Skip to main content
Log in

The perception of entropy in rapidly moving sparse dot arrays: a nonlinear dynamic perspective

Nonlinear dynamical model of perception

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In visual fields composed of dots spatially randomly distributed but moving rigidly, the percept of coherent motion is lost once Dmax is exceeded, resulting in an incoherent, random percept. We have investigated this transition both from a psychophysics perspective and in the development of a dynamic model of the visual system based on a spatially coupled array of nonlinear damped mass-springs cells. We present results of experiments using rigidly moving arrays of dots of different levels of sparseness and differing displacement magnitudes. Results show that the perception of randomness can be reliably judged and displays a transition from coherent to non-coherent motion as the motion amplitude is increased. Using standard psychophysical just noticeable difference (JND) judgements, we noted that the threshold JND was a function of displacement magnitude and sparseness and could not be explained by extant spatiotemporal filtering models. Our model qualitatively explains the important features of the data, reproducing the experimental Dmax and entropy perception effects with increased stimuli motion amplitude at different spatial sparseness levels. We have then performed some numerical simulations of the model when the masses in the array are randomly distributed. Results show that sparseness plays different role if close or far from Dmax in terms of motion coherence discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Wurtz, Vision Res. 48, 2070 (2008)

    Article  Google Scholar 

  2. D.M. Snodderly, Vision Res. 118, 31 (2016)

    Article  Google Scholar 

  3. S. Aoki, A. Kawano, M. Terao, I. Murakami, J. Vis. 16, 1 (2016)

    Article  Google Scholar 

  4. I. Murakami, P. Cavanagh, Vision Res. 41, 173 (2001)

    Article  Google Scholar 

  5. I. Murakami, P. Cavanagh, Nature 395, 798 (1998)

    Article  ADS  Google Scholar 

  6. L. Glass, Math. Intell. 24, 37 (2002)

    Article  MathSciNet  Google Scholar 

  7. N. Davidenko, N. Heller, Y. Cheong, J. Smith, J. Vis. 17, 1 (2017)

    Google Scholar 

  8. L. Dugué, R. VanRullen, J. Vis. 14, 1 (2014)

    Article  Google Scholar 

  9. K. Nakayama, G.H. Silverman, Vision Res. 28, 747 (1988)

    Article  Google Scholar 

  10. S. Martinez-Conde, S.L. Macknik, D.H. Hubel, Nat. Rev. Neurosci. 5, 229 (2004)

    Article  Google Scholar 

  11. S. Cerutti, V. Bersani, A. Carrara, D. Liberati, J. Biomed. Eng. 9, 3 (1987)

    Article  Google Scholar 

  12. E.P. Simoncelli et al., J. Cogn. Neurosci. 3, 1 (2004)

    Google Scholar 

  13. R. Sekuler, S.M. Anstis, O.J. Braddick, T. Brandt, J.A. Movshon, G. Orban, in Visual Perception: The Neurophysiological Foundations (Academic Press, Cambridge, Massachusetts, USA, 1990), pp. 205–230

  14. B. Franceschiello, A. Sarti, G. Citti, J. Math. Imaging Vis. 60, 94 (2018)

    Article  Google Scholar 

  15. P. Martineau, M. Aguilar, L. Glass, Phys. Rev. Lett. 103, 1 (2009)

    Article  Google Scholar 

  16. P. Martineau, J. Comput. Neurosci. 31, 273 (2011)

    Article  Google Scholar 

  17. D. Stephen, J. Dixon, R.W. Isenhower, J. Exp. Psychol. Hum. Percept. Perform. 35, 1811 (2009)

    Article  Google Scholar 

  18. J.J. Johnson IV, A. Tolk, A. Sousa-Poza, Procedia Comput. Sci. 20, 283 (2013)

    Article  Google Scholar 

  19. E.J. Brändas, Quantum Biosys. 6, 160 (2015)

    Google Scholar 

  20. R. Jerath, M.W. Crawford, V.A. Barnes, Front. Psychol. 6, 1204 (2015)

    Article  Google Scholar 

  21. R.A. Eagle, J. Opt. Soc. Am. A 13, 408 (1996)

    Article  ADS  Google Scholar 

  22. M. Morgan, Nature 355, 344 (1992)

    Article  ADS  Google Scholar 

  23. H. Haken, in Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2013), Vol. 67

  24. W. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Springer Science & Business Media, 2012)

  25. D.G. Stephen, J.A. Dixon, R.W. Isenhower, J. Exp. Psychol. Hum. Percept. Perform.35, 1811 (2009)

    Article  Google Scholar 

  26. T.N. Cornsweet, Am. J. Psychol. 75, 485 (1962)

    Article  Google Scholar 

  27. M. Morgan, M. Fahle, Proc. R. Soc. Lond. B 248, 189 (1992)

    Article  ADS  Google Scholar 

  28. R. Wozniak, Classics in Psychology 1855–1914: Historical Essays (Thoemmes Press, London, United Kingdom, 1999)

  29. W.J. Freeman, Mass Action in the Nervous System (Elsevier Science & Technology Books, New York, 1975)

  30. W.J. Freeman, How Brains Make Up Their Minds (Columbia University Press, New York, USA, 2000)

  31. R. Núñez, W.J. Freeman, The Primacy of Action, Intention and Emotion (Imprint Academic, Thorverten, UK, 1999)

  32. K. Pribram, Mind Matter 2, 7 (2004)

    Google Scholar 

  33. R. Engbert, R. Kliegl, Psychol. Sci. 15, 431 (2004)

    Article  Google Scholar 

  34. R.A.M. Gregson, n-Dimensional Nonlinear Psychophysics: Theory and Case Studies (Lawrence Erlbaum Associates Inc., Mahwah, USA, 1992)

  35. A.J. White, H. Sun, W.H. Swanson, B.B. Lee, Invest. Ophthalmol. Vis. Sci. 43, 3590 (2002)

    Google Scholar 

  36. R.A. Gregson, L.A. Britton, Percept. Psychophys. 48, 343 (1990)

    Article  Google Scholar 

  37. C. Baker, J. Boulton, K. Mullen, Vision Res. 38, 291 (1998)

    Article  Google Scholar 

  38. H. Lamba, Physica D 82, 117 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.D. Victor, R.M. Shapley, B.W. Knight, Proc. Natl. Acad. Sci. 74, 3068 (1977)

    Article  ADS  Google Scholar 

  40. M.H. Hennig, K. Funke, F. Wörgötter, J. Neurosci. 22, 8726 (2002)

    Article  Google Scholar 

  41. Y. Fukushima, K. Hara, M. Kimura, Biol. Cybern. 54, 91 (1986)

    Article  Google Scholar 

  42. B. Lee, A. Elepfandt, V. Virsu, J. Neurophys. 45, 807 (1981)

    Article  Google Scholar 

  43. J.A. Perrone, J. Vis. 5, 3 (2005)

    Article  Google Scholar 

  44. S. Prince, S. Offen, B.G. Cumming, R.A. Eagle, Perception 30, 367 (2001)

    Article  Google Scholar 

  45. C. Baker Jr, A. Baydala, N. Zeitouni, Vision Res. 29, 849 (1989)

    Article  Google Scholar 

  46. J.B. Demb, P. Sterling, M.A. Freed, J. Neurophys. 92, 2510 (2004)

    Article  Google Scholar 

  47. E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, F. Moss, Phys. Rev. Lett. 78, 1186 (1997)

    Article  ADS  Google Scholar 

  48. F. Moss, L.M. Ward, W.G. Sannita, Clin. Neurophysiol. 115, 267 (2004)

    Article  Google Scholar 

  49. A. Dunin, T. Hine, P. Celka, Aust. J. Psychol. 58, 73 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Celka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celka, P., Hine, T. The perception of entropy in rapidly moving sparse dot arrays: a nonlinear dynamic perspective. Eur. Phys. J. Spec. Top. 227, 865–881 (2018). https://doi.org/10.1140/epjst/e2018-800020-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800020-0

Navigation