Skip to main content
Log in

Human C-Reactive Protein Enhances Vulnerability of Immature Rats to Hypoxic—Ischemic Brain Damage: A Preliminary Study

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In utero exposure to infection or inflammation is a strong and independent predictor of cerebral palsy. Using a rat model of neonatal hypoxic—ischemic (HI) encephalopathy, we investigated the hypothesis that C-reactive protein (CRP), which is not specific for infection, aggravates vulnerability of the immature brain to HI. Seven-day-old rats were divided into human CRP treated and control groups. After injection of each solution, they underwent left common carotid artery ligation and exposure to 8% hypoxia for 40 minutes. Human CRP, rat CRP, and interleukin 6 (IL-6) concentrations in serum were measured by enzyme-linked immunosorbent assay 30 to 60 minutes after injection of each solution. Four days later, microtubule-associated protein 2 (MAP-2) immunostaining was used to examine the brains for neuronal damage. Human CRP treatment significantly reduced the MAP-2 positive area ratio, compared with control group (P < .05), suggesting that human CRP-enhanced susceptibility to HI-induced brain damage. Mean serum human CRP concentration in the human CRP group was 1823 ± 520 ng/mL (range: 365–3964 ng/mL). Interleukin 6 concentrations in serum were moderately elevated in both groups, without significant differences, and rat CRP concentrations were within normal range. C-reactive protein makes the immature brain susceptible to HI insult, even if the insult causes little or no injury by itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson KB, Ellenberg JH. Antecedents of cerebral palsy. Multivariate analysis of risk. N Engl J Med. 1986;315(2):81–86.

    Article  CAS  PubMed  Google Scholar 

  2. Graham EM, Petersen SM, Christo DK, Fox HE. Intrapartum electronic fetal heart rate monitoring and the prevention of perinatal brain injury. Obstet Gynecol. 2006;108(3 pt 1): 656–666.

    Article  PubMed  Google Scholar 

  3. Grether JK, Nelson KB. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA. 1997;278(3):207–211.

    Article  CAS  PubMed  Google Scholar 

  4. Murphy DJ, Sellers S, MacKenzie IZ, Yudkin PL, Johnson AM. Case-control study of antenatal and intrapartum risk factors for cerebral palsy in very preterm singleton babies. Lancet. 1995;346(8988):1449–1454.

    Article  CAS  PubMed  Google Scholar 

  5. Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA. 2000;284(11): 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  6. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998 Jul;179(1):194–202.

    Article  CAS  PubMed  Google Scholar 

  7. Pacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  8. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon BH, Romero R, Park JS, et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000; 182(3):675–681.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon BH, Romero R, Yang SH, et al. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am J Obstet Gynecol. 1996;174(5):1433–1440.

    Article  CAS  PubMed  Google Scholar 

  11. Yoon BH, Romero R, Shim JY, Shim SS, Kim CJ, Jun JK. C-reactive protein in umbilical cord blood: a simple and widely available clinical method to assess the risk of amniotic fluid infection and funisitis. J Matern Fetal Neonatal Med. 2003; 14(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ziakas A, Gavrilidis S, Giannoglou G, et al. In-hospital and long-term prognostic value of fibrinogen, CRP, and IL-6 levels in patients with acute myocardial infarction treated with thrombolysis. Angiology. 2006;57(3):283–293.

    Article  CAS  PubMed  Google Scholar 

  13. Di Napoli M, Papa F, Bocola V. C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke. 2001;32(4):917–24.

    Article  PubMed  Google Scholar 

  14. Suleiman M, Khatib R, Agmon Y, et al. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J Am Coll Cardiol. 2006;47(5):962968.

    Article  PubMed  Google Scholar 

  15. Bursi F, Weston SA, Killian JM, Gabriel SE, Jacobsen SJ, Roger VL. C-reactive protein and heart failure after myocardial infarction in the community. Am J Med. 2007;120(7): 616–622.

    Article  CAS  PubMed  Google Scholar 

  16. Muir KW, Weir CJ, Alwan W, Squire IB, Lees KR. C-reactive protein and outcome after ischemic stroke. Stroke. 1999 May;30(5):981–5.

    Article  CAS  PubMed  Google Scholar 

  17. Lagrand WK, Niessen HW, Wolbink GJ, et al. C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation. 1997;95(1): 97–103.

    Article  CAS  PubMed  Google Scholar 

  18. Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 2006;440(7088):1217–1221.

    Article  CAS  PubMed  Google Scholar 

  19. Nijmeijer R, Lagrand WK, Lubbers YT, et al. C-reactive protein activates complement in infarcted human myocardium. Am J Pathol. 2003;163(1):269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griselli M, Herbert J, Hutchinson WL, et al. C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med. 1999;190(12): 1733–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gill R, Kemp JA, Sabin C, Pepys MB. Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab. 2004;24(11):1214–1218.

    Article  CAS  PubMed  Google Scholar 

  22. De Beer FC, Pepys MB. Isolation of human C-reactive protein and serum amyloid P component. J Immunol Methods. 1982;50(1):17–31.

    Article  PubMed  Google Scholar 

  23. Rice JE, 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–141.

    Article  PubMed  Google Scholar 

  24. Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl. 1997 Jul;422:85–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kitagawa K, Matsumoto M, Niinobe M, et al. Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage—immunohistochemical investigation of dendritic damage. Neuroscience. 1989;31(2):401–411.

    Article  CAS  PubMed  Google Scholar 

  26. Tomimatsu T, Fukuda H, Kanagawa T, Mu J, Kanzaki T, Murata Y. Effects of hyperthermia on hypoxic-ischemic brain damage in the immature rat: its influence on caspase-3-like protease. Am J Obstet Gynecol. 2003;188(3):768–773.

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda H, Tomimatsu T, Kanagawa T, et al. Postischemic hyperthermia induced caspase-3 activation in the newborn rat brain after hypoxia-ischemia and exacerbated the brain damage. Biol Neonate. 2003;84(2):164–171.

    Article  CAS  PubMed  Google Scholar 

  28. Fukui O, Kinugasa Y, Fukuda A, et al. Post-ischemic hypothermia reduced IL-18 expression and suppressed microglial activation in the immature brain. Brain Res. 2006; 1121(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  29. Vannucci RC, Lyons DT, Vasta F. Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke. 1988;19(2):245–250.

    Article  CAS  PubMed  Google Scholar 

  30. Yager JY, Armstrong EA, Jaharus C, Saucier DM, Wirrell EC. Preventing hyperthermia decreases brain damage following neonatal hypoxic-ischemic seizures. Brain Res. 2004;1011(1): 48–57.

    Article  CAS  PubMed  Google Scholar 

  31. Dammann O, Leviton A. Brain damage in preterm newborns: biological response modification as a strategy to reduce disabilities. J Pediatr. 2000;136(4):433–438.

    Article  CAS  PubMed  Google Scholar 

  32. Yoon BH, Romero R, Kim CJ, et al. High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol. 1997;177(2): 406–411.

    Article  CAS  PubMed  Google Scholar 

  33. Lee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007; 197(3):294 e1–e6.

    Article  CAS  Google Scholar 

  34. Pepys MB, Hawkins PN, Kahan MC, et al. Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res. 2005;97(11):e97–e103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clapp BR, Hirschfield GM, Storry C, et al. Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability. Circulation. 2005;111(12):1530–1536.

    Article  PubMed  Google Scholar 

  36. Sjoberg AP, Trouw LA, McGrath FD, Hack CE, Blom AM. Regulation of complement activation by C-reactive protein: targeting of the inhibitory activity of C4b-binding protein. J Immunol. 2006;176(12):7612–620.

    Article  PubMed  Google Scholar 

  37. Zhang J, Rui YC, Yang PY, Lu L, Li TJ. C-reactive protein induced expression of adhesion molecules in cultured cerebral microvascular endothelial cells. Life Sci. 2006;78(26): 2983–2988.

    Article  CAS  PubMed  Google Scholar 

  38. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102(18):2165–2168.

    Article  CAS  PubMed  Google Scholar 

  39. Qamirani E, Ren Y, Kuo L, Hein TW. C-reactive protein inhibits endothelium-dependent NO-mediated dilation in coronary arterioles by activating p38 kinase and NAD(P)H oxidase. Arterioscler Thromb Vasc Biol. 2005;25(5):995–1001.

    Article  CAS  PubMed  Google Scholar 

  40. Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106(8):913–919.

    Article  CAS  PubMed  Google Scholar 

  41. Cowell RM, Plane JM, Silverstein FS. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. J Neurosci. 2003;23(28):9459–9468.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maroko PR, Carpenter CB, Chiariello M, et al. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978;61(3):661–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoon BH, Park CW, Chaiworapongsa T. Intrauterine infection and the development of cerebral palsy. BJOG. 2003; 110(suppl 20):124–127.

    Article  PubMed  Google Scholar 

  44. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999;340(6): 448–454.

    Article  CAS  PubMed  Google Scholar 

  45. Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci. 2002;22(2):455–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Tomimatsu MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinugasa-Taniguchi, Y., Tomimatsu, T., Mimura, K. et al. Human C-Reactive Protein Enhances Vulnerability of Immature Rats to Hypoxic—Ischemic Brain Damage: A Preliminary Study. Reprod. Sci. 17, 419–425 (2010). https://doi.org/10.1177/1933719110361379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110361379

Key words

Navigation