Skip to main content
Log in

Time evolution of localized solutions in 1-dimensional inhomogeneous FPU models

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study energy localization in a quartic FPU model with spatial inhomogeneity corresponding to a site-dependent number of interacting neighbors. Such lattices can have linear normal modes that are strongly localized in the regions of high connectivity and there is evidence that some of these localized modes persist in the weakly nonlinear regime. The present study shows examples where oscillations can remain localized for long times. Nonlinear normal modes are approximated by periodic orbits that belong to an invariant subspace of a Birkhoff normal form of the system that is spanned by spatially localized modes [F. Martínez-Farías et al., Eur. Phys. J. Special Topics 223, 2943 (2014), F. Martínez-Farías et al., Physica D 335, 10 (2016)]. The invariant subspace is suggested by the dispersion relation and also depends on the overlap between normal modes. Numerical integration from the approximate normal modes suggests that spatial localization persists over a long time in the weakly nonlinear regime and is especially robust in some disordered lattices, where it persists for large, (1), amplitude motions. Large amplitude localization in these examples is seen to be recurrent, i.e. energy flows back and forth between the initial localization region and its vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Martínez-Farías, P. Panayotaros, A. Olvera, Eur. Phys. J. Special Topics 223, 2943 (2014)

    Article  ADS  Google Scholar 

  2. F. Martínez-Farías, P. Panayotaros, Physica D 335, 10 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Nicolay, Y.H. Sanejouand, Phys. Rev. Lett. 96, 078104 (2006)

    Article  ADS  Google Scholar 

  4. B. Juanico, Y.H. Sanejouand, F. Piazza, P. De Los Rios, Phys. Rev. Lett. 99, 238104 (2007)

    Article  ADS  Google Scholar 

  5. D. ben-Avraham, M. Tirion, Biophys. J. 68, 1231 (1995)

    Article  Google Scholar 

  6. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)

    Article  ADS  Google Scholar 

  7. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  8. F.M. Izrailev, B.V. Chirikov, Soviet Phys. Doklady 11, 30 (1966)

    ADS  Google Scholar 

  9. C. Antonopoulos, T. Bountis, C. Skokos, Int. J. Bifurc. Chaos 16, 1777 (2006)

    Article  Google Scholar 

  10. D. Bambusi, A. Ponno, Commun. Math. Phys. 264, 539 (2006)

    Article  ADS  Google Scholar 

  11. H. Christodoulidi, C. Euthymiopoulos, T. Bountis, Phys. Rev. E 81, 016210 (2010)

    Article  ADS  Google Scholar 

  12. H. Christodoulidi, C. Euthymiopoulos, Physica D 261, 93 (2013)

    Article  ADS  Google Scholar 

  13. S. Flach, A. Ponno, Physica D 237, 908 (2007)

    Article  ADS  Google Scholar 

  14. T. Genta, A. Giorgilli, S. Paleari, T. Penati, Phys. Lett. A 376, 2038 (2012)

    Article  ADS  Google Scholar 

  15. A. Henrici, T. Kappeler, J. Eur. Math. Soc. 11, 1025 (2009)

    Article  Google Scholar 

  16. D. ben-Avraham, M. Tirion, Physica A 249, 415 (1998)

    Article  ADS  Google Scholar 

  17. F. Piazza, Y.H. Sanejouand, Discret. Contin. Dyn. Syst. S 4, 1247 (2011)

    Article  Google Scholar 

  18. M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simulation 8, 3 (1998)

    Article  Google Scholar 

  19. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring, 2016 GNU Octave version 4.2.2 manual: a high-level interactive language for numerical computations, https://doi.org/www.gnu.org/software/octave/doc/interpreter

  20. J. Ahrens, U. Dieter, Math. Comput. 27, 927 (1973)

    Google Scholar 

  21. F. Martínez-Farías, Ph.D. Thesis, UNAM, 2016

  22. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Physica D 16, 318 (1985)

    Article  MathSciNet  Google Scholar 

  23. P. Young, (2014), Available at: http://young.physics.ucsc.edu/115/ (accessed 2017/5/12)

  24. I.P. Omelyan, I.M. Mryglod, R. Folk, Comput. Phys. Commun. 151, 272 (2003)

    Article  ADS  Google Scholar 

  25. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  26. S.A. Teukolsky, W.H. Press,Numerical Recipes in C (Cambridge Univ. Press, New York, 2002)

  27. F. Piazza, Y.H. Sanejouand, Phys. Biol. 5, 026001 (2008)

    Article  ADS  Google Scholar 

  28. R. Castelli, M. Gameiro, J.P. Lessard, https://doi.org/arXiv:1509.08648 (2015)

  29. E.J. Doedel, R.C. Paffenroth, H.B. Keller, D.J. Dichmann, J. Galan-Vioque, A. Vanderbauwhede, Int. J. Bifurc. Chaos 13, 1353 (2003)

    Article  Google Scholar 

  30. J. Moser, Commun. Pure Appl. Math. 29, 727 (1976)

    Article  ADS  Google Scholar 

  31. A. Weinstein, Inv. Math. 20, 47 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Martínez-Farías.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Farías, F., Panayotaros, P. Time evolution of localized solutions in 1-dimensional inhomogeneous FPU models. Eur. Phys. J. Spec. Top. 227, 575–589 (2018). https://doi.org/10.1140/epjst/e2018-00139-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00139-6

Navigation