Skip to main content

Advertisement

Log in

Energy conversion in isothermal nonlinear irreversible processes – struggling for higher efficiency

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple “active circuit” converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an “active species” consuming some passive “chemical food”. We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Turing, The chemical basis of morphogensis, Phil. Trans. Roy. Soc. B 237, 37 (1952)

    Article  ADS  Google Scholar 

  2. I. Prigogine, G. Nicolis, On symmetry-breaking instabilities in dissipative systems, J. Chem. Phys. 46, 3542 (1967)

    Article  ADS  Google Scholar 

  3. G. Nicolis, I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977)

  4. W. Ebeling, Strukturbildung Bei Irreversiblen Prozessen (Teubner Leipzig, 1976)

  5. W. Ebeling, U. Feudel, Influence of Coulomb interactions on dissipative structures in reaction diffusion systems, Ann. Phys. (Leipzig) 40, 68 (1983)

    Article  ADS  Google Scholar 

  6. U. Feudel, R. Feistel, W. Ebeling, Electrical dissipative structures in membrane-coupled compartment systems, Ann. Phys. (Leipzig) 41, 267 (1984)

    Article  ADS  Google Scholar 

  7. U. Feudel, W. Ebeling, A simple theoretical model of self-electrophoresis, Studia Biophysica 100, 131 (1984)

    Google Scholar 

  8. P.H. Richter, J. Ross, The efficiency of engines operating around a steady state at finite frequencies, J. Chem. Phys. 69, 5521 (1978)

    Article  ADS  Google Scholar 

  9. R. Feistel, Über Prinzipien der Selbstorganisation und einige Möglichkeiten ihrer technischen Nutzung, in Mat. Dialektik – ihre Anwendung in den Wissenschaften (Humboldt-University, Berlin, 1985), DOI: 10.13140/RG.2.1.3322.3202

  10. R. Feistel, W. Ebeling, Evolution of Complex Systems (Verlag Wiss, Berlin & Kluwer Dordrecht/Boston/London, 1989)

  11. R. Lipowsky, Universal aspects of the chemomechanical coupling for molecular motors, Phys. Rev. Lett. 85, 4001 (2000)

    Article  ADS  Google Scholar 

  12. R. Feistel, W. Ebeling, Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim, 2011)

  13. H.-M. Voigt, et al. (eds.), Parallel problem solving from nature (Springer, Berlin, 1956)

  14. W. Ebeling, The unlikely high efficiency of a molecular motor based on active motion, Eur. Phys. J. Special Topics 224, 1395 (2015)

    Article  ADS  Google Scholar 

  15. S. Toyabe, E. Muneyuki, Experimental thermodynamics of single molecular motor, Biophys. Rev. 9, 91 (2013)

    Article  Google Scholar 

  16. M. Nishiyama, H. Higuchi, T. Yanagida, Chemomechanical coupling of the forward and backward steps of single kinesin molecules, Nat. Cell. Biol. 4, 11782 (2002)

    Article  Google Scholar 

  17. T. Harada, Phenomenological energetics for molecular motors, Europhys. Lett. 70, 49 (2005)

    Article  ADS  Google Scholar 

  18. A.B. Kolomeisky, M.E. Fisher, Molecular motors: A theorist’s perspective, Annu. Rev. Phys. Chem. 58, 675 (2007)

    Article  ADS  Google Scholar 

  19. J.H. Reichholf, Naturgeschichte(n) (Albrecht Knaus Verlag, München, 2011)

  20. K.E. Emanuel, The Theory of Hurricanes, Annu. Rev. Fluid Mech. 23, 179 (1991)

    Article  ADS  Google Scholar 

  21. F. Laliberté, J. Zika, L. Mudryk, P.J. Kushner, J. Kjellsson, K. Döös, Constrained work output of the moist atmospheric heat engine in a warming climate, Science 347, 540 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. C.J. Barclay, R.C. Woledge, N.A. Curtin, Efficiency of mammalian (mouse) skeletal muscle, J. Physiol. 588.19, 3819 (2010)

    Article  Google Scholar 

  23. R.T. Balmer, Modern engineering thermodynamics (Academic Press, Elsevier Burlington, 2011)

  24. P. Romanczuk et al., Active Brownian Particles, Eur. Phys. J. Special Topics 202, 1 (2012)

    Article  ADS  Google Scholar 

  25. F. Schweitzer, W. Ebeling, B. Tilch, Complex Motion of Brownian Particles with Energy Depots, Phys. Rev. Lett. 80, 5044 (1998)

    Article  ADS  Google Scholar 

  26. W. Ebeling, F. Schweitzer, B. Tilch, Active Brownian motion with energy depots modeling animal mobility, BioSyst. 49, 17 (1999)

    Article  Google Scholar 

  27. W. Ebeling, E. Gudowska-Nowak, A. Fiasaconaro, Hamiltonian systems coupled to energy reservoirs and applications to molecular energy conversion, Acta Phys. Pol. B 39, 17 (2008)

    Google Scholar 

  28. U. Erdmann, W. Ebeling, L. Schimansky-Geier, F. Schweitzer, Brownian particles far from equilibrium, Eur. Phys. J. B 15, 105 (2000)

    Article  ADS  MATH  Google Scholar 

  29. F. Schweitzer, Brownian agents and active particles (Springer, Berlin, 2003)

  30. B. Tilch, F. Schweitzer, W. Ebeling, Directed motion of Brownian particles with internal energy depot, Physica A 273, 293 (1999)

    Article  ADS  Google Scholar 

  31. M. Birbaumer, F. Schweitzer, Agent-based modeling of intracellular transport, Eur. Phys. J. B 82, 245 (2011)

    Article  ADS  Google Scholar 

  32. V. Garcia, M. Birbaumer, F. Schweitzer, Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution, Eur. Phys. J. B 82, 235 (2011)

    Article  ADS  Google Scholar 

  33. Yu.M. Romanovsky, A. Kargovsky, W. Ebeling, Models of active brownian motors based on internal oscillations, Eur. Phys. J. Special Topics 222, 2465 (2013)

    Article  ADS  Google Scholar 

  34. L. Machura, J. Luczka, P. Talkner, P. Hänggi, Transport of forced quantum motors in the strong friction limit, Acta Phys. Pol. B 38, 1855 (2007)

    ADS  Google Scholar 

  35. M. Zabicki, E. Gudowska-Nowak, W. Ebeling, The efficiency of energy conversion for an entropy driven stepper motor walking hand-over-hand, Acta Phys. Pol. B 41, 1181 (2010)

    Google Scholar 

  36. M. Zabicki, W. Ebeling, E. Gudowska-Nowak, The thermodynamic cycle of an entropy-driven stepper motor walking hand-over-hand, Chem. Phys. 375, 472 (2010)

    Article  ADS  Google Scholar 

  37. A. Fiasconaro, E. Gudowska-Nowak, W. Ebeling, Controlling uphill motion of active Brownian particle driven by shot noise energy pulses, Phys. Rev. E 87, 032111 (2013)

    Article  ADS  Google Scholar 

  38. R. Feistel, W. Ebeling, Stochastic Investigation of Limit Cycle Systems: Generalized Lotka-Selkov Reaction, Rostocker Phys. Manuskr. 2, 55 (1977)

    MathSciNet  Google Scholar 

  39. R. Feistel, W. Ebeling, Deterministic and stochastic theory of sustained oscillations in autocatalytic reaction systems, Physica A 43, 114 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  40. P.S. Dutta, B.W. Kooi, U. Feudel, Multiple resource limitation: non-equilibrium coexistence of species in a competition model using synthesizing unit, Theor. Ecology 7, 407 (2014)

    Article  Google Scholar 

  41. A. Pisarchik, U. Feudel, Control of multistability. Phys. Rep. 540, 167 (2014)

    Google Scholar 

  42. A. Hamins, M. Bundy, S.E. Dillon, Characterization of Candle Flames, J. Fire Protection Engineering 15, 265 (2005)

    Article  Google Scholar 

  43. C. Soares, Gas Turbines: A Handbook of Air, Land and Sea Applications. 2nd edition (Butterworth-Heinemann, Oxford, UK) (Waltham, MA, USA, 2014)

  44. L. Warsitz, The First Jet Pilot – The Story of German Test Pilot Erich Warsitz (Pen and Sword Books, Barnsley, England, 2009)

  45. J.E. Bachmann, Fuel Cells, https://wiki.uiowa.edu/display/greenergy/Fuel+Cells (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Ebeling or R. Feistel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebeling, W., Feistel, R. Energy conversion in isothermal nonlinear irreversible processes – struggling for higher efficiency. Eur. Phys. J. Spec. Top. 226, 2015–2030 (2017). https://doi.org/10.1140/epjst/e2017-70014-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70014-2

Navigation