Skip to main content

Advertisement

Log in

Reduction in Embryonic Malformations and Alleviation of Endoplasmic Reticulum Stress by Nitric Oxide Synthase Inhibition in Diabetic Embryopathy

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Maternal diabetes-induced neural tube defects (NTDs) are associated with increased programmed cell death (apoptosis) in the neuroepithelium, which is related to intracellular nitrosative stress. To alleviate nitrosative stress, diabetic pregnant mice were fed via gavage an inhibitor of nitric oxide (NO) synthase (NOS) 2, L-N6-(1-iminoethyl)-lysine (L-NIL; 80 mg/kg), once a day from embryonic (E) day 7.5 to 9.5 during early stages of neurulation. The treatment significantly reduced NTD rate in the embryos, compared with that in vehicle (normal saline)-treated diabetic group. In addition to alleviation of nitrosative stress, endoplasmic reticulum (ER) stress was also ameliorated, assessed by quantification of associated factors. Apoptosis was reduced, indicated by caspase 8 activation. These results show that nitrosative stress is important in diabetes-induced NTDs via exacerbating ER stress, leading to increased apoptosis. Oral treatment with NOS-2 inhibitor alleviates nitrosative and ER stress, decreases apoptosis, and reduces NTDs in the embryos, providing information for further interventional studies to reduce diabetes-associated birth defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao Z, Reece EA. Experimental mechanisms of diabetic embryopathy and strategies for developing therapeutic interventions. J Soc Gynecol Investig. 2005;12(8):549–557.

    Article  PubMed  Google Scholar 

  2. Loeken MR. Challenges in understanding diabetic embryopathy. Diabetes. 2008;57(12):3187–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eriksson UJ, Borg LA, Cederberg J, et al. Pathogenesis of diabetes-induced congenital malformations. Ups J Med Sci. 2000;105(2):53–84.

    Article  CAS  PubMed  Google Scholar 

  4. Correa A, Gilboa SM, Besser LM, et al. Diabetes mellitus and birth defects. Am J Obstet Gynecol. 2008;199(3):237. el–e9.

    Article  CAS  Google Scholar 

  5. Mills JL. Malformations in infants of diabetic mothers. Teratology. 1982;25(3):385–394.

    Article  CAS  PubMed  Google Scholar 

  6. Sadler TW. Embryology of neural tube development. Am J Med Genet. 2005;135C(l):2–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wallingford JB. Neural tube closure and neural tube defects: studies in animal models reveal known knowns and known unknowns. Am J Med Genet. 2005;135C(l):59–68.

    Article  PubMed  Google Scholar 

  8. Chappell JH Jr, Wang XD, Loeken MR. Diabetes and apopto-sis: neural crest cells and neural tube. Apoptosis. 2009;14(12): 1472–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Z, Yang P, Eckert RL, Reece EA. Caspase-8: a key role in the pathogenesis of diabetic embryopathy. Birth Defects Res B Dev Reprod Toxicol. 2009;86(l):72–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gareskog M, Cederberg J, Eriksson UJ, Wentzel P. Maternal diabetes in vivo and high glucose concentration in vitro increases apoptosis in rat embryos. Reprod Toxicol. 2007; 23(l):63–74.

    Article  PubMed  CAS  Google Scholar 

  11. Sugimura Y, Murase T, Oyama K, et al. Prevention of neural tube defects by loss of function of inducible nitric oxide synthase in fetuses of a mouse model of streptozotocin-induced diabetes. Dia-betologia. 2009;52(5):962–971.

    Article  CAS  PubMed  Google Scholar 

  12. Jawerbaum A, Higa R, White V, et al. Peroxynitrites and impaired modulation of nitric oxide concentrations in embryos from diabetic rats during early organogenesis. Reproduction. 2005; 130(5):695–703.

    Article  CAS  PubMed  Google Scholar 

  13. Loeken MR. Free radicals and birth defects. J Matern Fetal Neonatal Med. 2004;15(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  14. Dimmeler S, Zeiher AM. Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide. 1997;1(4):275–281.

    Article  CAS  PubMed  Google Scholar 

  15. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43(2): 109–142.

    CAS  PubMed  Google Scholar 

  16. Groves JT, Wang CC. Nitric oxide synthase: models and mechanisms. Curr Opin Chem Biol. 2000;4(6):687–695.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20(4):223–230.

    Article  CAS  PubMed  Google Scholar 

  18. Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem. 2003; 384(10-11):1343–1364.

    Article  CAS  PubMed  Google Scholar 

  19. Jawerbaum A, Sinner D, White V, Pustovrh C, Capobianco E, Gonzalez E. Modulation of nitric oxide concentration and lipid metabolism by 15-deoxy δ12,14prostaglandin J2 in embryos from control and diabetic rats during early organogenesis. Reproduction. 2002;124(5):625–631.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar SD, Yong SK, Dheen ST, Bay BH, Tay SSW. Cardiac malformations are associated with altered expression of vascular endothelial growth factor and endothelial nitric oxide synthase genes in embryos of diabetic mice. Exp Biol Med. 2008; 233(11):1421–1432.

    Article  CAS  Google Scholar 

  21. Maattanen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol. 2010;21(5):500–511.

    Article  PubMed  CAS  Google Scholar 

  22. Hampton RY. ER stress response: getting the UPR hand on mis-folded proteins. Curr Biol. 2000;10(14):R518–R521.

    Article  CAS  PubMed  Google Scholar 

  23. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–1030.

    Article  CAS  PubMed  Google Scholar 

  24. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol. 2007; 18(6): 716–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium. 2002;32(5–6): 279–305.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh YH, Su IJ, Lei HY, Lai MD, Chang WW, Huang W. Differential endoplasmic reticulum stress signaling pathways mediated by iNOS. Biochem Biophys Res Commun. 2007; 359(3):643–648.

    Article  CAS  PubMed  Google Scholar 

  27. Reece EA, Wu YK, Zhao Z, Dhanasekaran D. Dietary vitamin and lipid therapy rescues aberrant signaling and apoptosis and prevents hyperglycemia-induced diabetic embryopathy in rats. Am J Obstet Gynecol. 2006;194(2):580–585.

    Article  CAS  PubMed  Google Scholar 

  28. Reece EA, Wu YK. Prevention of diabetic embryopathy in offspring of diabetic rats with use of a cocktail of deficient substrates and an antioxidant. Am J Obstet Gynecol. 1997;176(4):790–797; discussion 797–798.

    Article  CAS  PubMed  Google Scholar 

  29. Cederberg J, Siman CM, Eriksson UJ. Combined treatment with vitamin E and vitamin C decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatr Res. 2001;49(6):755–762.

    Article  CAS  PubMed  Google Scholar 

  30. Viana M, Aruoma OI, Herrera E, Bonet B. Oxidative damage in pregnant diabetic rats and their embryos. Free Radic Biol Med. 2000;29(11):1115–1121.

    Article  CAS  PubMed  Google Scholar 

  31. Villar J, Purwar M, Merialdi M, et al. World health organisation multicentre randomised trial of supplementation with vitamins C and E among pregnant women at high risk for pre-eclampsia in populations of low nutritional status from developing countries. BJOG. 2009;116(6):780–788.

    Article  CAS  PubMed  Google Scholar 

  32. Robinson I, de Serna DG, Gutierrez A, Schade DS. Vitamin E in humans: an explanation of clinical trial failure. Endocr Pract. 2006;12(5):576–582.

    Article  PubMed  Google Scholar 

  33. Polyzos NP, Mauri D, Tsappi M, et al. Combined vitamin C and E supplementation during pregnancy for preeclampsia prevention: a systematic review. Obstet Gynecol Surv. 2007;62(3): 202–206.

    Article  PubMed  Google Scholar 

  34. Moore WM, Webber RK, Jerome GM, Tjoeng FS, Misko TP, Currie MG. L-N6-(l-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J Med Chem. 1994;37(23): 3886–3888.

    Article  CAS  PubMed  Google Scholar 

  35. Junod A, Lambert AE, Orci L, Pictet R, Gonet AE, Renold AE. Studies of the diabetogenic action of streptozotocin. Proc Soc Exp Biol Med. 1967;126(l):201–205.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Z. Cardiac malformations and alteration of TGFβ signaling system in diabetic embryopathy. Birth Defects Res B Dev Reprod Toxicol. 2010;89(2):97–105.

    CAS  PubMed  Google Scholar 

  37. Yang P, Zhao Z, Reece EA. Activation of oxidative stress signaling that is implicated in apoptosis with a mouse model of diabetic embryopathy. Am J Obstet Gynecol. 2008;198(1): 130. el–e7.

    Article  PubMed  CAS  Google Scholar 

  38. Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003;4(10):784–793.

    Article  PubMed  Google Scholar 

  39. Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005; 54(5): 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  40. Carvalho-Filho MA, Ropelle ER, Pauli RJ, et al. Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt. Diabetologia. 2009; 52(ll):2425–2434.

    Article  CAS  PubMed  Google Scholar 

  41. Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium. 2005;38(3–4):303–310.

    Article  CAS  PubMed  Google Scholar 

  42. Gotoh T, Mori M. Nitric oxide and endoplasmic reticulum stress. Arterioscler Thromb Vasc Biol. 2006;26(7): 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  43. Eu JP, Xu L, Stamler JS, Meissner G. Regulation of ryanodine receptors by reactive nitrogen species. Biochem Pharmacol. 1999;57(10):1079–1084.

    Article  CAS  PubMed  Google Scholar 

  44. Adachi T, Weisbrod RM, Pimentel DR, et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med. 2004;10(11):1200–1207.

    Article  CAS  PubMed  Google Scholar 

  45. Sekine Y, Takeda K, Ichijo H. The ASK1-MAP kinase signaling in ER stress and neurodegenerative diseases. Curr Mol Med. 2006;6(l):87–97.

    Article  CAS  PubMed  Google Scholar 

  46. Yang P, Zhao Z, Reece EA. Involvement of c-Jun N-terminal kinases activation in diabetic embryopathy. Biochem Biophys Res Commun. 2007;357(3):749–754.

    Article  CAS  PubMed  Google Scholar 

  47. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J. Redox control of cell death. Antioxid Redox Signal. 2002;4(3): 405–414.

    Article  CAS  PubMed  Google Scholar 

  48. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene. 2003;22(53):8608–8618.

    Article  CAS  PubMed  Google Scholar 

  49. Raven JF, Koromilas AE. PERK and PKR: old kinases learn new tricks. Cell Cycle. 2008;7(9):1146–1150.

    Article  CAS  PubMed  Google Scholar 

  50. Yoneda T, Imaizumi K, Oono K, et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem. 2001;276(17): 13935–13940.

    Article  CAS  PubMed  Google Scholar 

  51. Lee QP, Juchau MR. Dysmorphogenic effects of nitric oxide (NO) and NO-synthase inhibition: studies with intra-amniotic injections of sodium nitroprusside and NG-monomethyl-L-argi-nine. Teratology. 1994;49(6):452–464.

    Article  CAS  PubMed  Google Scholar 

  52. Fantel AG, Nekahi N, Shepard TH, Cornel LM, Unis AS, Lemire RJ. The teratogenicity of N(omega)-nitro-L-ariginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, in rats. Reprod Toxicol. 1997;11(5):709–717.

    Article  CAS  PubMed  Google Scholar 

  53. Tiboni GM, Clementini E. Teratological consequences of nitric oxide synthesis inhibition. Curr Pharm Des. 2004;10(22): 2759–2767.

    Article  CAS  PubMed  Google Scholar 

  54. Gregg AR, Schauer A, Shi O, Liu Z, Lee CG, O'Brien WE. Limb reduction defects in endothelial nitric oxide synthase-deficient mice. Am J Physiol. 1998;275(6 pt 2):H2319–H2324.

    CAS  PubMed  Google Scholar 

  55. Hefler LA, Reyes CA, O'Brien WE, Gregg AR. Perinatal development of endothelial nitric oxide synthase-deficient mice. Biol Reprod. 2001;64(2):666–673.

    Article  CAS  PubMed  Google Scholar 

  56. Laubach VE, Shesely EG, Smithies O, Sherman PA. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci U S A.. 1995;93(23):10688–10692.

    Article  Google Scholar 

  57. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265(5180):1883–1885.

    Article  CAS  PubMed  Google Scholar 

  58. Wei XQ, Charles IG, Smith A, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995; 375(6530):408–411.

    Article  CAS  PubMed  Google Scholar 

  59. Fantel AG, Person RE. Further evidence for the role of free radicals in the limb teratogenicity of L-NAME. Teratology. 2002; 66(l):24–32.

    Article  CAS  PubMed  Google Scholar 

  60. Fantel AG, Stamps LD, Tran TT, Mackler B, Person RE, Nekahi N. Role of free radicals in the limb teratogenicity of L-NAME (N(G)-nitro-(L)-arginine methyl ester): a new mechanistic model of vascular disruption. Teratology. 1999;60(3):151–160.

    Article  CAS  PubMed  Google Scholar 

  61. Bustamante SA, Pang Y, Romero S, et al. Inducible nitric oxide synthase and the regulation of central vessel caliber in the fetal rat. Circulation. 1996;94(8): 1948–1953.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhao PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Eckert, R.L. & Reece, E.A. Reduction in Embryonic Malformations and Alleviation of Endoplasmic Reticulum Stress by Nitric Oxide Synthase Inhibition in Diabetic Embryopathy. Reprod. Sci. 19, 823–831 (2012). https://doi.org/10.1177/1933719111434543

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111434543

Keywords

Navigation