Skip to main content
Log in

Effect of Postnatal Maternal Protein Intake on Prenatal Programming of Hypertension

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study examined whether postnatal maternal dietary protein deprivation during the time of nursing can program hypertension when the offspring are studied as adults. Rats were fed either a 6% or 20% protein diet during the second half of pregnancy and continued on the same diet while rats were nursing their pups. The neonates of all of the rats were cross-fostered to a different mother and studied as adults. Adult rats that had a normal prenatal environment but were reared by mothers fed a low-protein diet until weaning (20%-6%) were hypertensive, had a higher renal Na+-K+-2Cl cotransporter (NKCC2) and Na+-Cl cotransporter (NCC) protein abundance yet a comparable number of glomeruli, and had higher plasma renin and angiotensin II levels compared to control (20%-20%). Rats whose mothers were fed a 6% protein diet and cross-fostered to a different rat fed a 6% protein diet until weaning (6%-6%) were hypertensive, had elevated plasma renin and angiotensin II levels, and had a reduction in nephron number but had NKCC2 and NCC levels comparable to 20% to 20% offspring. The 6% to 20% had blood pressure and glomerular numbers comparable to 20% to 20% rats. The hypertension resulting from prenatal dietary protein deprivation can be normalized by improving the postnatal environment. Combined prenatal and postnatal maternal dietary protein deprivation and maternal dietary protein deprivation while nursing alone (20%-6%) results in hypertension, but the mechanism for the hypertension in these groups is different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker DJ. The fetal origins of adult hypertension. J Hypertens. 1992;10(7):S39–S44.

    CAS  Google Scholar 

  2. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990; 301(6746):259–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker SJ, Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Figueroa JP, Rose JC, Massmann GA, Zhang J, Acuna G. Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids. Pediatr Res. 2005;58(3):510–515.

    Article  PubMed  Google Scholar 

  5. Massmann GS, Zhang J, Rose JC, Figueroa JP. Acute and longterm effects of clinical doses of antenatal glucocorticoids in the developing fetal sheep kidney. J Soc Gynecol Investig. 2006;13(3):174–180.

    Article  CAS  PubMed  Google Scholar 

  6. Ortiz LA, Quan A, Weinberg A, Baum M. Effect of prenatal dexamethasone on rat renal development. Kidney Int. 2001;59(5): 1663–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ortiz LA, Quan A, Zarzar F, Weinberg A, Baum M. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 2003;41(2):328–334.

    Article  CAS  PubMed  Google Scholar 

  8. Dagan A, Gattineni J, Cook V, Baum M. Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1230–R1235.

    Article  CAS  PubMed  Google Scholar 

  9. Vehaskari VM, Woods LL. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545–2556.

    Article  CAS  PubMed  Google Scholar 

  10. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59(1):238–245.

    Article  CAS  PubMed  Google Scholar 

  11. Alexander BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension. 2003; 41(3):457–462.

    Article  CAS  PubMed  Google Scholar 

  12. Dagan A, Habbib S, Gattineni J, Dwarakanath V, Baum M. Prenatal programming of rat thick ascending limb chloride transport by low protein diet and dexamethasone. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R93–R99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol. 2010;298(2):F235–F247.

    Article  CAS  PubMed  Google Scholar 

  14. Manning J, Beutler K, Knepper MA, Vehaskari VM. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2002;283(1):F202–F206.

    Article  CAS  PubMed  Google Scholar 

  15. Mizuno M, Siddique K, Baum M, Smith SA. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension. 2013;61(1):180–186.

    Article  CAS  PubMed  Google Scholar 

  16. Manning J, Vehaskari VM. Postnatal modulation of prenatally programmed hypertension by dietary Na and ACE inhibition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R80–R84.

    Article  CAS  PubMed  Google Scholar 

  17. Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2004;287(2):F262–F267.

    Article  CAS  PubMed  Google Scholar 

  18. Dagan A, Kwon HM, Dwarakanath V, Baum M. Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am J Physiol Renal Physiol. 2008;295(1):F29–F34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng CJ, Lozano G, Baum M. Prenatal programming of rat cortical collecting tubule sodium transport. Am J Physiol Renal Physiol. 2012;302(6):F674–F678.

    Article  CAS  PubMed  Google Scholar 

  20. Ehrenkranz RA, Younes N, Lemons JA, et al. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics. 1999;104(2 pt 1):280–289.

    Article  CAS  PubMed  Google Scholar 

  21. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(3):163–168.

    Article  CAS  PubMed  Google Scholar 

  22. Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107(2):270–273.

    Article  CAS  PubMed  Google Scholar 

  23. Doyle LW, Faber B, Callanan C, Morley R. Blood pressure in late adolescence and very low birth weight. Pediatrics. 2003;111(2): 252–257.

    Article  PubMed  Google Scholar 

  24. Vohr BR, Allan W, Katz KH, Schneider KC, Ment LR. Early predictors of hypertension in prematurely born adolescents. Acta Paediatr. 2010;99(12):1812–1818.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hack M, Schluchter M, Cartar L, Rahman M. Blood pressure among very low birth weight (<1.5 kg) young adults. Pediatr Res. 2005;58(4):677–684.

    Article  PubMed  Google Scholar 

  26. Keijzer-Veen MG, Finken MJ, Nauta J, et al. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in The Netherlands. Pediatrics. 2005;116(3):725–731.

    Article  PubMed  Google Scholar 

  27. Kistner A, Celsi G, Vanpee M, Jacobson SH. Increased systolic daily ambulatory blood pressure in adult women born preterm. Pediatr Nephrol. 2005;20(2):232–233.

    Article  PubMed  Google Scholar 

  28. Kistner A, Celsi G, Vanpee M, Jacobson SH. Increased blood pressure but normal renal function in adult women born preterm. Pediatr Nephrol. 2000;15(3–4):215–220.

    Article  CAS  PubMed  Google Scholar 

  29. Hovi P, Andersson S, Raikkonen K, et al. Ambulatory blood pressure in young adults with very low birth weight. J Pediatr. 2010; 156(1):54–59.

    Article  PubMed  Google Scholar 

  30. Kavlock RJ, Gray JA. Evaluation of renal function in neonatal rats. Biol Neonate. 1982;41(5–6):279–288.

    Article  CAS  PubMed  Google Scholar 

  31. Larsson L, Aperia A, Wilton P. Effect of normal development on compensatory renal growth. Kidney Int. 1980;18(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  32. Manning J, Vehaskari VM. Low birth weight-associated adult hypertension in the rat. Pediatr Nephrol. 2002;16(5):417–422.

    Article  Google Scholar 

  33. Habib S, Gattineni J, Twombley K, Baum M. Evidence that prenatal programming of hypertension by dietary protein deprivation is mediated by fetal glucocorticoid exposure. Am J Hypertens. 2011;24(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  34. Habib S, Zhang Q, Baum M. Prenatal programming of hypertension in the rat: effect of Postnatal Rearing. Nephron Extra. 2011; 1(1):157–165.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Woods LL, Ingelfinger JR, Rasch R. Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R1131–R1136.

    Article  CAS  PubMed  Google Scholar 

  36. Moritz KM, Mazzuca MQ, Siebel AL, et al. Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol. 2009; 587(pt 11):2635–2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng M, Whitesall S, Zhang Y, Beibel M, D’Alecy L, DiPetrillo K. Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens. 2008;21(12):1288–1291.

    Article  PubMed  Google Scholar 

  38. Bankir L, Hollenberg NK. In vivo staining of the kidney with Alcian blue: an adjunct to morphological and physiological studies. Ren Physiol. 1983;6(3):151–155.

    CAS  PubMed  Google Scholar 

  39. Fassi A, Sangalli F, Maffi R, Colombi F, et al. Progressive glomerular injury in the MWF rat is predicted by inborn nephron deficit. J Am Soc Nephrol. 1998;9(8):1399–1406.

    CAS  PubMed  Google Scholar 

  40. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  41. Becker AM, Zhang J, Goyal S, et al. Ontogeny of NHE8 in the Rat Proximal Tubule. Am J Physiol Renal Physiol. 2007;293(1): F255–F261.

    Article  CAS  PubMed  Google Scholar 

  42. Lee HW, Kim WY, Song HK, et al. Sequential expression of NKCC2, TonEBP, aldose reductase, and urea transporter-A in developing mouse kidney. Am J Physiol Renal Physiol. 2007; 292(1):F269–F277.

    Article  CAS  PubMed  Google Scholar 

  43. Ergonul Z, Frindt G, Palmer LG. Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol. 2006:291(3):F683–F693.

    Article  CAS  PubMed  Google Scholar 

  44. Jeon US, Han KH, Park SH, et al. Downregulation of renal TonEBP in hypokalemic rats. Am J Physiol Renal Physiol. 2007;293(1):F408–F415.

    Article  CAS  PubMed  Google Scholar 

  45. Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol. 2005;289(4):F685–F691.

    Article  CAS  PubMed  Google Scholar 

  46. Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61(2):579–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shao W, Seth DM, Prieto MC, Kobori H, Navar LG. Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular angiotensinogen and angiotensin II in rats. Am J Physiol Renal Physiol. 2013;304(5):F505–F514.

    Article  CAS  PubMed  Google Scholar 

  48. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol. 2007;18(6):1688–1696.

    Article  CAS  PubMed  Google Scholar 

  49. Pasatiempo AM, Ross AC. Effects of food or nutrient restriction on milk vitamin A transfer and neonatal vitamin A stores in the rat. Br J Nutr. 1990;63(2):351–362.

    Article  CAS  PubMed  Google Scholar 

  50. Sampson DA, Jansen GR. The effect of dietary protein quality and feeding level on milk secretion and mammary protein synthesis in the rat. J Pediatr Gastroenterol Nutr. 1985;4(2): 274–283.

    Article  CAS  PubMed  Google Scholar 

  51. Marin MC, De Tomas ME, Serres C, Mercuri O. Protein-energy malnutrition during gestation and lactation in rats affects growth rate, brain development and essential fatty acid metabolism. J Nutr. 1995;125(4):1017–1024.

    CAS  PubMed  Google Scholar 

  52. Hay WW, Thureen P. Protein for preterm infants: how much is needed? How much is enough? How much is too much? Pediatr Neonatol. 2010;51(4):198–207.

    Article  PubMed  Google Scholar 

  53. Almeida JR, Mandarim-de-Lacerda CA. Maternal gestational protein-calorie restriction decreases the number of glomeruli and causes glomerular hypertrophy in adult hypertensive rats. Am J Obstet Gynecol. 2005;192(3):945–951.

    Article  PubMed  Google Scholar 

  54. Luzardo R, Silva PA, Einicker-Lamas M, et al. Metabolic programming during lactation stimulates renal Na+ transport in the adult offspring due to an early impact on local angiotensin II pathways. PLoS One. 2011;6(7):e21232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. O’Dowd R, Kent JC, Moseley JM, Wlodek ME. Effects of uteroplacental insufficiency and reducing litter size on maternal mammary function and postnatal offspring growth. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R539–R548.

    Article  PubMed  CAS  Google Scholar 

  56. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM. Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int. 2008;74(2):187–195.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Baum MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, K., Guzman, G.L., Gattineni, J. et al. Effect of Postnatal Maternal Protein Intake on Prenatal Programming of Hypertension. Reprod. Sci. 21, 1499–1507 (2014). https://doi.org/10.1177/1933719114530186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114530186

Keywords

Navigation