Skip to main content
Log in

Strongly correlated non-equilibrium steady states with currents – quantum and classical picture

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this minireview we will discuss recent progress in the analytical study of current-carrying non-equilibrium steady states (NESS) that can be constructed in terms of a matrix product ansatz. We will focus on one-dimensional exactly solvable strongly correlated cases, and will study both quantum models, and classical models which are deterministic in the bulk. The only source of classical stochasticity in the time-evolution will come from the boundaries of the system. Physically, these boundaries may be understood as Markovian baths, which drive the current through the system. The examples studied include the open XXZ Heisenberg spin chain, the open Hubbard model, and a classical integrable reversible cellular automaton, namely the Rule 54 of A. Bobenko et al. [A. Bobenko et al., Commun. Math. Phys. 158, 127 (1993)] with stochastic boundaries. The quantum NESS can be at least partially understood through the Yang–Baxter integrability structure of the underlying integrable bulk Hamiltonian, whereas for the Rule 54 model NESS seems to come from a seemingly unrelated integrability theory. In both the quantum and the classical case, the underlying matrix product ansatz defining the NESS also allows for construction of novel conservation laws of the bulk models themselves. In the classical case, a modification of the matrix product ansatz also allows for construction of states beyond the steady state (i.e., some of the decay modes – Liouvillian eigenvectors of the model). We hope that this article will help further the quest to unite different perspectives of integrability of NESS (of both quantum and classical models) into a single unified framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982)

  2. L.D. Faddeev, https://doi.org/arXiv:hep-th/9605187 (1996)

  3. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1997)

  4. B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004)

  5. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, Heidelberg, 1987)

  6. T. Prosen, J. Phys. A: Math. Theor. 48, 373001 (2015)

    Article  Google Scholar 

  7. T. Prosen, Phys. Rev. Lett. 106, 217206 (2011)

    Article  ADS  Google Scholar 

  8. T. Prosen, E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013)

    Article  ADS  Google Scholar 

  9. E. Ilievski, M. Medenjak, T. Prosen, Phys. Rev. Lett. 115, 120601 (2015)

    Article  ADS  Google Scholar 

  10. E. Ilievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. 2016, 064008 (2016)

    Article  Google Scholar 

  11. E. Ilievski, E. Quinn, J. De Nardis, M. Brockmann, J. Stat. Mech. 2016, 063101 (2016)

    Article  Google Scholar 

  12. J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015)

    Article  Google Scholar 

  13. F.H. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, in The One-Dimensional Hubbard Model (Cambridge University Press, 2005), Vol. 1

  14. R.A. Blythe, M.R. Evans, J. Phys. A: Math. Theor. 40, R333 (2007)

    Article  ADS  Google Scholar 

  15. A.B. Zamolodchikov, Sov. Phys. JETP 52, 325 (1980)

    ADS  Google Scholar 

  16. J.J. Mendoza-Arenas, S.R. Clark, D. Jaksch, Phys. Rev. E 91, 042129 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Ilievski, https://doi.org/arXiv:1612.04352 (2016)

  18. B. Everest, I. Lesanovsky, J.P. Garrahan, E. Levi, Phys. Rev. B 95, 024310 (2017)

    Article  ADS  Google Scholar 

  19. M. Žnidarič, A. Scardicchio, V.K. Varma, Phys. Rev. Lett. 117, 040601 (2016)

    Article  Google Scholar 

  20. D. Manzano, C. Chuang, J. Cao, New J. Phys. 18, 043044 (2016)

    Article  ADS  Google Scholar 

  21. D. Karevski, V. Popkov, G.M. Schütz, https://doi.org/arXiv:1612.03601 (2016)

  22. T. Prosen, E. Ilievski, V. Popkov, New J. Phys. 15, 073051 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Ilievski, B. Žunkovič, J. Stat. Mech. 2014, P01001 (2014)

    Article  Google Scholar 

  24. T. Prosen, Phys. Rev. Lett. 107, 137201 (2011)

    Article  ADS  Google Scholar 

  25. S. Wolff, A. Sheikhan, C. Kollath, Phys. Rev. A 94, 043609 (2016)

    Article  ADS  Google Scholar 

  26. T. Prosen, C. Mejía-Monasterio, J. Phys. A: Math. Theor. 49, 185003 (2016)

    Article  ADS  Google Scholar 

  27. T. Prosen, B. Buča, J. Phys. A: Math. Theor. 50, 395002 (2017)

    Article  Google Scholar 

  28. T. Prosen, Phys. Rev. Lett. 112, 030603 (2014)

    Article  ADS  Google Scholar 

  29. V. Popkov, T. Prosen, Phys. Rev. Lett. 114, 127201 (2015)

    Article  ADS  Google Scholar 

  30. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  31. V. Gorini, A. Kosakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  32. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, NY, 2002)

  33. D. Manzano, P.I. Hurtado, Phys. Rev. B 90, 125138 (2014)

    Article  ADS  Google Scholar 

  34. J.P. Garrahan, I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010)

    Article  ADS  Google Scholar 

  35. M. Žnidarič, Phys. Rev. Lett. 112, 040602 (2014)

    Article  Google Scholar 

  36. C. Monthus, J. Stat. Mech. 2017, 043302 (2017)

    Article  Google Scholar 

  37. S. Pigeon, A. Xuereb, J. Stat. Mech. 2016, 063203 (2016)

    Article  Google Scholar 

  38. H. Spohn, Rev. Mod. Phys. 52, 569 (1980)

    Article  ADS  Google Scholar 

  39. B. Baumgartner, H. Narnhofer, J. Phys. A: Math. Theor. 41, 395303 (2008)

    Article  Google Scholar 

  40. B. Buča, T. Prosen, New J. Phys. 14, 073007 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  41. V.V. Albert, L. Jiang, Phys. Rev. A 89, 022118 (2014)

    Article  ADS  Google Scholar 

  42. D.E. Evans, Commun. Math. Phys. 54, 293 (1977)

    Article  ADS  Google Scholar 

  43. T. Prosen, New J. Phys. 10, 043026 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Žnidarič, J. Stat. Mech. 2010, L05002 (2010)

    Google Scholar 

  45. M. Žnidarič, Phys. Rev. E 83, 011108 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Kos, T. Prosen, https://doi.org/arXiv:1708.06919 (2017)

  47. D. Karevski, V. Popkov, G.M. Schütz, Phys. Rev. Lett. 110, 047201 (2013)

    Article  ADS  Google Scholar 

  48. E. Ilievski, T. Prosen, Nucl. Phys. B 882, 485 (2014)

    Article  ADS  Google Scholar 

  49. E. Ilievski, Exact solutions of open integrable quantum spin chains, Doctoral dissertation, University of Ljubljana, 2014

  50. B. Sutherland, J. Math. Phys. 11, 3183 (1970)

    Article  ADS  Google Scholar 

  51. C. Matsui, T. Prosen, J. Phys. A: Math. Theor. 50, 385201 (2017)

    Article  ADS  Google Scholar 

  52. B. Buča, T. Prosen, J. Stat. Mech. 2016, 023102 (2016)

    Article  Google Scholar 

  53. B.S. Shastry, Phys. Rev. Lett. 56, 1529 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  54. F. Gantmacher, in The Theory of Matrices (Chelsea Publishing, reprinted by American Mathematical Society, 2000), Vol. 2

  55. A. Bobenko, M. Bordermann, C. Gunn, U. Pinkall, Commun. Math. Phys. 158, 127 (1993)

    Article  ADS  Google Scholar 

  56. N. Crampe, E. Ragoucy, D. Simon, J. Phys. A: Math. Theor. 44, 405003 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaž Prosen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buča, B., Prosen, T. Strongly correlated non-equilibrium steady states with currents – quantum and classical picture. Eur. Phys. J. Spec. Top. 227, 421–444 (2018). https://doi.org/10.1140/epjst/e2018-00100-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00100-9

Navigation