Skip to main content
Log in

Molecular simulations of enzymes under non-natural conditions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The development of novel sustainable biocatalytic processes requires systematic and comprehensive tools for engineering, integrated into a framework for the simultaneous optimization of enzyme, substrate, solvent, and reaction conditions. The experimentally determined biochemical properties of the biocatalyst are mediated by four interactions: between substrate and solvent, protein and solvent, protein and substrate, as well as protein–protein interactions. Molecular dynamics simulations were applied to study these interactions from first principles. The interaction of the substrate with the solvent was described by its activity coefficient, the interaction of the substrate with the protein and substrate access to the active site were characterized by a binding free energy along a reaction coordinate, and the protein–solvent interaction was modeled by a Langmuir model. The simulation of protein aggregation identified a delicate balance of kinetics and thermodynamics of competing contacts during the nucleation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Nature 485, 185 (2012)

    Article  ADS  Google Scholar 

  2. A.P. Green, N.J. Turner, Perspect. Sci. 9, 42 (2016)

    Article  Google Scholar 

  3. J.-M. Choi, S.-S. Han, H.-S. Kim, Biotechnol. Adv. 33, 1443 (2015)

    Article  Google Scholar 

  4. F.H. Arnold, Acc. Chem. Res. 31, 125 (1998)

    Article  Google Scholar 

  5. K. Steiner, H. Schwab, Comput. Struct. Biotechnol. J. 2, e201209010 (2012)

    Article  Google Scholar 

  6. R.J. Fox, S.C. Davis, E.C. Mundorff, L.M. Newman, V. Gavrilovic, S.K. Ma, L.M. Chung, C. Ching, S. Tam, S. Muley, J. Grate, J. Gruber, J.C. Whitman, R.A. Sheldon, G.W. Huisman, Nat. Biotechnol. 25, 338 (2007)

    Article  Google Scholar 

  7. V. Ferrario, L. Siragusa, C. Ebert, M. Baroni, M. Foscato, G. Cruciani, L. Gardossi, PLoS One 9, e109354 (2014)

    Article  ADS  Google Scholar 

  8. J.C. Bellot, L. Choisnard, E. Castillo, A. Marty, Enzyme Microb. Technol. 28, 362 (2001)

    Article  Google Scholar 

  9. A. Reimer, S. Wedde, S. Staudt, S. Schmidt, D. Höffer, W. Hummel, U. Kragl, U.T. Bornscheuer, H. Gröger, J. Heterocycl. Chem. 54, 391 (2017)

    Article  Google Scholar 

  10. R. Wohlgemuth, Chem. Biochem. Eng. Q 31, 131 (2017)

    Article  Google Scholar 

  11. J.M. Woodley, Phil. Trans. R. Soc. A 376, 201700 (2017)

    Google Scholar 

  12. G. Chiandussi, M. Codegone, S. Ferrero, F.E. Varesio, Comparison of multi-objective optimization methodologies for engineering applications (Elsevier Ltd, 2012)

  13. Y. Dujardin, I. Chades, PLoS One 13, e0190748 (2018)

    Article  Google Scholar 

  14. P. Buchholz, C. Vogel, W. Reusch, M. Pohl, D. Rother, A. Spieß, J. Pleiss, ChemBioChem 65, 707 (2016)

    Google Scholar 

  15. P.C.F. Buchholz, R. Ohs, A.C. Spiess, J. Pleiss, Biotechnol. J. (submitted)

  16. P. Tufvesson, J. Lima-Ramos, N. Al Haque, K.V. Gernaey, J.M. Woodley, Org. Process Res. Dev. 17, 1233 (2013)

    Article  Google Scholar 

  17. J. Knap, C. Spear, K. Leiter, R. Becker, D. Powell, Int. J. Numer. Methods Eng. 108, 1649 (2016)

    Article  Google Scholar 

  18. C. Hartmann, L. Delle Site, Eur. Phys. J. Special Topics 224, 2173 (2015)

    Article  ADS  Google Scholar 

  19. T. Kulschewski, F. Sasso, F. Secundo, M. Lotti, J. Pleiss, J. Biotechnol. 168, 462 (2013)

    Article  Google Scholar 

  20. W. Sutherland, Philos. Mag. Ser. 6 9, 781 (1905)

    Article  Google Scholar 

  21. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  22. I.-C.Y. Yeh, G. Hummer, J. Phys. Chem. B 108, 15873 (2004)

    Article  Google Scholar 

  23. V. Ferrario, J. Pleiss, J. Biomol. Struct. Dyn., https://doi.org/10.1080/07391102.2018.1461689

  24. A. Fredenslund, R.L. Jones, J.M. Prausnitz, AIChE J. 21, 1086 (1975)

    Article  Google Scholar 

  25. V. Ferrario, N. Hansen, J. Pleiss, J. Inorg. Biochem., in press

  26. J. Pleiss, Trends Biotechnol. 35, 379 (2017)

    Article  Google Scholar 

  27. J. Pleiss, Trends Biotechnol. 36, 234 (2018)

    Article  Google Scholar 

  28. D.E. Koshland, Angew. Chem. Int. Ed. 33, 2375 (1994)

    Article  Google Scholar 

  29. J. Wang, T. Hou, J. Chem. Theory Comput. 7, 2151 (2011)

    Article  Google Scholar 

  30. J. Wang, T. Hou, J. Comput. Chem. 32, 3505 (2011)

    Article  Google Scholar 

  31. W.L. Jorgensen, J. Tirado-rives, J. Am. Chem. Soc. 110, 1657 (1988)

    Article  Google Scholar 

  32. T. Kulschewski, J. Pleiss, Mol. Simul. 39, 754 (2013)

    Article  Google Scholar 

  33. C. Laane, S. Boeren, K. Vos, C. Veeger, Biotechnol. Bioeng. 30, 81 (1987)

    Article  Google Scholar 

  34. A. Zaks, A.M. Klibanov, J. Biol. Chem. 263, 8017 (1988)

    Google Scholar 

  35. J. Abildskov, M.B. Van Leeuwen, C.G. Boeriu, L.A.M. Van Den Broek, C.G. Boeriu, J. Mol. Catal. B Enzym. 85–86, 200 (2013)

    Article  Google Scholar 

  36. P. Hoffmann, M. Voges, C. Held, G. Sadowski, Biophys. Chem. 173–174, 21 (2013)

    Article  Google Scholar 

  37. J.B.A. van Tol, R.M.M. Stevens, W.J. Veldhuizen, J.A. Jongejan, J.A. Duine, Biotechnol. Bioeng. 47, 71 (1995)

    Article  Google Scholar 

  38. G. Bell, A.E.M. Janssen, P.J. Halling, Enzyme Microb. Technol. 20, 471 (1997)

    Article  Google Scholar 

  39. T. Kulschewski, J. Pleiss, Langmuir 32, 8960 (2016)

    Article  Google Scholar 

  40. H.P. Erickson, Biol. Proced. Online 11, 32 (2009)

    Article  Google Scholar 

  41. M. Hutt, T. Kulschewski, J. Pleiss, J. Biomol. Struct. Dyn. 30, 318 (2012)

    Article  Google Scholar 

  42. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  43. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  44. W.L. Jorgensen, J. D. Madura, Mol. Phys. 56, 1381 (1985)

    Article  ADS  Google Scholar 

  45. R.D. Teasdale, A.R. Carr, R.S.D. Read, J. Theor. Biol. 114, 375 (1985)

    Article  Google Scholar 

  46. A.E. Shannon, M.M. Pedroso, K.J. Chappell, D. Watterson, S. Liebscher, W.M. Kok, D.P. Fairlie, G. Schenk, P.R. Young, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  47. L.H. Wang, A.L. Tsai, P.Y. Hsu, J. Biol. Chem. 276, 14737 (2001)

    Article  Google Scholar 

  48. P.V. Coveney, S. Wan, Phys. Chem. Chem. Phys. 18, 30236 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrario, V., Pleiss, J. Molecular simulations of enzymes under non-natural conditions. Eur. Phys. J. Spec. Top. 227, 1631–1638 (2019). https://doi.org/10.1140/epjst/e2019-800174-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800174-4

Navigation