Skip to main content
Log in

Mouse Endometrium Temporal and Spatial Expression mRNA and MicroRNA Associated With Embryo Implantation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Embryo implantation is a dynamic physiological process involving morphological and molecular changes in the endometrium during the pre-receptivity, receptivity, and implantation phases. A comprehensive analysis of messenger RNA (mRNA) and microRNA (miRNA) profiles during implantation will likely provide new clues to elucidate the underlying mechanisms governing embryo implantation. We characterized the mRNA and miRNA transcriptomes using next generation sequencing (NGS) of the endometrium 1 day postcoitum (dpc) and 4dpc and the implantation site (IMS) and inter-implantation (IIM) site of the endometrium on 5dpc. Real-time quantitative polymerase chain reaction was performed on selected miRNAs and their predicted target mRNAs to validate their negatively correlated expression. Statistical analysis of the data based on Gene Ontology (GO) group annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that the genes with significant expression at the IIM site were primarily involved in glucose, protein, and lipoprotein metabolism to provide energy for embryo implantation, while the genes identified at the IMS were involved in RNA functions to produce proteins in support of embryo development and trophoblast invasion. Extracellular matrix (ECM)-receptor interactions between cells and the ECM was the most remarkable event during implantation. The miRNA-mRNA interaction network unraveled the regulatory relationship between miRNAs and mRNAs. Hub miRNAs (mmu-miR-96 and mmu-miR-200b) were identified to target B-cell lymphoma 2 (Bcl-2), Kruppel-like factor 13 (Klf13), and Progesterone receptor (PGR), which are associated with the preparation of the receptive condition or the maintenance of early pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854.

    Article  CAS  PubMed  Google Scholar 

  2. Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152–D157.

    Article  CAS  Google Scholar 

  3. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruby JG, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. Elegans. Cell. 2006;127(6):1193–1207.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genetics. 2004;5(5):396–400.

    Article  CAS  PubMed  Google Scholar 

  6. Sharma A, Kumar P. Understanding implantation window, a crucial phenomenon. J Hum Reprod Sci. 2012;5(1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–373.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang S, Lin H, Kong S, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34(5): 939–980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ma XH, Hu SJ, Ni H, et al. Serial analysis of gene expression in mouse uterus at the implantation site. J Biol Chem. 2006;281(14): 9351–9360.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  11. Yu Z, Jian Z, Shen SH, Purisima E, Wang E. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and drosophila tissues than in the embryos. Nucleic Acids Res. 2007;35(1): 152–164.

    Article  CAS  PubMed  Google Scholar 

  12. Neilson JR, Zheng GX, Burge CB, Sharp PA. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 2007;21(5):578–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A. 2007;104(38): 15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye X, Hama K, Contos JJ, et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature. 2005; 435(7038):104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kresowik JD, Devor EJ, Van Voorhis BJ, Leslie KK. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity. Biol Reprod. 2014;91(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xia HF, Jin XH, Song PP, Cui Y, Liu CM, Ma X. Temporal and spatial regulation of miR-320 in the uterus during embryo implantation in the rat. Int J Mol Sci. 2010;11(2):719–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011;138(9): 1653–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia HF, Jin XH, Cao ZF, Hu Y, Ma X. MicroRNA expression and regulation in the uterus during embryo implantation in rat. FEBS J. 2014;281(7):1872–1891.

    Article  CAS  PubMed  Google Scholar 

  19. Hu SJ, Ren G, Liu JL, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008; 283(34):23473–23484.

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Li Y, Xu J, Chen H, et al. Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res. 2013;41(22):e203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frolova AI, Moley KH. Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011;152(5): 2123–2128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nie GY, Li Y, Batten L, et al. Uterine expression of alternatively spliced mRNAs of mouse splicing factor SC35 during early pregnancy. Mol Hum Reprod. 2000;6(12):1131–1139.

    Article  CAS  PubMed  Google Scholar 

  24. Bigsby RM, Li A. Differentially regulated immediate early genes in the rat uterus. Endocrinology. 1994;134(4):1820–1826.

    Article  CAS  PubMed  Google Scholar 

  25. Das SK, Das N, Wang J, et al. Expression of betacellulin and epiregulin genes in the mouse uterus temporally by the blastocyst solely at the site of its apposition is coincident with the ‘‘window’’ of implantation. Dev Biol. 1997;190(2):178–190.

    Article  CAS  PubMed  Google Scholar 

  26. Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med. 1998;4(3):303–308.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu LJ, Cullinan-Bove K, Polihronis M, Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation. Endocrinology. 1998;139(9):3923–3934.

    Article  CAS  PubMed  Google Scholar 

  28. Wartiovaara J, Leivo I, Vaheri A. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev Biol. 1979;69(1):247–257.

    Article  CAS  PubMed  Google Scholar 

  29. Wewer UM, Liotta LA, Jaye M, et al. Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci U S A. 1986;83(19):7137–7141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blankenship TN, Enders AC, King BF. Distribution of laminin, type IV collagen, and fibronectin in the cell columns and trophoblastic shell of early macaque placentas. Cell Tissue Res. 1992; 270(2):241–248.

    Article  CAS  PubMed  Google Scholar 

  31. Armant DR, Kaplan HA, Lennarz WJ. Fibronectin and laminin promote in vitro attachment and outgrowth of mouse blastocysts. Dev Biol. 1986;116(2):519–523.

    Article  CAS  PubMed  Google Scholar 

  32. Carson DD, Tang JP, Gay S. Collagens support embryo attachment and outgrowth in vitro: effects of the Arg-Gly-Asp sequence. Dev Biol. 1988;127(2):368–375.

    Article  CAS  PubMed  Google Scholar 

  33. Sutherland AE, Calarco PG, Damsky CH. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J Cell Biol. 1988;106(4):1331–1348.

    Article  CAS  PubMed  Google Scholar 

  34. Yelian FD, Edgeworth NA, Dong LJ, Chung AE, Armant DR. Recombinant entactin promotes mouse primary trophoblast cell adhesion and migration through the Arg-Gly-Asp (RGD) recognition sequence. J Cell Biol. 1993;121(4):923–929.

    Article  CAS  PubMed  Google Scholar 

  35. Burghardt RC, Johnson GA, Jaeger LA, et al. Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs. 2002;172(3):202–217.

    Article  CAS  PubMed  Google Scholar 

  36. Liu WM, Pang RT, Cheong AW, et al. Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. PLoS One. 2012;7(5):e37039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suh N, Baehner L, Moltzahn F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol. 2010;20(3):271–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sha AG, Liu JL, Jiang XM, et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril. 2011;96(1):150–155. e5.

    Article  CAS  PubMed  Google Scholar 

  39. Liu JL, Liang XH, Su RW, et al. Combined analysis of micro-RNome and 3’-UTRome reveals a species-specific regulation of progesterone receptor expression in the endometrium of rhesus monkey. J Biol Chem. 2012;287(17):13899–13910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heard ME, Pabona JM, Clayberger C, Krensky AM, Simmen FA, Simmen RC. The reproductive phenotype of mice null for transcription factor Kruppel-like factor 13 suggests compensatory function of family member Kruppel-like factor 9 in the peri-implantation uterus. Biol Reprod. 2012;87(5):115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1): 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Joswig A, Gabriel HD, Kibschull M, Winterhager E. Apoptosis in uterine epithelium and decidua in response to implantation: evidence for two different pathways. Reprod Biol Endocrinol. 2003;1:44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqing Liu or Yingxiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Chen, X., He, J. et al. Mouse Endometrium Temporal and Spatial Expression mRNA and MicroRNA Associated With Embryo Implantation. Reprod. Sci. 22, 1399–1408 (2015). https://doi.org/10.1177/1933719115580996

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115580996

Keywords

Navigation