Skip to main content
Log in

A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Linear and weakly nonlinear stability analyses of Rayleigh–Bénard convection in water–copper–alumina hybrid nanoliquid bounded by rigid isothermal boundaries is studied analytically. A single-phase description is used for the nanoliquid. Using a minimal Fourier series representation and an appropriate scaling a classical Lorenz model for rigid isothermal boundaries is derived. The Lorenz model is transformed to the Ginzburg–Landau model using the renormalization group method. The solution of the Ginzburg–Landau model is used to arrive at the expression of the Nusselt number. The study shows that the presence of two nanoparticles in water is to increase the coefficient of friction, advance the onset of convection and enhance the heat transfer. Further, it is shown that compared to a single nanoparticle the combined influence of two nanoparticles is more effective on heat transfer. The percentage of heat transfer enhancement in water due to Al2O3-Cu hybrid nanoparticles is almost twice that of Al2O3 nanopartcles. It is found that the hybrid nanoparticles of Al2O3-Cu intensify convection in water more than the mono nanoparticles of Al2O3 and the plots of stream function and isotherm point to this fact. The effect of the physically realistic rigid boundaries is to inhibit the onset of convection when compared with that of free boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gollin, D. Bjork, SAE Technical Paper, https://doi.org/10.4271/960372 (1996)

  2. P.I. Frank, P.D. David,Fundamentals of heat transfer (Wiley, New York, 1981)

  3. W.M. Yan, P.J. Sheen, Int. J. Heat Mass Transfer 43, 1651 (2000)

    Article  Google Scholar 

  4. C.C. Wang, K.Y. Chi, Int. J. Heat Mass Transfer 43, 2681 (2000)

    Article  Google Scholar 

  5. P. Ravi, Phy. Rev. Lett. 94, 025901 (2005)

    Article  Google Scholar 

  6. H. Masuda, A. Ebata, K. Teramae, Netsu Bussei 4, 227 (1993)

    Article  Google Scholar 

  7. S. Choi, ASME Publications Fed 231, 99 (1995)

    Google Scholar 

  8. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  9. D.H. Kumar, H.E. Patel, V.R.K. Rajeev, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301 (2004)

    Article  ADS  Google Scholar 

  10. S. Kakac, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)

    Article  Google Scholar 

  11. Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, Renew. Sustain. Energy Rev. 16, 5363 (2012)

    Article  Google Scholar 

  12. P.G. Siddheshwar, C. Kanchana, Int. J. Mech. Sci. 131–132, 1061 (2017)

    Article  Google Scholar 

  13. C. Kanchana, Y. Zhao, Int. J. Heat Mass Transfer 127, 1031 (2018)

    Article  Google Scholar 

  14. C. Kanchana, Y. Zhao, P.G. Siddheshwar, Phys. Fluids 30, 084101 (2018)

    Article  ADS  Google Scholar 

  15. P.G. Siddheshwar, C. Kanchana, Meccanica 54, 451 (2019)

    Article  MathSciNet  Google Scholar 

  16. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)

    Article  Google Scholar 

  17. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  18. P.G. Siddheshwar, C. Kanchana, Y. Kakimoto, A. Nakayama, ASME J. Heat Transfer 139, 012402 (2016)

    Article  Google Scholar 

  19. P.G. Siddheshwar, K.M. Lakshmi, ASME J. Heat Transfer 141, 062405 (2019)

    Article  Google Scholar 

  20. F. Garoosi, G. Bagheri, M.M. Rashidi, Powder Technol. 275, 239 (2015)

    Article  Google Scholar 

  21. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  22. R.Y. Jou, S.C. Tzeng, Int. Commun. Heat Mass Transfer 33, 727 (2006)

    Article  Google Scholar 

  23. P.G. Siddheshwar, N. Meenakshi, Int. J. Appl. Comput. Math. 3, 271 (2017)

    Article  MathSciNet  Google Scholar 

  24. C. Simó, D. Puigjaner, J. Herrero, F. Giralt, Commun. Nonlinear Sci. Numer. Simul. 15, 24 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Jawdat, I. Hashim, S. Momani, Math. Probl. Eng. 2012, 1 (2012)

    Article  Google Scholar 

  26. S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Colloids Surf. A: Physicochem. Eng. Asp. 388, 41 (2011)

    Article  Google Scholar 

  27. S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Exp. Therm. Fluid Sci. 38, 54 (2012)

    Article  Google Scholar 

  28. F. Selimefendigil, A.J. Chamkha, Comput. Therm. Sci. 8, 555 (2016)

    Article  Google Scholar 

  29. T. Hayat, S. Nadeem, Results Phys. 7, 2317 (2017)

    Article  ADS  Google Scholar 

  30. K.A. Hamid, W.H. Azmi, M.F. Nabil, R. Mamat, IOP Conf. Series: Mater. Sci. Eng. 257, 012067 (2017)

    Article  Google Scholar 

  31. L.S. Sundar, K.V. Sarma, M.K. Singh, A.C.M. Sousa, Renew. Sustain. Energy Rev. 68, 185 (2017)

    Article  Google Scholar 

  32. W.F. Nabil, W.H. Azmi, K.A. Hamid, N.N.M. Zawawi, G. Priyandoka, R. Mamat, Int. Commun. Heat Mass Transfer 83, 30 (2017)

    Article  Google Scholar 

  33. N. Ali, J.A. Teixeira, A. Addali1, J. Nanomater. 2018, 1 (2018)

    Google Scholar 

  34. M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Chem. Eng. Process.: Process Intensif. 125, 56 (2018)

    Article  Google Scholar 

  35. M.H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, M. Dahari, A. Karimipour, Int. Commun. Heat Mass Transfer 66, 100 (2015)

    Article  Google Scholar 

  36. S. Chandrasekhar,Hydrodynamic and hydromagnetic stability (Oxford University Press, New York, 1961)

  37. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  38. T. Kunihiro, Prog. Theor. Phy. 97, 179 (1997)

    Article  ADS  Google Scholar 

  39. N. Goldenfeld,Lectures on phase transitions and the renormalization group (Addison Wesley, Reading, Massachusetts, 1992)

  40. L.Y. Chen, N. Goldenfeld, Y. Oono, Phy. Rev. Lett. 73, 1311 (1994)

    Article  ADS  Google Scholar 

  41. P.G. Siddheshwar, inProceedings of International Conference on Mathematical Modeling in Science and Engineering, 2019, p. 46

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanchana, C., Siddheshwar, P.G. & Zhao, Y. A study of Rayleigh–Bénard convection in hybrid nanoliquids with physically realistic boundaries. Eur. Phys. J. Spec. Top. 228, 2511–2530 (2019). https://doi.org/10.1140/epjst/e2019-900074-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900074-1

Navigation