Skip to main content

Advertisement

Log in

Endothelin Receptor A Antagonism and Fetal Growth in Endothelial Nitric Oxide Synthase Gene Knockout Maternal and Fetal Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Fetal growth restriction (FGR) is commonly associated with perinatal morbidity and mortality. Nitric oxide (NO) deficiency increases endothelin-1 (ET-1) production, and this increased ET-1 may contribute to the pathophysiology of NO deficiency-induced FGR. Using an endothelial NO synthase knockout mouse model of FGR, we sought to determine (a) the relative importance of maternal versus conceptus (fetal and placental) NO deficiency and (b) the contribution of ET-1 to the pathogenesis of FGR in this model. Fetal growth restriction occurred both with NO-deficient conceptuses in the setting of maternal NO production and with maternal NO deficiency in the setting of NO-producing conceptuses. Placental ET-1 expression was increased in NO-deficient dams, ET receptor A (ETA) production increased in endothelial nitric oxide synthase+/− placentas, and antagonism of ETA prevented FGR. These results demonstrate that both maternal and conceptus NO deficiency can contribute to FGR and suggest a role for ETA antagonists as therapeutic agents in FGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romo A, Carceller R, Tobajas J. Intrauterine growth retardation (IUGR): epidemiology and etiology. Pediatr Endocrinol Rev. 2009;6(suppl 3):332–336.

    PubMed  Google Scholar 

  2. Barker DJP. The long-term outcome of retarded fetal growth. Clin Obstet Gynecol. 1997;40(4):853–863.

    CAS  PubMed  Google Scholar 

  3. Mcintire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. New Engl J Med. 1999;340(16):1234–1238.

    CAS  PubMed  Google Scholar 

  4. Lackman F, Capewell V, Richardson B, Dasilva O, Gagnon R. The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am J Obstet Gynecol. 2001;184(5):946–953.

    CAS  PubMed  Google Scholar 

  5. Fanaroff AA, Wright LL, Stevenson DK, et al. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, May 1991 through December 1992. Am J Obstet Gynecol. 1995;173(5):1423–1431.

    CAS  PubMed  Google Scholar 

  6. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. Am J Obstet Gynecol. 2000;182(1 pt 1):198–206.

    CAS  PubMed  Google Scholar 

  7. Damodaram M, Story L, Kulinskaya E, Rutherford M, Kumar S. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol. 2011;51(3):204–209.

    PubMed  Google Scholar 

  8. Low JA, Handley-Derry MH, Burke SO, et al. Association of intrauterine fetal growth retardation and learning deficits at age 9 to 11 years. Am J Obstet Gynecol. 1992;167(6):1499–1505.

    CAS  PubMed  Google Scholar 

  9. Sallout B, Walker M. The fetal origin of adult diseases. J Obstet Gynaecol. 2003;23(5):555–560.

    CAS  PubMed  Google Scholar 

  10. Chernausek SD. Update: consequences of abnormal fetal growth. J Clin Endocrinol Metab. 2012;97(3):689–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Juul A, Almstrup K, Andersson AM, et al. Possible fetal determinants of male infertility. Nat Rev Endocrinol. 2014;10(9):553–562.

    CAS  PubMed  Google Scholar 

  12. Morris NH, Sooranna SR, Learmont JG, et al. Nitric oxide synthase activities in placental tissue from normotensive, preeclamptic and growth retarded pregnancies. Br J Obstet Gynaecol. 1995;102(9):711–714.

    CAS  PubMed  Google Scholar 

  13. Harvey-Wilkes KB, Nielsen HC, D’alton ME. Elevated endothelin levels are associated with increased placental resistance. Am J Obstet Gynecol. 1996;174(5):1599–1604.

    CAS  PubMed  Google Scholar 

  14. Myatt L, Brewer AS, Langdon G, Brockman DE. Attenuation of the vasoconstrictor effects of thromboxane and endothelin by nitric oxide in the human fetal-placental circulation. Am J Obstet Gynecol. 1992;166(1 pt 1):224–230.

    CAS  PubMed  Google Scholar 

  15. Neerhof MG, Jilling T, Synowiec S, Khan S, Thaete LG. Altered endothelin receptor binding in response to nitric oxide synthase inhibition in the pregnant rat. Reprod Sci. 2008;15(4):366–373.

    CAS  PubMed  Google Scholar 

  16. Goligorsky MS, Tsukahara H, Magazine H, Andersen TT, Malik AB, Bahou WF. Termination of endothelin signaling: Role of nitric oxide. J Cell Physiol. 1994;158(3):485–494.

    CAS  PubMed  Google Scholar 

  17. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377(6546):239–242.

    CAS  PubMed  Google Scholar 

  18. Shesely EG, Maeda N, Kim H-S, et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93(23):13176–13181.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stauss HM, Nafz B, Mrowka R, Persson PB. Blood pressure control in eNOS knock-out mice: comparison with other species under NO blockade. Acta Physiol Scand. 2000;168(1):155–160.

    CAS  PubMed  Google Scholar 

  20. Quaschning T, Voss F, Relle K, et al. Lack of endothelial nitric oxide synthase promotes endothelin-induced hypertension: lessons from endothelin-1 transgenic/endothelial nitric oxide synthase knockout mice. J Am Soc Nephrol. 2007;18(3):730–740.

    CAS  PubMed  Google Scholar 

  21. Hefler LA, Reyes CA, O’brien WE, Gregg AR. Perinatal development of endothelial nitric oxide synthase-deficient mice. Biol Reprod. 2001;64(2):666–673.

    CAS  PubMed  Google Scholar 

  22. Van Der Heijden OWH, Essers YPG, Fazzi G, Peeters LLH, De Mey JGR, Van Eys GJJM. Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthase-deficient mice. Biol Reprod. 2005;72(5):1161–1168.

    PubMed  Google Scholar 

  23. Pallares P, Gonzalez-Bulnes A. Intrauterine growth retardation in endothelial nitric oxide synthase-deficient mice is established from early stages of pregnancy. Biol Reprod. 2008;78(6):1002–1006.

    CAS  PubMed  Google Scholar 

  24. Thaete LG, Neerhof MG, Caplan MS. Endothelin receptor A antagonism prevents hypoxia-induced intrauterine growth restriction in the rat. Am J Obstet Gynecol. 1997; 176(1 pt 1):73–76.

    CAS  PubMed  Google Scholar 

  25. Thaete LG, Neerhof MG, Silver RK. Differential effects of endothelin A and B receptor antagonism on fetal growth in normal and nitric oxide-deficient rats. J Soc Gynecol Investig. 2001;8(1):18–23.

    CAS  PubMed  Google Scholar 

  26. Thaete LG, Neerhof MG. Endothelin and platelet-activating factor: significance in the pathophysiology of ischemia/reperfusion-induced fetal growth restriction in the rat. Am J Obstet Gynecol. 2006;194(5):1377–1383.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Neerhof MG, Khan S, Synowiec S, Qu X-W, Thaete LG. The significance of endothelin in platelet activating factor-induced fetal growth restriction. Reprod Sci. 2012;19(11):1175–1180.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Labonté J, Brochu I, Simard E, D’orleans-Juste P. Distinct modulation of the endothelin-1 pathway in iNOS-/- and eNOS-/- mice. Can J Physiol Pharmacol. 2008;86(8):516–525.

    PubMed  Google Scholar 

  29. Wu-Wong JR, Dixon DB, Chiou WJ, et al. Pharmacology of endothelin receptor antagonists ABT-627, ABT-546, A-182086 and A-192621: in vitro studies. Clin Sci. 2002;103(suppl 48):107s–111s.

    CAS  Google Scholar 

  30. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60(1):231–238.

    CAS  PubMed  Google Scholar 

  31. Kulandavelu S, Whiteley KJ, Bainbridge SA, Qu D, Adamson SL. Endothelial NO synthase augments fetoplacental blood flow, placental vascularization, and fetal growth in mice. Hypertension. 2013;61(1):259–266.

    CAS  PubMed  Google Scholar 

  32. Pallares P, Perez-Solana ML, Torres-Rovira L, Gonzalez-Bulnes A. Phenotypic characterization by high-resolution three-dimensional magnetic resonance imaging evidences differential effects of embryo genotype on intrauterine growth retardation in NOS3-deficient mice. Biol Reprod. 2011;84(5):866–871.

    CAS  PubMed  Google Scholar 

  33. Faxén M, Nasiell J, Lunell N-O, Blanck A. Differences in mRNA expression of endothelin-1, c-fos and c-jun in placentas from normal pregnancies and pregnancies complicated with preeclampsia and/or intrauterine growth retardation. Gynecol Obstet Invest. 1997;44(2):93–96.

    PubMed  Google Scholar 

  34. Schiff E, Ben-Baruch G, Peleg E, et al. Immunoreactive circulating endothelin-1 in normal and hypertensive pregnancies. Am J Obstet Gynecol. 1992;166(2):624–628.

    CAS  PubMed  Google Scholar 

  35. Sventek P, Li J-S, Grove K, Deschepper CF, Schiffrin EL. Vascular structure and expression of endothelin-1 gene in L-NAME-treated spontaneously hypertensive rats. Hypertension. 1996;27(1):49–55.

    CAS  PubMed  Google Scholar 

  36. Fujita K, Matsumura Y, Miyazaki Y, Takaoka M, Morimoto S. Role of endothelin-1 in hypertension induced by long-term inhibition of nitric oxide synthase. Eur J Pharmacol. 1995;280(3):311–316.

    CAS  PubMed  Google Scholar 

  37. Neerhof MG, Thaete LG. Chronic NOS-inhibition-induced IUGR is associated with increased circulating endothelin-1 levels in the rat. Hypertens Pregnancy. 1997;16(2):319.

    Google Scholar 

  38. Edwards DL, Arora CP, Bui DT, Castro LC. Long-term nitric oxide blockade in the pregnant rat: effects on blood pressure and plasma levels of endothelin-1. Am J Obstet Gynecol. 1996;175(2):484–488.

    CAS  PubMed  Google Scholar 

  39. Kourembanas S, Mcquillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993;92(1):99–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kelly LK, Wedgwood S, Steinhorn RH, Black SM. Nitric oxide decreases endothelin-1 secretion through the activation of soluble guanylate cyclase. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):1984–1991.

    Google Scholar 

  41. Ohkita M, Takaoka M, Sugii M, Shiota Y, Nojiri R, Matsumura Y. The role of nuclear factor-kappa B in the regulation of endothelin-1 production by nitric oxide. Eur J Pharmacol. 2003;472(3):159–164.

    CAS  PubMed  Google Scholar 

  42. Thompson A, Valeri CR, Lieberthal W. Endothelin receptor A blockade alters hemodynamic response to nitric oxide inhibition in rats. Am J Physiol. 1995;269(2 pt 2):h743–h748.

    CAS  PubMed  Google Scholar 

  43. Maric C, Aldred GP, Antoine AM, et al. Actions of endothelin-1 on cultured rat renomedullary interstitial cells are modulated by nitric oxide. Clin Exp Pharmacol Physiol. 1999;26(5–6):392–398.

    CAS  PubMed  Google Scholar 

  44. Thaete LG, Kushner DM, Dewey ER, Neerhof MG. Endothelin and the regulation of uteroplacental perfusion in nitric oxide synthase inhibition-induced fetal growth restriction. Placenta. 2005;26(2–3):242–250.

    CAS  PubMed  Google Scholar 

  45. Neerhof MG, Synowiec S, Khan S, Thaete LG. Pathophysiology of chronic nitric oxide synthase inhibition-induced fetal growth restriction in the rat. Hypertens Pregnancy. 2011;30(1):28–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thaete LG, Dewey ER, Neerhof MG. Endothelin and the regulation of uterine and placental perfusion in hypoxia-induced fetal growth restriction. J Soc Gynecol Investig. 2004;11(1):16–21.

    CAS  PubMed  Google Scholar 

  47. Thaete LG, Khan S, Synowiec S, Dayton BD, Bauch J, Neerhof MG. Endothelin receptor antagonist has limited access to the fetal compartment during chronic maternal administration late in pregnancy. Life Sci. 2012;91(13):583–586.

    CAS  PubMed  Google Scholar 

  48. Hefler LA, Tempfer CB, Moreno RM, O’brien WE, Gregg AR. Endothelial-derived nitric oxide and angiotensinogen: blood pressure and metabolism during mouse pregnancy. Am J Physiol Regul Integ Comp Physiol. 2001;280(1):r174–r182.

    CAS  Google Scholar 

  49. Shesely EG, Gilbert C, Granderson G, Carretero CD, Carretero OA, Beierwaltes WH. Nitric oxide synthase gene knockout mice do not become hypertensive during pegnancy. Am J Obstet Gynecol. 2001;185(5):1198–1203.

    CAS  PubMed  Google Scholar 

  50. Kulandavelu S, Qu D, Adamson SL. Cardiovascular function in mice during normal pregnancy and in the absence of endothelial NO synthase. Hypertension. 2006;47(6):1175–1182.

    CAS  PubMed  Google Scholar 

  51. Boulanger C, Lüscher TF. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest. 1990;85(2):587–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Richard V, Hogie M, Clozel M, Löffler B-M, Thuillez C. In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats. Circulation. 1995;91(3):771–775.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry G. Thaete PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Thaete, L.G. & Neerhof, M.G. Endothelin Receptor A Antagonism and Fetal Growth in Endothelial Nitric Oxide Synthase Gene Knockout Maternal and Fetal Mice. Reprod. Sci. 23, 1028–1036 (2016). https://doi.org/10.1177/1933719115625839

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115625839

Keywords

Navigation