272.

    Article  CAS  PubMed  Google Scholar 

  38. Markiewicz W, Jaroszewski JJ, Bossowska A, Majewski M. NPY: its occurrence and relevance in the female reproductive system. Folia Histochem Cytobiol. 2003;41(4):183–192.

    CAS  PubMed  Google Scholar 

  39. Stener-Victorin E, Kobayashi R, Kurosawa M. Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats. Auton Neurosci. 2003;108(1-2):50–56.

    Article  PubMed  Google Scholar 

  40. Yao W, Sheikh SP, Ottesen B, Jørgensen JC. Vascular effects and cyclic AMP production produced by VIP, HM, PHV, PACAP-27, PACAP-38, and NPY on rabbit ovarian artery. Peptides. 1996;17(5):809–815.

    Article  CAS  PubMed  Google Scholar 

  41. Everett JW, Sawyer CH. A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology. 1950;47(3):198–218.

    Article  CAS  PubMed  Google Scholar 

  42. Domínguez R, Smith ER. Barbiturate blockade of ovulation on days other than proestrus in the rat. Neuroendocrinology. 1974;14(3):212–223.

    Article  PubMed  Google Scholar 

  43. Silva CC, Benítez DP, Monroy J, Ayala ME, Flores A, Domínguez R. Unilateral lesion of the suprachiasmatic nucleus performed at diestrus-2 or proestrus induces a blockade of ovulation in the rat [Abstract]. I Congreso de FALAN and LV Congreso Nacional de Ciencias Fisiológicas. México, Cancún: Poster TH142; 2012. Web site. http://www.smcf.org.mx/sitio/documentos/memorias2012.pdf

    Google Scholar 

  44. Tóth IE, Wiesel O, Boldogkői Z, Bálint K, Tapaszti Z, Gerendai I. Predominance of supraspinal innervation of the left ovary. Microsc Res Tech. 2007;70(8):710–718.

    Article  PubMed  Google Scholar 

  45. Fraites MJ, Cooper RL, Buckalew A, Jayaraman S, Mills L, Laws SC. Characterization of the hypothalamic-pituitary-adrenal axis response to atrazine and metabolites in the female rat. Toxicol Sci. 2009;112(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  46. Flores A, Meléndez G, Palafox MT, et al. The participation of the cholinergic system in regulating progesterone secretion through the ovarian-adrenal crosstalk varies along the estrous cycle. Endocrine. 2005;28(2):145–151.

    Article  CAS  PubMed  Google Scholar 

  47. Domínguez R, Cruz-Morales SE. The ovarian innervation participates in the regulation of ovarian functions. Endocrinol Metabol Syndrome. 2011;S4:001. doi:10.4172/2161-1017.S4-001.

    Google Scholar 

  48. Cruz ME, Olvera E, Pérez MJ, et al. Effects of unilaterally microinjecting ethanol in the preoptic-anterior hypothalamic areas of rats on ovulation. Alcohol Clin Exp Res. 2014;38(6):1611–1621.

    Article  CAS  PubMed  Google Scholar 

  49. Morales-Ledesma L, Ramírez DA, Vieyra E, et al. Effects of acute unilateral ovariectomy to pre-pubertal rats on steroid hormones secretion and compensatory ovarian responses. Reprod Biol Endocrinol. 2011;9:41-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Delgado SM, Escudero CG, Casais M, et al. Ovaric physiology in the first oestral cycle: influence of noradrenergic and cholinergic neural stimuli from coeliac ganglion. Steroids. 2010;75(10):685–694.

    Article  CAS  PubMed  Google Scholar 

  51. Kagitani F, Uchida S, Hotta H. The role of alpha adrenoceptors in the vascular and estradiol secretory responses to stimulation of the superior ovarian nerve. J Physiol Sci. 2011;61(3):247–251.

    Article  CAS  PubMed  Google Scholar 

  52. Rosas G, Ramírez MI, Linares R, Trujillo A, Domínguez R, Morales-Ledesma L. Asymmetric steroidogenic response by the ovaries to the vasoactive intestinal peptide. Endocrine. 2015;48(3):968–977. doi:10.1007/s12020-014-0449-x.

    Article  CAS  PubMed  Google Scholar 

  53. Garraza MH, Aguado LI, De Bortoli MA. In vitro effect of neuropeptides on ovary or celiac ganglion affects the release of progesterone from ovaries in the rat. Med Sci Monit. 2004;10(12): BR440–BR446.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Morales-Ledesma PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, D.A., Vieyra, E., González, A.I. et al. Both the Suprachiasmatic Nucleus and the Superior Ovarian Nerve Contribute to the Processes of Ovulation and Steroid Hormone Secretion on Proestrus. Reprod. Sci. 24, 844–855 (2017). https://doi.org/10.1177/1933719116670307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116670307

Keywords

Navigation