Skip to main content

Advertisement

Log in

Time reversal invariance, entropy production and work dissipation in stochastic thermodynamics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We consider the work production in a mesosccopic Markov system obeying discrete stochastic dynamics with time-dependent constraints. Using asymmetry relations presented elsewhere, which result from time reversal invariance of the underlying microscopic system, we derive, beside known equalities in stochastic thermodynamics, a new result: the “Carnot equality”, that generalizes the Carnot relation for macroscopic bi-thermal engines. Such equalities, which extend the classical inequalities of thermodynamics, result from microscopic time reversal invariance only. On the other hand we show that, on the mesoscopic level, notions such as entropy production and power dissipation per transition cannot always be defined. In the absence of a precise mechanical model, such definitions are possible if, and only if, the asymmetry relations due to microscopic time reversal invariance are supplemented by space symmetry relations, equivalent to parity, which are not always satisfied.

This article is supplemented with comments by J.M.R. Parrondo and L. Granger and a final reply by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  2. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  3. C. Jarzynski, Phys. Rev. E 73, 046105 (2006)

    Article  ADS  Google Scholar 

  4. G.A. Crooks, J. Stat.Phys. 90, 1491 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. G.A. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  6. G.A. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  7. C. Maes, J. Stat. Phys. 95, 367 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. T. Hatano, S. Sasa, PRL 86, 3463 (2001)

    Article  ADS  Google Scholar 

  9. U. Seifert, PRL 95, 040602 (2005)

    Article  ADS  Google Scholar 

  10. H. Qian, J. Phys. Condens. Matter 17, S3783 (2005)

    Article  ADS  Google Scholar 

  11. B. Gaveau, M. Moreau, L.S. Schulman, Phys. Lett. 372, 3415 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. E, 010102(R) (2009)

  13. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  14. L. Boltzmann, Lectures on Gas Theory, Ch VII.92 (Cambridge University Press, Cambridge, 1964)

  15. See for instance: W. Heitler, Quantum Theory of Radiations, Appendix (Clarendon Press, Oxford, 1954)

  16. R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)

    Article  ADS  Google Scholar 

  17. H. Förster, M. Büttiker, Phys. Rev. Lett. 101, 136805 (2008)

    Article  ADS  Google Scholar 

  18. H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)

    Article  ADS  Google Scholar 

  19. D. Chaudhuri, Phys Rev. E Stat Nonlin Soft Matter Phys. 90, 022131 (2014)

    Article  ADS  Google Scholar 

  20. C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009)

  21. J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  23. G. Gallavotti, E.G.D. Cohen, J. Stat. Phys. 80, 931 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. E.G.D. Cohen, D. Mauzerall, J. Stat. Mech., P07006 (2004)

  25. A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. E 78, 011107 (2008)

    Article  ADS  Google Scholar 

  26. D. Andrieux, G. Gaspard, J. Stat. Phys. 127, 107 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. S. Rahav, C. Jarzynski, J. Stat. Mech., P09012 (2007)

  28. M. Esposito, [arXiv:1112.5410v1] [cond-mat.stat-mech] (2011)

  29. M. Esposito, Phys. Rev. E 85, 041125 (2012)

    Article  ADS  Google Scholar 

  30. M.A. Katsoulakis, A.J. Majda, D.G. Vlachos, J. Comp. Phys. 186, 250 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Pigolotti, A. Vulpiani, J. Chem. Phys. 128, 154114 (2008)

    Article  ADS  Google Scholar 

  32. E. Forte, A.J. Haslam, G. Jackson, E.A. Müller, Phys. Chem. Chem. Phys. 16, 19165-19180 (2014)

    Google Scholar 

  33. See also, for general aspects of coarse-graining: A.N. Gorban, N.KI. Kazantzis, G. Keverekidis, H.C. Öttinger, K. Theodoropoulos (eds.) “Model Reduction and Coarse-Graining Approaches for Multiscales Phenomena” (Springer, Berlinn Heidelberg, 2006)

  34. P. Gaspard, Fluctuation Theorem, Nonequilibrium Work, and Molecular Machines, in From Non-Covalent Assemblies to Molecular Machines, edited by J.-P. Sauvage, P. Gaspard (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010)

  35. R. Feynman, The Character of Physical Law (Cambridge, MA: MIT Press, 1965)

  36. J.L. Lebowitz, Physica A 194 (1993)

  37. J.L. Lebowitz, Physics Today 46(9), 32 (1993)

    Article  MathSciNet  Google Scholar 

  38. L.S. Schulman, Time's Arrows and Quantum Measurement (New York: Cambridge University Press, 1997)

  39. Y. Pomeau, Time in Science: Reversibility vs. Irreversibility, in: Discrete Integrable Systems (Springer, 2004)

  40. Y. Pomeau, J. Phys. (France) 43, 859 (1982)

    Article  MathSciNet  Google Scholar 

  41. J.M.R. Parrondo, C. Van den Broeck, R. Kawai, New J. Physics 11, 073008 (2009)

    Article  ADS  Google Scholar 

  42. B. Gaveau, L.S. Schulman, J. Math. Phys. 39, 1517 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. B. Gaveau, L.S. Schulman, J. Stat. Phys. 110, 1317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. I.I. Novikov. Journal Nuclear Energy II 7, 125 (1958), translated from Atomnaya Energiya 3, 409 (1957)

    Google Scholar 

  45. P. Chambadal, Les centrales nucléaires (Armand Colin, Paris, 1957)

  46. F.L. Curzon, B. Ahlborn, Amer. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  47. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsvilin, Thermodynamic Optimization of Finite-Time Processes (John Wiley & Sons, Chichester, 2000)

  48. G. Verley, K. Mallick, D. Lacoste, Europhys. Lett. 93, 10002 (2011)

    Article  ADS  Google Scholar 

  49. R. Garcia-Garcia, V. Lecomte, A.B. Kolton, D. Dominguez, J. Stat. Mech. doi: 10.1088/1742-5468/2012/02/P02009 (2012)

  50. D.J. Searles, B.M. Johnston, D.J. Evans, L. Rondoni, Entropy, 15, 1503, doi: 10.3390/e15051503 (2013)

    Article  ADS  Google Scholar 

  51. P. Gaspard, New J. Phys. 15, 115014 (2013)

    Article  ADS  Google Scholar 

  52. P. Gaspard, Time-reversal symmetry relations for currents in quantum and stochastic nonequilibrium systems, in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH, Weinheim, 2013)

  53. P. Talkner, M. Morillo, J. Yi, P. Hänggi, New J. Phys. 15, 095001 (2013)

    Article  ADS  Google Scholar 

  54. D. Jou, J. Casas Vasquez, G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 1993)

  55. B. Gaveau, M. Moreau, L.S. Schulman, Phys. Rev. Lett. 105, 060601 (2010)

    Article  ADS  Google Scholar 

  56. U. Seifert, PRL 106, 020601 (2011)

    Article  ADS  Google Scholar 

  57. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)

    Article  Google Scholar 

  58. T. Schmiedl, U. Seifert, EPL 81(2), 20003 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck [cond.mat.1008.2464v1], PRL 105, 150603 (2010)

    Article  ADS  Google Scholar 

  60. B. Gaveau, M. Moreau, L.S. Schulman, PRE 82, 051109 (2010)

    Article  ADS  Google Scholar 

  61. M. Esposito, K. Lindenberg, C. Van den Broeck, J. Stat. Mech., P01008 (2010)

  62. Y. Wang, Z.C. Tu [cond-mat.stat-mech1108.2873v2] (2011)

  63. M. Esposito, J.M. Parrondo [arXiv:1310.2987] [cond-mat.stat-mech] (2014)

  64. R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)

    Article  ADS  Google Scholar 

  65. H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)

    Article  ADS  Google Scholar 

References

  1. R.E. Spinney, I.J. Ford, Phys. Rev. Lett. 108, 170603 (2012)

    Article  ADS  Google Scholar 

  2. H.K. Lee, C. Kwon, H. Park, Phys. Rev. Lett. 110, 050602 (2013)

    Article  ADS  Google Scholar 

  3. S. Deffner, C. Jarzynski, Phys. Rev. X 3, 041003 (2013)

    Google Scholar 

  4. M. Esposito, J.M. Parrondo [arXiv:1310.2987] [cond-mat] (2013)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaveau, B., Moreau, M. Time reversal invariance, entropy production and work dissipation in stochastic thermodynamics. Eur. Phys. J. Spec. Top. 224, 905–925 (2015). https://doi.org/10.1140/epjst/e2015-02435-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02435-6

Keywords

Navigation