Skip to main content
Log in

The concept of induced surface and curvature tensions for EoS of hard discs and hard spheres

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Mathematically rigorous derivation of the hadron matter equation of state (EoS) within the induced surface and curvature tensions approach is worked out. Such an EoS allows one to go beyond the Van der Waals approximation for the interaction potential of hard spheres. The compressibility of a single- and two-component hadron mixtures are found for two- and three-dimensional cases. The obtained results are compared to the well known one- and two-component EoS of hard spheres and hard discs. The values of the model parameters which successfully reproduce the well-known EoS on different intervals of packing fractions are determined from fitting their compressibility factors. It is argued that after some modification the developed approach can be also used to describe the mixtures of gases of convex hard particles of different sizes and shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Isihara, J. Chem. Phys. 18, 1446 (1950)

    Article  ADS  Google Scholar 

  2. H. Hadwiger, Mh. Math. 54, 345 (1950)

    Article  Google Scholar 

  3. A. Isihara, Statistical Physics (Academic Press, New York, 1971)

  4. J.P. Hansen, I.R. McDonald, Theory of Simple Fluids (Academic Press, Amsterdam, 2006)

  5. V.V. Sagun, A.I. Ivanytskyi, K.A. Bugaev, I.N. Mishustin, Nucl. Phys. A 924, 24 (2014)

    Article  ADS  Google Scholar 

  6. K.A. Bugaev et al., Nucl. Phys. A 970, 133 (2018)

    Article  ADS  Google Scholar 

  7. V.V. Sagun et al., Eur. Phys. J. A 54, 100 (2018)

    Article  ADS  Google Scholar 

  8. A.I. Ivanytskyi, K.A. Bugaev, V.V. Sagun, L.V. Bravina, E.E. Zabrodin, Phys. Rev. C 97, 064905 (2018)

    Article  ADS  Google Scholar 

  9. V.V. Sagun, I. Lopes, A.I. Ivanytskyi, Astrophys. J. 871, 157 (2019)

    Article  ADS  Google Scholar 

  10. V. Sagun, I. Lopes, A. Ivanytskyi, Nucl. Phys. A 982, 883 (2019)

    Article  ADS  Google Scholar 

  11. K.A. Bugaev et al., Phys. Part. Nucl. Lett. 15, 210 (2018)

    Article  Google Scholar 

  12. K.A. Bugaev, A.I. Ivanytskyi, V.V. Sagun, E.G. Nikonov, G.M. Zinovjev, Ukr. J. Phys. 63, 863 (2018)

    Article  Google Scholar 

  13. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  14. K.A. Bugaev, Phys. Rev. C 76, 014903 (2007)

    Article  ADS  Google Scholar 

  15. K.A. Bugaev, P.T. Reuter, Ukr. J. Phys. 52, 489 (2007)

    Google Scholar 

  16. M. Lopez de Haro, S.B. Yuste, A. Santos, Phys. Rev. E 66, 031202 (2002)

    Article  ADS  Google Scholar 

  17. C. Barrio, J.R. Solana, Phys. Rev. E 63, 011201 (2001)

    Article  ADS  Google Scholar 

  18. K.A. Bugaev, L. Phair, J.B. Elliott, Phys. Rev. E 72, 047106 (2005)

    Article  ADS  Google Scholar 

  19. K.A. Bugaev, J.B. Elliott, Ukr. J. Phys. 52, 301 (2007)

    Google Scholar 

  20. K. Huang, Statistical Mechanics (Wiley & Sons, 1967)

  21. M. Brack, C. Guet, H.-B. Hokansson, Phys. Rep. 123, 276 (1984)

    Google Scholar 

  22. K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316

  23. V.M. Kolomietz, S.V. Lukyanov, A.I. Sanzhur, Phys. Rev. C 86, 024304 (2012)

    Article  ADS  Google Scholar 

  24. L.G. Moretto, P.T. Lake, L. Phair, Phys. Rev. C 86, 021303(R) (2012)

    Article  ADS  Google Scholar 

  25. V.V. Sagun, K.A. Bugaev, A.I. Ivanytskyi, Phys. Part. Nucl. Lett. 16, 671 (2019)

    Article  Google Scholar 

  26. M.E. Fisher, Phys. 3, 255 (1967)

    Article  Google Scholar 

  27. A. Dillmann, G.E. Meier, J. Chem. Phys. 94, 3872 (1991)

    Article  ADS  Google Scholar 

  28. A. Laaksonen, I.J. Ford, M. Kulmala, Phys. Rev. E 49, 5517 (1994)

    Article  ADS  Google Scholar 

  29. M.N. Bannerman, L. Lue, L.V. Woodcock, J. Chem. Phys. 132, 084507 (2010)

    Article  ADS  Google Scholar 

  30. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T. Leland, J. Chem. Phys. 54, 1523 (1971)

    Article  ADS  Google Scholar 

  31. A. Santos, S.B. Yuste, M. Lopez de Haro, Mol. Phys. 96, 1 (1999)

    ADS  Google Scholar 

  32. L.V. Woodcock, J. Chem. Soc., Faraday Trans. 2 72, 731 (1976)

    Article  Google Scholar 

  33. E.J.J. van Rensburg, J. Phys. A 26, 4805 (1993)

    Article  ADS  Google Scholar 

  34. V.M. Samsonov, A.N. Bazulev, N.Yu. Sdobnyakov, Central Eur. J. Phys. 1, 474 (2003)

    ADS  Google Scholar 

  35. V.M. Samsonov, A.A. Chernyshova, N.Yu. Sdobnyakov, Izv. RAN, Ser. Phys. 80, 768 (2016)

    Google Scholar 

  36. K.A. Bugaev, M.I. Gorenstein, I.N. Mishustin, W. Greiner, Phys. Rev. C 62, 044320 (2000)

    Article  ADS  Google Scholar 

  37. N.F. Carnahan, E.A. Müller, J. Pikunic, Phys. Chem. Chem. Phys. 1, 4259 (1999)

    Article  Google Scholar 

  38. L.V. Yelash, Th. Kraska, E.A. Müller, N.F. Carnahan, Phys. Chem. Chem. Phys. 1, 4919 (1999)

    Article  Google Scholar 

  39. N.F. Carnahan, E.A. Müller, Phys. Chem. Chem. Phys. 8, 2619 (2006)

    Article  Google Scholar 

  40. K.A. Bugaev, Eur. Phys. J. A 55, 215 (2019)

    Article  ADS  Google Scholar 

  41. B.E. Grinyuk et al., arXiv:2004.05481v1

  42. K.A. Bugaev et al., arXiv:2005.01555v1 [nucl-th] (2020)

  43. ALICE Collaboration (J Adam et al.), Phys. Rev. C 93, 024917 (2016)

    Article  ADS  Google Scholar 

  44. ALICE Collaboration (L Ramona et al.), AIP Conf. Proc. 1701, 080009 (2016)

    Article  Google Scholar 

  45. ALICE Collaboration (J Adam et al.), Phys. Lett. B 754, 360 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyrill A. Bugaev.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, N.S., Bugaev, K.A., Bravina, L.V. et al. The concept of induced surface and curvature tensions for EoS of hard discs and hard spheres. Eur. Phys. J. Spec. Top. 229, 3445–3467 (2020). https://doi.org/10.1140/epjst/e2020-000036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000036-3

Navigation