Skip to main content
Log in

Analytical solution for differential nonlinear and coupled equations in micropolar nanofluid flow between rotating parallel plates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents solution to micropolar nanofluid between two parallel plates in a rotating system via a new and innovative semi-analytical method called Akbari-Ganji’s method (AGM). The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid is in steady state. We get a set of differential nonlinear and coupled equations from suitable similarity variables and the elementary governing equations. Moreover, the physical discussion of the embedded parameters in the equations that is, viscosity parameter Re, rotating parameter Kr, magnetic parameter M, Prandtl number Pr, thermophoretic parameter Nt, Brownian motion parameter Nb, and Schmidt number Sc, by showing figures and tables, they have been analyzed. Our results show that the employed method is very efficient and practical for obtaining solutions to this category of coupled equations and the solutions are in excellent agreement for nonlinear higher order differential equations in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Google Scholar 

  2. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  3. G. Lukaszewicz,Micropolar fluids: Theory and applications (Brikhauser, Basel, 1999)

  4. A.A. Mohammeadein, R.S.R. Gorla, Acta. Mech. 118, 1 (1966)

    Google Scholar 

  5. R.S. Agarwal, C. Dhanapal, Int. J. Eng. Sci. 26, 1247 (1988)

    Google Scholar 

  6. R. Bhargava, L. Kumar, H.S. Takhar, Int. J. Eng. Sci. 41, 2161 (2003)

    Google Scholar 

  7. R. Nazar, N. Amin, D. Filip, I. Pop, Int. J. Nonlinear Mech. 39, 1227 (2004)

    Google Scholar 

  8. A. Ishak, R. Nazar, I. Pop, Comput. Math. Appl. 58, 3188 (2008)

    Google Scholar 

  9. Z. Pop, G. Domairry, Adv. Theor. Appl. Mech. 2, 79 (2008)

    Google Scholar 

  10. D. Srinivasacharya, J.V. Ramana Murthy, D. Venugopalam, Int. J. Eng. Sci. 39, 1557 (2001)

    Google Scholar 

  11. S. Nadeem, M. Sadaf, M. Rashid, A.S. Muhammad, PLOS One 6, 0124016 (2016)

    Google Scholar 

  12. S. Nadeem, R. Mehmood, S. Masood, J. Magn. Magn. Mater. 401, 1006 (2016)

    ADS  Google Scholar 

  13. S. Das, S.U. Choi, W. Yu, T. Pradeep, inNanofluids Science and Technology (Wiley-, 2007), p. 397

  14. X.Q. Wang, S. Mujumdar, Braz. J. Chem. Eng. 04, 631 (2008)

    Google Scholar 

  15. J.H. He, Comput. Meth. Appl. Mech. Eng. 178, 257 (1999)

    ADS  Google Scholar 

  16. M. Sheikholeslami, H.R. Ashorynejad, D.D.A. Ganji, A. Yildirim, Sci. Iran. 19, 437 (2012)

    Google Scholar 

  17. S.S. Samaee, O. Yazdanpanah, D.D. Ganji, J. Braz. Soc. Mech. Sci. Eng. 37, 937 (2015)

    Google Scholar 

  18. S.T. Mohyud-Din, M.A. Noor, K.I. Noor, M.M. Hosseini, Int. J. Nonlinear Sci. Numer. Simul. 11, 87 (2011)

    Google Scholar 

  19. S.T. Mohyud-Din, M.A. Noor, K.I. Noor, Math. Probl. Eng. 2009, 234849 (2009)

    Google Scholar 

  20. Q. Zhou, H. Rezazadeh, A. Korkmaz, M. Eslami, M. Mirzazadeh, M. Rezazadeh, Opt. Appl. 49, 1 (2019)

    Google Scholar 

  21. H. Rezazadeh, S.M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, Optik 172, 545 (2018)

    ADS  Google Scholar 

  22. A. Fakhari, D.D. Ganji, Ebrahimpour, Phys. Lett. A 368, 64 (2007)

    ADS  MathSciNet  Google Scholar 

  23. D.D. Ganji, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14, 489 (2009)

    ADS  Google Scholar 

  24. M. Sheikholeslami, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015)

    ADS  Google Scholar 

  25. L.K. Zhou,Differential Transformation and Its Applications for Electrical Circuits (Huazhong University Press, Wuhan, 1986)

  26. M. Momeni, N. Jamshidi, A. Barari, D.D. Ganji, Int. J. Comput. Math. 88, 135 (2011)

    MathSciNet  Google Scholar 

  27. I. Mehdipour, D.D. Ganji, M. Mozaffari, Curr. Appl. Phys. 10, 104 (2010)

    ADS  Google Scholar 

  28. D. Kumar, J. Singh, S. Kumar, B.P. Sing, Shushila, Ain Shams Eng. J. 6, 605 (2015)

    Google Scholar 

  29. J. Singh, D. Kumar, R. Swroop, Alexandria Eng. J. 55, 1753 (2016)

    Google Scholar 

  30. D. Kumar, J. Singh, D. Baleanu, J. Comput. Nonlinear Dyn. 11, 061004 (2016)

    Google Scholar 

  31. M.A. Noor, S.T. Mohyud-Din, A. Waheed, E.A. Al-Said, Appl. Math. Comput. 216 477 (2010)

    MathSciNet  Google Scholar 

  32. M.A. Noor, S.T. Mohyud-Din, A. Waheed, Acta Appl. Math. 104, 131 (2008)

    MathSciNet  Google Scholar 

  33. S.T. Mohyud-Din, M.A. Noor, A. Waheed, Z. Naturforsch. A 65a, 78 (2010)

    ADS  Google Scholar 

  34. M.R. Akbari, D.D. Ganji, A. Majidian, A.R. Ahmadi, Front. Mech. Eng. 9, 177 (2014)

    Google Scholar 

  35. M.R. Akbari, D.D. Ganji, A.R. Goltabar, Dev. Appl. Ocean. Eng. 3, 22 (2014)

    Google Scholar 

  36. Z. Shah, S. Islam, T. Gul, E. Bonyah, M. Altaf Khan, Results Phys. 9, 1201 (2018)

    ADS  Google Scholar 

  37. E. Hall, Am. J. Math. 2, 287 (1879)

    Google Scholar 

  38. I. Pop, V.M. Soundalgekar, Acta Mech. 20, 315 (1974)

    ADS  Google Scholar 

  39. S. Ahmed, J. Zueco, Chem. Eng. Commun. 198, 1294 (2011)

    Google Scholar 

  40. A.M. Aziz, Int. J. Modern Phys. C 24, 1350044 (2013)

    ADS  Google Scholar 

  41. T. Hayat, M. Awais, M. Nawaz, S. Iram, A. Alsaedi, Int. J. Nonlinear Sci. Numer. Simul. 14, 167 (2013)

    MathSciNet  Google Scholar 

  42. P. Sulochana, Am. J. Comput. Math. 4, 396 (2014)

    Google Scholar 

  43. M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)

    Google Scholar 

  44. M. Sheikholeslami, J. Mol. Liq. 229, 137 (2017)

    Google Scholar 

  45. M. Sheikholeslami, J. Mol. Liq. 231, 555 (2017)

    Google Scholar 

  46. M. Sheikholeslami, Phys. Lett. A 381, 494 (2017)

    ADS  Google Scholar 

  47. M. Sheikholeslami, Eur. Phys. J. Plus 129, 248 (2014)

    Google Scholar 

  48. M. Sheikholeslami, Eur. Phys. J. Plus 131, 413 (2016)

    Google Scholar 

  49. M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bekir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talarposhti, R.A., Asadi, Z., Rezazadeh, H. et al. Analytical solution for differential nonlinear and coupled equations in micropolar nanofluid flow between rotating parallel plates. Eur. Phys. J. Spec. Top. 228, 2601–2617 (2019). https://doi.org/10.1140/epjst/e2019-900061-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-900061-2

Navigation