Skip to main content

Advertisement

Log in

Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Our objective was to determine if progesterone pretreatment could ameliorate the detrimental effects of lipopolysaccharide (LPS)-induced inflammation on cortical neurogenesis. Timed pregnant mouse dams (n = 8) were given intraperitoneal injections of progesterone (42 mg/kg) or vehicle on embryonic day 17.5. Two hours later, mice were given intraperitoneal LPS (140 μg/kg) or vehicle. Mice were sacrificed 16 hours later on embryonic day 18. Two-color immunofluorescence was performed with primary antibodies T-box transcription factor 2 (Tbr2), ionized calcium binding adapter molecule 1 (Iba1), cleaved caspase 3 (CC3), and 5-bromo-2′-deoxyuridine (BrdU). Cells were counted, and statistical analysis was determined using analysis of variance and Tukey-Kramer method. The Tbr2 intermediate neural progenitor cell density decreased after LPS exposure (P = .0022). Pre-exposure to progesterone statistically increased Tbr2 intermediate neural progenitors compared to LPS treatment alone and was similar to controls (P = .0022). After LPS exposure, microglia displayed an activated phenotype, and cell density was increased (P < .001). Cell death rates were low among study groups but was increased in LPS exposure groups compared to progesterone alone (P = .0015). Lipopolysaccharide-induced systemic inflammation reduces prenatal neurogenesis in mice. Pre-exposure with progesterone is associated with increased neurogenesis. Progesterone may protect the preterm brain from defects of neurogenesis induced by inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Breen K, Brown A, Burd I, Chai J, Friedman A, Elovitz MA. TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth. Reprod Sci. 2012;19(8): 839–850.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burd I, Chai J, Gonzalez J, et al. Beyond white matter damage: fetal neuronal injury in a mouse model of preterm birth. Am J Obstet Gynecol. 2009;201(3):279. e271–e278.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci. 2011; 29(6):663–671.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ofek-Shlomai N, Berger I. Inflammatory injury to the neonatal brain - what can we do? Front Pediatr. 2014;2:30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rees S, Harding R, Walker D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011;29(6):551–563.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cunningham CL, Martinez-Cerdeno V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci. 2013;33(10):4216–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malik S, Vinukonda G, Vose LR, et al. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci. 2013;33(2):411–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McAdams RM, Juul SE. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int. 2012;2012: 561494.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol. 2012;71(4):444–457.

    Article  PubMed  Google Scholar 

  11. Hevner RF, Hodge RD, Daza RA, Englund C. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res. 2006; 55(3):223–233.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Cerdeno V, Noctor SC, Kriegstein AR. Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur J Neurosci. 2006;24(12): 3475–3488.

    Article  PubMed  Google Scholar 

  13. Stein DG. Progesterone exerts neuroprotective effects after brain injury. Brain Res Rev. 2008;57(2):386–397.

    Article  CAS  PubMed  Google Scholar 

  14. Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol. 2012;33(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Dang J, Mitkari B, Kipp M, Beyer C. Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun. 2011;25(4):715–726.

    Article  CAS  PubMed  Google Scholar 

  16. Meffre D, Labombarda F, Delespierre B, et al. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience. 2013;231:111–124.

    Article  CAS  PubMed  Google Scholar 

  17. Gottfried-Blackmore A, Sierra A, Jellinck PH, McEwen BS, Bulloch K. Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem Mol Biol. 2008;109(1–2):96–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Habib P, Beyer C. Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol. 2015;146:3–14.

    Article  CAS  PubMed  Google Scholar 

  19. Aisemberg J, Vericelli CA, Bariani MV, Billi SC, Wolfson ML, et al. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone. PLoS ONE. 2013;8(2): e56161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mouihate A. TLR4-mediated brain inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci. 2014;8:146.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hevner RF, Daza RAM, Englund C, Kohntz J, Fink A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward migration. Neuroscience. 2004;124: 605–618.

    Article  CAS  PubMed  Google Scholar 

  22. Baburamani AA, Supramaniam VG, Hagberg H, Mallard C. Microglia toxicity in preterm brain injury. Reprod Toxicol. 2014;48:106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007;49(4):391–402, 402 e391–392.

    Article  PubMed  Google Scholar 

  24. Habib P, Slowik A, Zendedel A, Johann S, Dang J, Beyer C. Regulation of hypoxia-induced inflammatory responses and M1–M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci. 2014;52(2):277–285.

    Article  CAS  PubMed  Google Scholar 

  25. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24(6):302–306.

    Article  CAS  PubMed  Google Scholar 

  26. Bajramovic JJ. Regulation of innate immune responses in the central nervous system. CNS Neurol Disord Drug Targets. 2011; 10(1):4–24.

    Article  CAS  PubMed  Google Scholar 

  27. Hirst JJ, Palliser HK, Yates DM, Yawno T, Walker DW. Neurosteroids in the fetus and neonate: potential protective role in compromised pregnancies. Neurochem Int. 2008;52(4–5):602–610.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in the perinatal sheep. Pediatr Res. 2003;53(6):956–964.

    Article  CAS  PubMed  Google Scholar 

  29. Gravett MG, Hitti J, Hess DL, Eschenbach DA. Intrauterine infection and preterm delivery: evidence for activation of the fetal hypothalamic-pituitary-adrenal axis. Am J Obstet Gynecol. 2000;182(6):1404–1413.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz JM, Bilbo SD. Sex, Glia, and Development: interactions in health and disease. Horm Behav. 2012;62(3):243–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trotter A, Maier L, Grill HJ, Kohn T, Heckmann M, Pohlandt F. Effects of postnatal estradiol and progesterone replacement in extremely preterm infants. J Clin Endocrinol Metab. 1999; 84(12):4531–4535.

    Article  CAS  PubMed  Google Scholar 

  32. Trotter A, Steinmacher J, Kron M, Pohlandt F. Neurodevelopmental follow-up at five years corrected age of extremely low birth weight infants after postnatal replacement of 17beta-estradiol and progesterone. J Clin Endocrinol Metab. 2012; 97(3):1041–1047.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashlie A. Tronnes MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tronnes, A.A., Koschnitzky, J., Daza, R. et al. Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice. Reprod. Sci. 23, 771–778 (2016). https://doi.org/10.1177/1933719115618273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115618273

Keywords

Navigation