Skip to main content
Log in

Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s−1 to 600 s−1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s−1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s−1, and 18 s−1) and high strain rates (200 s−1, 400 s−1, and 600 s−1) respectively. Tests under quasi-static condition are performed at high temperature (200C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Takahashi, A. Uenishi, H. Yoshida, H. Kuriyama, Mat. Sc. Forum 539-543, 4386 (2007)

    Article  Google Scholar 

  2. J.V. Slycken, P. Verleysen, J. Degrieck, J. Bouquerel, B.C.D. Cooman, Proc. IMechE J. Auto Eng. 220, 391 (D) (2006)

    Article  Google Scholar 

  3. N.K. Singh, E. Cadoni, M.K. Singha, N.K. Gupta, Mat. Des. 32, 5091 (2011)

    Article  Google Scholar 

  4. N.K. Singh, E. Cadoni, M.K. Singha, N.K. Gupta, Mech. Adv. Mat. Struct. 21, 531 (2014)

    Article  Google Scholar 

  5. J.V. Slycken, P. Verleysen, J. Degrieck, J. Bouquerel, J. Phys. IV (France) 134, 69 (2006)

    Article  Google Scholar 

  6. R.G. Xiong, R.Y. Fu, Y. Su, Q. Li, X.C. Wei, L.J. Li, Iron Steel Res. Int. 16, 81 (2009)

    Article  Google Scholar 

  7. M. Geiger, M. Merklein, M. Kaupper, Int. J. Mater. Form 1, 225 (2008)

    Article  Google Scholar 

  8. B.L. Boyce, M.F. Dilmore, Int. J. Imp. Eng. 36, 263 (2009)

    Article  Google Scholar 

  9. S. Oliver, G. Fourlaris, T.B. Jones, Mater. Sci. Tech. 23, 423 (2007)

    Article  Google Scholar 

  10. H. Huh, S.B. Kim, J.H. Song, J.H. Lim, Int. J. Mech. Sci. 50, 918 (2008)

    Article  Google Scholar 

  11. K. Vedantam, D. Bajaj, N.S. Brar, S. Hill, Shock Compr. Cond. Matter. AIP Conf. Proc. 845, 775 (2005)

    Article  ADS  Google Scholar 

  12. H. Yu, Y. Guo, X. Lai, Mat. Des. 30, 2501 (2009)

    Article  Google Scholar 

  13. H. Yu, Y. Guo, K. Zhang, X. Lai, Comp. Mat. Sc. 46, 36 (2009)

    Article  Google Scholar 

  14. E. Cadoni, F. D’Aiuto, C. Albertini, DYMAT2009 1, 135 (2009)

    Google Scholar 

  15. V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, F.A. Hild, Int. J. Sol. Struct. 45, 601 (2008)

    Article  Google Scholar 

  16. A. Ekrami, M. Bahrehbarpoor, Int. J. Iron Steel Soc. Iran 2(2), 30 (2005)

    Google Scholar 

  17. N. Tsuchida, Y. Izaki, T. Tanaka, K. Fukaura, J. Iron Steel Soc. Japan 97(4), 201 (2011)

    Article  Google Scholar 

  18. S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Engng. A 507, 124 (2009)

    Article  Google Scholar 

  19. J.H. Sung, J.H. Kim, R.H. Wagoner, Int J. Plasticity 26, 1746 (2010)

    Article  Google Scholar 

  20. G.R. Cowper, P.S. Symonds, Tech. Rep. No. 28, Div. Appl. Mech. (Brown University, USA, 1957)

  21. G.R. Johnson, W.H.A. Cook, Proceedings of 7th Int Symposium on Ballistics (1983), p. 541

  22. R. Liang, A.S. Khan, Int. J. Plasticity, 15, 963 (1999)

    Article  Google Scholar 

  23. E. Cadoni, Rock Mech. Rock Eng. 43, 667 (2010)

    Article  ADS  Google Scholar 

  24. E. Cadoni, M. Dotta, D. Forni, P. Spaetig, J. Nucl. Mat. 414, 360 (2011)

    Article  ADS  Google Scholar 

  25. E. Cadoni, M. Dotta, D. Forni, N. Tesio, C. Albertini, Mat. Des. 49, 657 (2013)

    Article  Google Scholar 

  26. C. Albertini, M. Montagnani, Inst. Phys. Conf. Ser. 21, 22 (1974)

    Google Scholar 

  27. D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, Mater. Sci. Engng. A 526, 1 (2009)

    Article  Google Scholar 

  28. H. Huh, W.J. Kang, Int. J. Vehicle Des. 30 (2002)

  29. R.W. Armstrong, F.J. Zerilli, J. Phys. 49, 529 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cadoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadoni, E., Singh, N., Forni, D. et al. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension. Eur. Phys. J. Spec. Top. 225, 409–421 (2016). https://doi.org/10.1140/epjst/e2016-02638-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-02638-3

Keywords

Navigation