Skip to main content
Log in

Endometriosis-Derived Thromboxane A2 Induces Neurite Outgrowth

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Hyperinnervation in endometriosis is now well documented, but so far only a few neurotrophins have been identified. Since endometriotic stromal cells secrete thromboxane A2 (TXA2), we sought to determine whether TXA2, derived from endometriotic stromal cells, induces neurite outgrowth. Using primary sensory neurons derived from rat dorsal root ganglia (DRG) and ectopic endometrial stromal cells (EESCs) derived from human ovarian endometrioma tissues, we treated the primary neurons with different concentrations of U-46619, a stable TXA2 mimetic, and performed a neuronal growth assay. The primary neurons were also cocultured with a vehicle, nerve growth factor (NGF, serving as a positive control), the supernatant of EESC culture medium, or the supernatant of EESCs pretreated with ozagrel, a thromboxane synthase inhibitor, and a neuronal growth assay was performed. The total neurite length was evaluated through immunofluorescence microscopy. We found that U-46619 significantly increased the neurite outgrowth in DRG neurons in a concentration-dependent fashion (P < .001). It also increased the number of neurite ends in a concentration-dependent fashion. Ozagrel treatment alone had no effect on the neurite growth (P > .05), and the treatment with the supernatant of EESCs induced neurite outgrowth just as potently as that treated with NGF (positive control; P > .05). Remarkably, treatment with the EESC supernatant increased the neurite outgrowth by nearly 3-fold as compared with the control (P < .01), but the pretreatment with ozagrel abolished the stimulatory effect of the EESC by 31.3% (P < .05). These findings indicate that EESCs potently induce neurite outgrowth, and endometriosis-derived TXA2 is responsible, at least in part, for this neurotrophic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olive DL, Lindheim SR, Pritts EA. New medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol. 2004;18(2):319–328.

    PubMed  Google Scholar 

  2. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    Article  PubMed  Google Scholar 

  3. Denny E, Mann CH. Endometriosis-associated dyspareunia: the impact on women’s lives. J Fam Plann Reprod Health Care. 2007;33(3):189–193.

    Article  PubMed  Google Scholar 

  4. Fourquet J, Baez L, Figueroa M, Iriarte RI, Flores I. Quantification of the impact of endometriosis symptoms on health-related quality of life and work productivity. Fertil Steril. 2011;96(1):107–112.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nnoaham KE, Hummelshoj L, Webster P, et al. Impact of endo-metriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366–373.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Culley L, Law C, Hudson N, et al. The social and psychological impact of endometriosis on women’s lives: a critical narrative review. Hum Reprod Update. 2013;19(6):625–639.

    Article  PubMed  Google Scholar 

  7. Lovkvist L, Bostrom P, Edlund M, Olovsson M. Age-related differences in quality of life in Swedish women with endometriosis. J Womens Health (Larchmt). 2016;25(6):646–653.

    Article  Google Scholar 

  8. Klein S, D’Hooghe T, Meuleman C, Dirksen C, Dunselman G, Simoens S. What is the societal burden of endometriosis-associated symptoms? A prospective Belgian study. Reprod Biomed Online. 2014;28(1):116–124.

    Article  PubMed  Google Scholar 

  9. Simoens S, Dunselman G, Dirksen C, et al. The burden of endo-metriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod. 2012;27(5):1292–1299.

    Article  PubMed  Google Scholar 

  10. Simoens S, Hummelshoj L, D’Hooghe T. Endometriosis: cost estimates and methodological perspective. Hum Reprod Update. 2007;13(4):395–404.

    Article  CAS  PubMed  Google Scholar 

  11. Howard FM. Endometriosis and mechanisms of pelvic pain. J Minim Invasive Gynecol. 2009;16(5):540–50.

    Article  PubMed  Google Scholar 

  12. Taylor RN, Hummelshoj L, Stratton P, Vercellini P. Pain and endometriosis: etiology, impact, and therapeutics. Middle East Fertil Soc J. 2012;17(4):221–225.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–979.

    Article  CAS  PubMed  Google Scholar 

  14. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci. 2001;2(2):83–91.

    Article  CAS  PubMed  Google Scholar 

  15. As-Sanie S, Harris RE, Napadow V, et al. Changes in regional gray matter volume in women with chronic pelvic pain: a voxel-based morphometry study. Pain. 2012;153(5):1006–1014.

    Article  PubMed  PubMed Central  Google Scholar 

  16. As-Sanie S, Kim J, Schmidt-Wilcke T, et al. Functional connectivity is associated with altered brain chemistry in women with endometriosis-associated chronic pelvic pain. J Pain. 2016;17(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao T, Liu X, Zhen X, Guo SW. Levo-tetrahydropalmatine retards the growth of ectopic endometrial implants and alleviates generalized hyperalgesia in experimentally induced endometriosis in rats. Reprod Sci. 2011;18(1):28–45.

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Zhu B, Zhang H, Ding D, Liu X, Guo SW. Possible loss of GABAergic inhibition in mice with induced adenomyosis and treatment with epigallocatechin-3-gallate attenuates the loss with improved hyperalgesia. Reprod Sci. 2014;21(7):869–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berkley KJ, Dmitrieva N, Curtis KS, Papka RE. Innervation of ectopic endometrium in a rat model of endometriosis. Proc Natl Acad Sci U S A. 2004;101(30):11094–11098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tokushige N, Markham R, Russell P, Fraser IS. Nerve fibres in peritoneal endometriosis. Hum Reprod. 2006;21(11):3001–3007.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Yao H, Huang X, Lu B, Xu H, Zhou C. Nerve fibres in ovarian endometriotic lesions in women with ovarian endome-triosis. Hum Reprod. 2010;25(2):392–397.

    Article  PubMed  CAS  Google Scholar 

  22. Anaf V, Simon P, El Nakadi I, et al. Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. Hum Reprod. 2000;15(8):1744–1750.

    Article  CAS  PubMed  Google Scholar 

  23. Asante A, Taylor RN. Endometriosis: the role of neuroangiogenesis. Annu Rev Physiol. 2011;73:163-182.

    Article  CAS  PubMed  Google Scholar 

  24. Mechsner S, Schwarz J, Thode J, Loddenkemper C, Salomon DS, Ebert AD. Growthassociated protein 43-positive sensory nerve fibers accompanied by immature vessels are located in or near peritoneal endometriotic lesions. Fertil Steril. 2007;88(3):581–587.

    Article  PubMed  Google Scholar 

  25. Barcena de Arellano ML, Arnold J, Vercellino F, Chiantera V, Schneider A, Mechsner S. Overexpression of nerve growth factor in peritoneal fluid from women with endometriosis may promote neurite outgrowth in endometriotic lesions. Fertil Steril. 2011;95(3):1123–1126.

    Article  CAS  PubMed  Google Scholar 

  26. Barcena de Arellano ML, Arnold J, Lang H, et al. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cyto-kine. 2013;62(2):253–261.

    Article  CAS  Google Scholar 

  27. Guo SW, Du Y, Liu X. Endometriosis-derived stromal cells secrete thrombin and thromboxane A2, inducing platelet activation. Reprod Sci. 2016;23(8):1044–1052.

    Article  CAS  PubMed  Google Scholar 

  28. Sumimoto S, Muramatsu R, Yamashita T. Thromboxane A2 stimulates neurite outgrowth in cerebral cortical neurons via mitogen activated protein kinase signaling. Brain Res. 2015;1594:46-51.

    Article  CAS  PubMed  Google Scholar 

  29. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409(6821):714–720.

    Article  CAS  PubMed  Google Scholar 

  30. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  31. Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdif-ferentiation. Mol Cell Endocrinol. 2016;428:1-16.

    Article  PubMed  CAS  Google Scholar 

  32. Ding D, Liu X, Guo SW. Overexpression of lysine-specific demethylase 1 in ovarian endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, and inva-siveness. Fertil Steril. 2014;101(3):740–749.

    Article  CAS  PubMed  Google Scholar 

  33. National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  34. Han QJ, Gao NN, Guo Q, et al. IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-beta/Smad signaling. J Cell Sci. 2013;126(pt 2):542–553.

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Pan L, Wei M, et al. FMRP-mediated axonal delivery of miR-181d regulates axon elongation by locally targeting map1b and calm1. Cell Rep. 2015;13(12):2794–2807.

    Article  CAS  PubMed  Google Scholar 

  36. Ushikubi F, Aiba Y, Nakamura K, et al. Thromboxane A2 receptor is highly expressed in mouse immature thymocytes and mediates DNA fragmentation and apoptosis. J Exp Med. 1993;178(5):1825–1830.

    Article  CAS  PubMed  Google Scholar 

  37. Kushiku K, Ohjimi H, Yamada H, Kuwahara T, Furukawa T. Activation of endogenous thromboxane A2 biosynthesis mediates presynaptic inhibition by endothelin-3 of dog stellate ganglionic transmission. J Pharmacol Exp Ther. 1995;272(1):70–76.

    CAS  PubMed  Google Scholar 

  38. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.

    Google Scholar 

  39. Tischfield MA, Baris HN, Wu C, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell. 2010;140(1):74–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borghese B, Vaiman D, Mondon F, et al. Neurotrophins and pain in endometriosis. Gynecol Obstet Fertil. 2010;38(7-8): 442–446.

    Article  CAS  PubMed  Google Scholar 

  41. Wessels JM, Kay VR, Leyland NA, Agarwal SK, Foster WG. Assessing brain-derived neurotrophic factor as a novel clinical marker of endometriosis. Fertil Steril. 2016;105(1):119–128 e1–e5.

    Article  CAS  PubMed  Google Scholar 

  42. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832.

    Article  CAS  PubMed  Google Scholar 

  43. Guo SW, Du Y, Liu X. Platelet-derived TGF-b1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endo-metriosis. Hum Reprod. 2016;31(7):1462–1474.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Duan J, Olson M, Fazleabas A, Guo SW. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Born GV. Effects of adenosine diphosphate (ADP) and related substances on the adhesiveness of platelets in vitro and in vivo. Br J Haematol. 1966;12(1):37–38.

    Article  CAS  PubMed  Google Scholar 

  46. Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C. Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. Pharma-copsychiatry. 2013;46(1):29–34.

    CAS  Google Scholar 

  47. Drake TS, O’Brien WF, Ramwell PW, Metz SA. Peritoneal fluid thromboxane B2 and 6-keto-prostaglandin F1 alpha in endome-triosis. Am J Obstet Gynecol. 1981;140(4):401–404.

    Article  CAS  PubMed  Google Scholar 

  48. Koskimies AI, Tenhunen A, Ylikorkala O. Peritoneal fluid 6-keto-prostaglandin F1 alpha, thromboxane B2 in endometriosis and unexplained infertility. Acta Obstet Gynecol Scand Suppl. 1984;123:19–21.

    Article  CAS  PubMed  Google Scholar 

  49. Wu Q, Ding D, Liu X, Guo SW. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–1114.

    Article  CAS  PubMed  Google Scholar 

  50. Guo SW. An overview of the current status of clinical trials on endometriosis: issues and concerns. Fertil Steril. 2014;101(1):183–190.e4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Wei Guo PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Liu, X. & Guo, SW. Endometriosis-Derived Thromboxane A2 Induces Neurite Outgrowth. Reprod. Sci. 24, 829–835 (2017). https://doi.org/10.1177/1933719116670037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116670037

Keywords

Navigation