Skip to main content
Log in

Electronic circuit analog of synthetic genetic networks: Revisited

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Electronic circuits are useful tools for studying potential dynamical behaviors of synthetic genetic networks. The circuit models are complementary to numerical simulations of the networks, especially providing a framework for verification of dynamical behaviors in the presence of intrinsic and extrinsic noise of the electrical systems. Here we present an improved version of our previous design of an electronic analog of genetic networks that includes the 3-gene Repressilator and we show conversions between model parameters and real circuit component values to mimic the numerical results in experiments. Important features of the circuit design include the incorporation of chemical kinetics representing Hill function inhibition, quorum sensing coupling, and additive noise. Especially, we make a circuit design for a systematic change of initial conditions in experiment, which is critically important for studies of dynamical systems’ behavior, particularly, when it shows multistability. This improved electronic analog of the synthetic genetic network allows us to extend our investigations from an isolated Repressilator to coupled Repressilators and to reveal the dynamical behavior’s complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, J.J. Collins, Chaos: An Interdiscip. J. Nonlinear Sci. 11, 207 (2001)

    Article  Google Scholar 

  2. M. Elowitz, W.A. Lim, Nature 468, 889 (2010)

    Article  ADS  Google Scholar 

  3. Y. Benenson, Nat. Rev. Genet. 13, 455 (2012)

    Article  Google Scholar 

  4. T.S. Gardner, C.R. Cantor, J.J. Collins, Nature 403, 339 (2000)

    Article  ADS  Google Scholar 

  5. M.B. Elowitz, S. Leibler, Nature 403, 335 (2000)

    Article  ADS  Google Scholar 

  6. J. Mason, P.S. Linsay, J.J. Collins, L. Glass, Chaos: An Interdiscip. J. Nonlinear Sci. 14, 707 (2004)

    Article  Google Scholar 

  7. A. Wagemakers, J.M. Buldú, J. García-Ojalvo, M.A.F. Sanjuán, Chaos: An Interdiscip. J. Nonlinear Sci. 16, 013127 (2006)

    Article  Google Scholar 

  8. J.M. Buldú, J. García-Ojalvo, A. Wagemakers, M.A.F. Sanjuán, Int. J. Bifurc. Chaos 17, 3507 (2007)

    Article  Google Scholar 

  9. I.T. Tokuda, A. Wagemakers, M.A.F. Sanjuán, Int. J. Bifurc. Chaos 20, 1751 (2010)

    Article  Google Scholar 

  10. E.H. Hellen, E. Volkov, J. Kurths, S.K. Dana, PLoS ONE 6, e23286 (2011)

    Article  ADS  Google Scholar 

  11. E.H. Hellen, S.K. Dana, B. Zhurov, E. Volkov, PLoS ONE 8, e62997 (2013)

    Article  ADS  Google Scholar 

  12. E.H. Hellen, S.K. Dana, J. Kurths, E. Kehler, S. Sinha, PLoS ONE 8, e76032 (2013)

    Article  ADS  Google Scholar 

  13. J. García-Ojalvo, M.B. Elowitz, S.H. Strogatz, PNAS 101, 10955 (2004)

    Article  ADS  Google Scholar 

  14. I. Potapov, B. Zhurov, E. Volkov, Chaos: An Interdiscip. J. Nonlinear Sci. 22, 023117 (2012)

    Article  Google Scholar 

  15. E. Ullner, A. Zaikin, E. I. Volkov, J. García-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007)

    Article  ADS  Google Scholar 

  16. E. Ullner, A. Koseska, J. Kurths, E. Volkov, H. Kantz, J. García-Ojalvo, Phys. Rev. E 78, 031904 (2008)

    Article  ADS  Google Scholar 

  17. E.H. Hellen, E. Volkov, Phys. Rev. E 95, 022408 (2017)

    Article  ADS  Google Scholar 

  18. S.H. Strogatz, I. Stewart, Sci. Am. 269, 102 (1993)

    Article  Google Scholar 

  19. C.M. Waters, B.L. Bassler, Annu. Rev. Cell Dev. Biol. 21, 319 (2005)

    Article  Google Scholar 

  20. I. Potapov, E. Volkov, A. Kuznetsov, Phys. Rev. E 83, 031901 (2011)

    Article  ADS  Google Scholar 

  21. B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (SIAM, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Hellen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hellen, E.H., Kurths, J. & Dana, S.K. Electronic circuit analog of synthetic genetic networks: Revisited. Eur. Phys. J. Spec. Top. 226, 1811–1828 (2017). https://doi.org/10.1140/epjst/e2016-60396-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60396-5

Navigation