Skip to main content
Log in

Effects of the rotation of a spacecraft in an atmospheric close approach with the Earth

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A maneuver called “Aerogravity Assisted” is known in the literature to increase the energy gains given by a close approach between a spacecraft and a planet using the atmosphere of the planet. Several previous papers showed the importance of this topic in different aspects. The present paper has the goal of studying the effects of the spacecraft rotation in this maneuver. This rotation implies in a variable ballistic coefficient and this fact can change the results of the maneuver. Several masses, sizes and angular velocities will be tested and the effects of these parameters will be measured. The dynamical model considers the atmosphere of the Earth, in terms of drag, the gravitational fields of the Earth and the Sun, assumed to be points of mass, and the rotating spacecraft. The Earth and the Sun are assumed to be in circular coplanar orbits around their common center of mass. The equations of motion are the ones given by the circular planar restricted three-body problem with the addition of the forces generated by the atmospheric drag. The primary objective is to map the energy variations of the spacecraft orbits due to this close approach as a function of the spacecraft angular velocity. This rotation can be used as control of the maneuver to try to reach different goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Broucke, The celestial mechanics of gravity assist, in AIAA/AAS Astrodynamics Conference (Minneapolis, MN, USA, 1988), Vol. 88

  2. C.E. Kohlhase, P.A. Penzo, Space Sci. Rev. 21, 77 (1977)

    Article  ADS  Google Scholar 

  3. M.A. Minovich, A Method for Determining Interplanetary Free-Fall Reconnaissance Trajectories (Pasadena, CA, JPL, 1961), 47p. (JPL Tec. Memo 312-130)

  4. R. Carvell, Space 1, 18 (1985)

    ADS  Google Scholar 

  5. D. Dunham, S. Davis, J. Astron. Sci. 33, 275 (1985)

    Google Scholar 

  6. R.L. McNutt Jr, S.C. Solomon, R.E. Gold, J.C. Leary, Adv. Space Res. 38, 564 (2006)

    Article  ADS  Google Scholar 

  7. R.L. McNutt Jr, S.C. Solomon, R. Grard, M. Novara, T. Mukai, Adv. Space Res. 33, 2126 (2004)

    Article  ADS  Google Scholar 

  8. R. Grard, Adv. Space Res. 38, 563 (2006)

    Article  ADS  Google Scholar 

  9. G. Felipe, A.F.B.A. Prado, Adv. Space Res. 34, 2256 (2004)

    Article  ADS  Google Scholar 

  10. J.M. Longuski, N.J. Strange, J. Spacecraft Rockets 39, 9 (2002)

    Article  ADS  Google Scholar 

  11. A.F.S. Ferreira, A.F.B.A. Prado, O.C. Winter, Adv. Space Res. 56, 252 (2015)

    Article  ADS  Google Scholar 

  12. T.T. McConaghy, T.J. Debban, A.E. Petropulos, J.M. Longuski, J. Spacecraft Rockets 40, 380 (2003)

    Article  ADS  Google Scholar 

  13. L. Casalino, G. Colasurdo, D. Pasttrone, J. Guidance Control Dyn. 22, 637 (1999)

    Article  ADS  Google Scholar 

  14. A.F.B.A. Prado, R.A. Broucke, Acta Astron. 36, 285 (1995)

    Article  Google Scholar 

  15. V.M. Gomes, J. Murcia, A.F.B.A. Prado, J. Golebiewska, Comput. Appl. Math. 37, 1 (2015)

    Article  Google Scholar 

  16. J. Murcia, A.F.B.A. Prado, V.M. Gomes, Rev. Mex. Astron. Astrofis. 54, 485 (2018)

    ADS  Google Scholar 

  17. J. Murcia, A.F.B.A. Prado, V.M. Gomes, Rev. Mex. Astron. Astrofis. 54, 143 (2018)

    ADS  Google Scholar 

  18. J. Murcia, A.F.B.A. Prado, J. Astron. Sci. 66, 1 (2019)

    Article  Google Scholar 

  19. J. Murcia, A.F.B.A. Prado, Astrophys. Space Sci. 362, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Szebehely, Theory of orbits: the restricted problem of three bodies (Yale University, New Haven CT, 1967)

  21. S. Schaaf, P. Chambre, in Flow of Rarefied Gases (Princeton University, Princeton, NJ, 1961), Vol. 8

  22. A. Tewari, J. Spac. R. AIAA 46, 299 (2009)

    Google Scholar 

  23. J. Picone, A.E. Hedin, D. Pj Drob, A.C. Aikin, J. Geophys. Res.: Space Phys. 107, 116 (2002)

    Article  Google Scholar 

  24. E. Fehlberg, Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge–Kutta Formulas with Step Size, NASA Report TRS-287 (NASA, Washington, DC, 1968)

  25. W.W. Vaughan, D.L. Johnson, C.G. Justus, Guide to Reference and Standard Atmosphere Models (AIAA, 2010), AIAA G-003C-2010

  26. R.A. Minzner, K.S.W. Champio, H.L. Pond, The ARDC Model Atmosphere, 1959(United States Air Force, 1959)

  27. ISO, Space system – estimation of orbit lifetime (2016), ISO 27852:2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Martins Gomes.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia Piñeros, J.O., Gomes, V.M., dos Santos, W.A. et al. Effects of the rotation of a spacecraft in an atmospheric close approach with the Earth. Eur. Phys. J. Spec. Top. 229, 1517–1526 (2020). https://doi.org/10.1140/epjst/e2020-900144-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900144-9

Navigation