Skip to main content
Log in

Effect of tiny amount of impurity and convective transport on dendrite growth kinetics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Using the developed sharp-interface model of solidification we quantitatively estimate influence of tiny amount of impurity and forced convection on kinetics of dendritic growth. As tested systems, we choose Ni and Ni–Zr dendrites which are growing into a stagnant undercooled melt, the melt with incoming forced flow and with/without impurity (that is small amount of Zr diluted in a pure Ni). The model predictions and comparisons allow us to quantitatively estimate predominant influence of impurity (chemical segregation), thermal influence (due to temperature inhomogeneity) and hydrodynamic effects (due to investigated laminar and forced melt flow) on the dendrite growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Herlach, P. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts, (Elsevier, Amsterdam, 2007)

    Chapter  Google Scholar 

  2. D.M. Herlach, D.M. Matson, Solidification of containerless undercooled melts, (WeinheimWiley-VCH, 2012)

  3. P.K. Galenko, O. Funke, J. Wang, D.M. Herlach, Mater. Sci. Eng. A 75377, 488 (2004)

    Article  Google Scholar 

  4. P.K. Galenko, D.M. Herlach, G. Phanikumar, O. Funke, Mater. Sci. Forum 508, 431 (2006)

    Article  Google Scholar 

  5. P.K. Galenko, D.M. Herlach, O. Funke, G. Phanikumar, in Solidification and Crystallization (2003), 52

  6. D.M. Herlach, O. Funke, P. Gandham, P. Galenko, in Solidification Processes and Microstructures: A Symposium in Honor of Wilfried Kurz (2004), 277

  7. D.M. Herlach, P.K. Galenko, Mater. Sci. Eng. A 449451 449451, 34 (2007)

    Article  Google Scholar 

  8. D.V. Alexandrov, P.K. Galenko, D.M. Herlach, J. Cryst. Growth 312, 2122 (2010)

    Article  ADS  Google Scholar 

  9. D.V. Alexandrov, P.K. Galenko, J. Phys. A: Math. Theor. 46, 195101 (2013)

    Article  ADS  Google Scholar 

  10. D. Herlach, P. Galenko, J. Jpn. Soc. Microgravity Appl. 27, 245 (2010)

    Google Scholar 

  11. D.V. Alexandrov, P.K. Galenko, Phys. Rev. E 87, 062403 (2013)

    Article  ADS  Google Scholar 

  12. D.V. Alexandrov, P.K. Galenko, Phys. Usp. 57, 771 (2014)

    Article  ADS  Google Scholar 

  13. D.V. Alexandrov, P.K. Galenko, Phys. Chem. 17, 19149 (2015)

    Google Scholar 

  14. J. Gao, M. Han, A. Kao, K. Pericleous, D.V. Alexandrov, P.K. Galenko, Acta Mater. 103, 184 (2016)

    Article  Google Scholar 

  15. D.M. Herlach, S. Burggraf, P. Galenko, Ch-A Gandin, A. Garcia-Escorial, H. Henein, C. Karrasch, A. Mullis, M. Rettenmayr, J. Valloton, JOM 69, 1303 (2017)

    Article  Google Scholar 

  16. P.K. Galenko, K. Reuther, O.V. Kazak, D.V. Alexandrov, M. Rettenmayr, Appl. Phys. Lett. 111, 031602 (2017)

    Article  ADS  Google Scholar 

  17. P.K. Galenko, D.A. Danilov, K. Reuther, D.V. Alexandrov, M. Rettenmayr, D.M. Herlach, J. Crys, Growth 457, 349 (2017)

    Article  Google Scholar 

  18. O.V. Kazak, P.K. Galenko, D.V. Alexandrov, I.O.P. Conf, Ser, Mater. Sci. Eng. 192, 012030 (2017)

    Google Scholar 

  19. J. Gao, A. Kao, K. Pericleous, P.K. Galenko, D.V. Alexandrov, J. Cryst. Growth 471, 66 (2017)

    Article  ADS  Google Scholar 

  20. D.V. Alexandrov, P.K. Galenko, L.V. Toropova, Philos. Trans. R. Soc. A 376, 20170215 (2018)

    Article  ADS  Google Scholar 

  21. A. Barbieri, J.S. Langer, Phys. Rev. A 39, 5314 (1989)

    Article  ADS  Google Scholar 

  22. M. Ben Amar, P. Pelcé, Phys. Rev. A 39, 4263 (1989)

    Article  ADS  Google Scholar 

  23. P.K. Galenko, D.A. Danilov, Phys. Lett. A 235, 271 (1997)

    Article  ADS  Google Scholar 

  24. P.K. Galenko, D.A. Danilov, J. Cryst. Growth 197, 992 (1999)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, D.A. Danilov, P.K. Galenko, Int. J. Heat Mass Transfer 101, 789 (2016)

    Article  Google Scholar 

  26. M. Ben Amar, Physica D 31, 409 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Brener, V.I. Melnikov, JETP 80, 341 (1995)

    ADS  Google Scholar 

  28. J.S. Langer, D.C. Hong, Phys. Rev. A 34, 1462 (1986)

    Article  ADS  Google Scholar 

  29. P. Pelcé, D. Bensimon, Nucl. Phys. B 2, 259 (1987)

    Article  Google Scholar 

  30. P. Bouissou, P. Pelcé, Phys. Rev. A 40, 6673 (1989)

    Article  ADS  Google Scholar 

  31. H. Müller-Krumbhaar, T. Abel, E. Brener, M. Hartmann, N. Eissfeldt, D. Temkin, J.S.M.E. Int J. Ser. B 45, 129 (2002)

    Article  Google Scholar 

  32. E.A. Brener, J. Cryst. Growth 99, 165 (1990)

    Article  ADS  Google Scholar 

  33. W. Kurz, D.J. Fisher, Acta Metall. 29, 11 (1981)

    Article  Google Scholar 

  34. J. Lipton, M.E. Glicksman, W. Kurz, Mater. Sci. Eng. 65, 357 (1984)

    Article  Google Scholar 

  35. W.J. Boettinger, S.R. Coriell, P.R. Sahm, H. Jones, C.M. Adam, Microstructure formation in rapidly solidified alloys, in Science and Technology of the Undercooled Melt, (Springer, Netherlands, 1986)

    Chapter  Google Scholar 

  36. J. Lipton, W. Kurz, R. Trivedi, Acta Metall. 35, 957 (1987)

    Article  Google Scholar 

  37. R. Trivedi, J. Lipton, W. Kurz, Acta Metall. 35, 965 (1987)

    Article  Google Scholar 

  38. W.J. Boettinger, S.R. Coriell, R. Trivedi, Application of dendritic growth theory to the interpretation of rapid solidification microstructures, in Rapid Solidification Processing: Principles and Technologies IV, edited by R. Mehrabian, P.A. Parrish, (Claitor's, Baton Rouge, Louisiana, 1988)

  39. P. Galenko, Phys. Rev. E 76, 031606 (2007)

    Article  ADS  Google Scholar 

  40. P. Galenko, Phys. Rev. B 65, 144103 (2002)

    Article  ADS  Google Scholar 

  41. H. Hartmann, P.K. Galenko, D. Holland-Moritz, M. Kolbe, D.M. Herlach, O. Shuleshova, J. Appl. Phys. 103, 073509 (2008)

    Article  ADS  Google Scholar 

  42. R.W. Hyers, Meas. Sci. Technol. 16, 394 (2005)

    Article  ADS  Google Scholar 

  43. P.K. Galenko, G. Phanikumar, O. Funke, L. Chernova, S. Reutzel, M. Kolbe, D.M. Herlach, Mater. Sci. Eng. A 449451, 649 (2007)

    Article  Google Scholar 

  44. V. Bojarevics, A. Kao, K. Pericleous, Modelling the fluid dynamics and dendritic solidification in EM-Levitated alloy melts, in Solidification of Containerless Undercooled Melts edited by D.M. Herlach, D.M. Matson, (Wiley-VCH Verlag, 2012)

  45. T. Cool, P.W. Voorhees, Philos. Trans. R. Soc. A 376, 20170213 (2018)

    Article  ADS  Google Scholar 

  46. A. Kao, J. Gao, K. Pericleous, Philos. Trans. R. Soc. A 376, 20170206 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Kazak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazak, O.V., Alexandrov, D.V. & Galenko, P.K. Effect of tiny amount of impurity and convective transport on dendrite growth kinetics. Eur. Phys. J. Spec. Top. 229, 239–251 (2020). https://doi.org/10.1140/epjst/e2019-900143-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900143-8

Navigation