Skip to main content
Log in

Non-equilibrium statistical mechanical approach to the formation of non-Maxwellian electron distribution in space

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Boltzmann-Gibbs (BG) entropy has additive and extensive properties, but for certain physical systems, such as those governed by long-range interactions – plasma or fully ionized gas being an example – it is speculated that the entropy must be non-additive and non-extensive. Because of the fact that Tsallis entropy possesses such characteristics, many spacecraft observations of charged particle distributions in space are interpreted with the conceptual framework based upon Tsallis statistical principles. This paper formulates the non-equilibrium statistical theory of space plasma, and it is shown that the steady state electrostatic turbulence in plasma coincides with the formation of non-Maxwellian electron distribution function known as the kappa distribution. The kappa distribution is equivalent to the q-Gaussian distribution in the Tsallis statistical theory, which represents the most probable state subject to Tsallis entropy. This finding represents an independent confirmation that the space plasma may indeed be governed by the Tsallis statistical principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  2. C. Tsallis,Introduction to Nonextensive Statistical Mechanics (Springer, New York, 2009)

  3. W.C. Feldman, J.R. Asbridge, S.J. Bame, M.D. Montgomery, S.P. Gary, J. Geophys. Res. 80, 4181 (1975)

    Article  ADS  Google Scholar 

  4. J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, G. Paschmann, N. Sckopke, R.J. Hynds, J. Geophys. Res. 86, 547 (1981)

    Article  ADS  Google Scholar 

  5. T.P. Armstrong, M.T. Paonessa, E.V. Bell II, S.M. Krimigis, J. Geophys. Res. 88, 8893 (1983)

    Article  ADS  Google Scholar 

  6. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  7. L. Wang, R. Lin, C. Salem, M. Pulupa, D.E. Larson, P.H. Yoon, J.G. Luhmann, Astrophys. J. Lett. 753, L23 (2012)

    Article  ADS  Google Scholar 

  8. M.P. Leubner, Phys. Plasmas 11, 1308 (2004)

    Article  ADS  Google Scholar 

  9. G. Livadiotis, D.J. McComas, J. Geophys. Res. 114, A11105 (2009) and references therein

    Article  ADS  Google Scholar 

  10. G. Livadiotis,Kappa Distributions (Elsevier, Amsterdam, 2017)

  11. G. Livadiotis, Entropy 19, 285 (2017)

    Article  ADS  Google Scholar 

  12. C. Ma, D. Summers, Geophys. Res. Lett. 25, 4099 (1998)

    Article  ADS  Google Scholar 

  13. B.D. Shizgal, Phys. Rev. E 97, 052144 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Hasegawa, K. Mima, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985)

    Article  ADS  Google Scholar 

  15. L.A. Fisk, G. Gloeckler, Astrophys. J. 686, 1466 (2008)

    Article  ADS  Google Scholar 

  16. L.A. Fisk, G. Gloeckler, Space Sci. Rev. 173, 433 (2012)

    Article  ADS  Google Scholar 

  17. J.R. Jockipii, M.A. Lee, Astrophys. J. 713, 475 (2010)

    Article  ADS  Google Scholar 

  18. T. Antecki, R. Schlickeiser, M. Zhang, Astrophys. J. 764, 89 (2013)

    Article  ADS  Google Scholar 

  19. P.H. Yoon, R. Schlickeiser, MNRAS 482, 4279 (2019)

    Article  ADS  Google Scholar 

  20. N.A. Schwadron, M.A. Dayeh, M. Desai, H. Fahr, J.R. Jokipii, M.A. Lee, Astrophys. J. 713, 1386 (2010)

    Article  ADS  Google Scholar 

  21. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.H. Yoon,Classical Kinetic Theory of Weakly Turbulent Nonlinear Plasma Processes (Cambridge University Press, Cambridge, 2019)

  23. W.E. Drummond, D. Pines, Nucl. Fusion Suppl. 2, 1049 (1962)

    Google Scholar 

  24. A.A. Vedenov, E.P. Velikhov, Sov. Phys. JETP 16, 682 (1962)

    ADS  Google Scholar 

  25. E.A. Frieman, P. Rutherford, Ann. Phys. 28, 134 (1964)

    Article  ADS  Google Scholar 

  26. R.J.-M. Grognard, Solar Phys. 81, 173 (1982)

    Article  ADS  Google Scholar 

  27. C.T. Dum, J. Geophys. Res. 95, 8095 (1990)

    Article  ADS  Google Scholar 

  28. L.F. Ziebell, R. Gaelzer, P.H. Yoon, Phys. Plasmas 8, 3982 (2001)

    Article  ADS  Google Scholar 

  29. E.P. Kontar, H.L. Pécseli, Phys. Rev. E. 65, 066408 (2002)

    Article  ADS  Google Scholar 

  30. P.H. Yoon, T. Rhee, C.-M. Ryu, Phys. Rev. Lett. 95, 215003 (2005)

    Article  ADS  Google Scholar 

  31. L.F. Ziebell, R. Gaelzer, J. Pavan, P.H. Yoon, Plasma Phys. Control. Fusion 50, 085011 (2008)

    Article  ADS  Google Scholar 

  32. C.-M. Ryu, T. Rhee, T. Umeda, P.H. Yoon, Y. Omura, Phys. Plasmas 14, 100701 (2007)

    Article  ADS  Google Scholar 

  33. P.H. Yoon, J. Geophys. Res. 119, 70774 (2014)

    Google Scholar 

  34. V. Štverák, M. Maksimovic, P.M. Trávníček, E. Marsch, A.N. Fazakerley, E.E. Scime, J. Geophys. Res. 114, A05104 (2009)

    Article  ADS  Google Scholar 

  35. M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Phys. Rev. 107, 1 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  36. Y.L. Klimontovich,Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon, New York, 1982)

  37. A.G. Sitenko,Fluctuations and Non-linear Wave Interactions in Plasmas (Pergamon Press, New York, 1982)

  38. P.H. Yoon, Phys. Plasmas 7, 4858 (2000)

    Article  ADS  Google Scholar 

  39. P.H. Yoon, Phys. Plasmas 12, 042306 (2005)

    Article  ADS  Google Scholar 

  40. P.H. Yoon, L.F. Ziebell, E.P. Kontar, R. Schlickeiser, Phys. Rev. E 93, 033203 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, P.H. Non-equilibrium statistical mechanical approach to the formation of non-Maxwellian electron distribution in space. Eur. Phys. J. Spec. Top. 229, 819–840 (2020). https://doi.org/10.1140/epjst/e2020-900215-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900215-4

Navigation