Skip to main content
Log in

Temporal organization of ongoing brain activity

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ongoing brain activity results from the mutual interaction of hundred billions non-linear units and represents a significant part of the overall brain activity. Although its complex dynamics has been widely investigated, a large number of fundamental questions are still open, many of them concerning its temporal structure. Why does a certain population of neurons fires synchronously? Are these synchronized bursts following each other randomly or are they correlated according to some organizing principle? Far from addressing the fundamental problem of its functions, in the present article we focus on the problem of temporal correlations of ongoing cortical activity. We first overview the major features of its temporal structure and review recent experimental results, with particular emphasis on alternative approaches inspired in the theory of stochastic processes; then we introduce a neuronal network model inspired in self organized criticality and compare numerical results with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Berger, Arch. Psychiatr. Nervenkr. 87, 527 (1929)

    Article  Google Scholar 

  2. G. Buzsaki, A. Draguhn, Science 304, 1926 (2004)

    Article  ADS  Google Scholar 

  3. J.M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003)

    Google Scholar 

  4. T. Petermann, T.C. Thiagarajan, M. Lebedev, M. Nicolelis, D.R. Chialvo, D. Plenz, PNAS 106(37), 15921 (2009)

    Article  ADS  Google Scholar 

  5. O. Shriki, J. Alstott, F. Carver, T. Holroyd, R.N.A. Hanson, M.L. Smith, R. Coppola, E. Bullmore, D. Plenz, J. Neurosci. 33(16), 7079 (2013)

    Article  Google Scholar 

  6. D. Fraiman, D.R. Chialvo, Front. Physiol. 3, 307 (2012)

    Article  Google Scholar 

  7. E. Tagliazucchi, P. Balenzuela, D. Fraiman, D.R. Chialvo, Front. Physiol, 3, 15 (2012)

    Article  Google Scholar 

  8. A. Haimovici, E. Tagliazucchi, P. Balenzuela, D.R. Chialvo, Phys. Rev. Lett. 110, 178101 (2013)

    Article  ADS  Google Scholar 

  9. S. Scarpetta, A. de Candia, PLoS ONE 8(6), e64162 (2013)

    Article  ADS  Google Scholar 

  10. T.H. Bullock, M.C. McClune, J.Z. Achimowicz, V.J. Iragui-Madoz, R.B. Duckrov, S.S. Spencer, Proc. Natl. Acad. Sci. USA 92, 11568 (1995)

    Article  ADS  Google Scholar 

  11. T.H. Bullock, M.C. McClune, J.T. Enright, Neuroscience 121, 233 (2003)

    Article  Google Scholar 

  12. E. Novikov, A. Novikov, D. Shannahoff-Khalsa, B. Schwartz, J. Wright, Phys. Rev. Lett. 97, 118102 (2006)

    Article  Google Scholar 

  13. K.L. Hansen, V.V. Nikouline, J.M. Palva, R.J. IImoniemi, J. Neurosci. 21, 4 (2001)

    Google Scholar 

  14. C. Bedard, H. Kröger, A. Destexhe, Phys. Rev. Lett. 97, 118102 (2006)

    Article  ADS  Google Scholar 

  15. N. Dehghani, C. Bedard, Sidney S. Cash, E. Halgren, A. Destexhe, J. Comput. Neurosci. 21(29), 2010

  16. A. Corral, Phys. Rev. Lett. 92(10), 108501 (2004)

    Article  ADS  Google Scholar 

  17. L. de Arcangelis, C. Godano, E. Lippiello, M. Nicodemi, Phys. Rev. Lett. 96, 051102 (2006)

    Article  ADS  Google Scholar 

  18. R. Segev, B. Morris, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira, E.B. Jacob, Phys. Rev. Lett. 88, 11 (2002)

    Article  Google Scholar 

  19. F. Lombardi, H.J. Herrmann, C. Perrone-Capano, D. Plenz, L. de Arcangelis, Phys. Rev. Lett. 108, 228703 (2012)

    Article  ADS  Google Scholar 

  20. F. Lombardi, H.J. Herrmann, D. Plenz, L. de Arcangelis, Frontiers in System Neuroscience (preprint) (2014)

  21. L. de Arcangelis, C. Perrone-Capano, H.J. Herrmann, Phys. Rev. Lett. 96, 028107 (2006)

    Article  ADS  Google Scholar 

  22. GL Pellegrini, L. de Arcangelis, H.J. Herrmann, C. Perrone-Capano, Phys. Rev. E 76, 028107 (2007)

    Article  Google Scholar 

  23. R. Cossart, A. Aronov, R. Yuste, Nature 423, 283 (2003)

    Article  ADS  Google Scholar 

  24. T.T.G. Hahn, B. Sakmann, M.R. Mehta, Nat. Neurosci. 9, 1359 (2006)

    Article  Google Scholar 

  25. M.O. Cunningham, D.D. Pervouchine, C. Racca, N.J. Kopell, C.H. Davies, R.S.G. Jones, R.D. Traub, M.A. Whittington, PNAS 103, 5597 (2006)

    Article  ADS  Google Scholar 

  26. B.J. He, J.M. Zempel, A.Z. Snyder, M.E. Raichle, Neuron 66, 353 (2010)

    Article  Google Scholar 

  27. A. Mazzoni, F.D. Broccard, E. Garcia-Perez, P. Bonifazi, E.M. Ruaro, V. Torre, PLoS ONE 2(5), e439 (2007)

    Article  ADS  Google Scholar 

  28. V. Pasquale, P. Massobrio, L.L. Bologna, M. Chiappalone, S. Martinoia, J. Neurosci. 153, 1354 (2008)

    Article  Google Scholar 

  29. D.E. Gireesh, D. Plenz, PNAS 105(21), 7576 (2008)

    Article  ADS  Google Scholar 

  30. D. Millman, S. Mihalas, A. Kirkwood, E. Niebur, Nat. Phys. 6, 801 (2010)

    Article  Google Scholar 

  31. A. Bragin, G. Jandoó, Z. Nadasdy, J. Hetke, K. Wise, G. Buzsaki, J. Neurosci. 15, 47 (1995)

    Google Scholar 

  32. A. Corral, Phys. Rev. Lett. 95(2), 028501 (2005)

    Article  ADS  Google Scholar 

  33. T.L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D.R. Chialvo, PLoS ONE 5, e14129 (2010)

    Article  ADS  Google Scholar 

  34. V.M. Eguiluz, D. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian, Phys. Rev. Lett. 94, 018102 (2005)

    Article  ADS  Google Scholar 

  35. L. de Arcangelis, H.J. Herrmann, Front. Physio. 3, 62 (2012)

    Article  Google Scholar 

  36. K.J. Staley, M. Longacher, J.S. Bains, A. Yee, Nat. Neurosci. 1, 201 (1998)

    Article  Google Scholar 

  37. S.M. Thompson, H.L. Haas, B.H. Ghwiler, J. Physiol. 451, 347 (1992)

    Google Scholar 

  38. M.V. Sanchez-Vives, L.G. Novak, D.A. McCormick, J. Neurosci. 20, 4286 (2000)

    Google Scholar 

  39. E. Maeda, H.P. Robinson, A. Kawana, J. Neurosci. 15, 6834 (1995)

    Google Scholar 

  40. C. Wilson, Scholarpedia J. 3(6), 1410 (2008)

    Article  ADS  Google Scholar 

  41. I. Timofeev, F. Grenier, M. Steriade, PNAS 98(4), 1924 (2001)

    Article  ADS  Google Scholar 

  42. W. Shew, H. Yang, T. Petermann, R. Roy, D. Plenz, J. Neurosci. 29(49), 15595 (2009)

    Article  Google Scholar 

  43. D. Plenz, A. Aertsen, Neuroscience 70, 893 (1996)

    Article  Google Scholar 

  44. W.H. Press, Astrophys. 7, 103 (1978)

    Google Scholar 

  45. R.F. Voss, J. Clark, Nature 258, 317 (1975)

    Article  ADS  Google Scholar 

  46. W.S. Pritchard, Int. J. Neurosci. 66, 119 (1992)

    Article  Google Scholar 

  47. C. Tang, P. Bak, K. Wiesenfeld, Phys. Rev. A 38, 1 (1988)

    Article  MathSciNet  Google Scholar 

  48. L. Laurson, M.J. Alava, S. Zapperi, J. Stat. Mech. L11001 (2005)

  49. E. Lippiello, de Arcangelis, C. Godano, Phys. Rev. Lett. 100, 038501 (2008)

    Article  ADS  Google Scholar 

  50. G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, A. Vulpiani, Phys. Rev. Lett. 83(22), 4662 (1999)

    Article  ADS  Google Scholar 

  51. T. Utsu, International Handbook of Earthquake and Engineering Seismology, Vol. 81A (Academic Press, 2002)

  52. P. De Los Rios, Y.-C. Zhang, Phys. Rev. Lett. 82(3), 472 (1999)

    Article  ADS  Google Scholar 

  53. R. Sanchez, D.E. Newman, D.A. Carreras, Phys. Rev. Lett. 88(6), 068302 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lombardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, F., de Arcangelis, L. Temporal organization of ongoing brain activity. Eur. Phys. J. Spec. Top. 223, 2119–2130 (2014). https://doi.org/10.1140/epjst/e2014-02253-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02253-4

Keywords

Navigation