Skip to main content
Log in

Abstract

The extreme temperatures and densities of many astrophysical environments tend to destabilize nuclear isomers by inducing transitions to higher-energy states which may then cascade to ground. However, not all environments destabilize all isomers. Nuclear isomers which retain their metastable character in pertinent astrophysical environments are known as astrophysically metastable nuclear isomers, or “astromers”. Astromers can influence nucleosynthesis, altering abundances or even creating new pathways that would otherwise be inaccessible. Astromers often release energy faster or slower relative to their associated ground state, acting as heating accelerants or batteries, respectively. In stable isotopes, they may even simply remain populated after a cataclysmic event and emit observable x- or \(\gamma\)-rays. The variety of behaviors of these nuclear species and the effects they can have merit careful consideration in nearly every possible astrophysical environment. Here, we provide a brief overview of astromers past and present, and we outline future work that will help to illuminate their role in the cosmos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Schatz, L. Bildsten, A. Cumming, M. Wiescher, The rapid proton process ashes from stable nuclear burning on an accreting neutron star. ApJ 524(2), 1014–1029 (1999). https://doi.org/10.1086/307837. arXiv:astro-ph/9905274 [astro-ph]

    Article  ADS  Google Scholar 

  2. S. Wanajo, The rp-process in neutrino-driven winds. Astrophys. J. 647(2), 1323 (2006). https://doi.org/10.1086/505483

    Article  ADS  Google Scholar 

  3. R.H. Cyburt, B.D. Fields, K.A. Olive, T.-H. Yeh, Big bang nucleosynthesis: present status. Rev. Mod. Phys. 88(1), 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004. arXiv:1505.01076 [astro-ph.CO]

    Article  ADS  Google Scholar 

  4. P.A. Seeger, W.A. Fowler, D.D. Clayton, Nucleosynthesis of heavy elements by neutron capture. ApJS 11, 121 (1965). https://doi.org/10.1086/190111

    Article  ADS  Google Scholar 

  5. G.J. Mathews, A. Mengoni, F.-K. Thielemann, W.A. Fowler, Neutron capture rates in the r-process—the role of direct radiative capture. ApJ 270, 740–745 (1983). https://doi.org/10.1086/161164

    Article  ADS  Google Scholar 

  6. T. Rauscher, F.-K. Thielemann, Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75(1–2), 1–351 (2000). https://doi.org/10.1006/adnd.2000.0834. arXiv:astro-ph/0004059 [astro-ph]

    Article  ADS  Google Scholar 

  7. S. Ando, R.H. Cyburt, S.W. Hong, C.H. Hyun, Radiative neutron capture on a proton at big-bang nucleosynthesis energies. Phys. Rev. C 74, 025809 (2006). https://doi.org/10.1103/PhysRevC.74.025809

    Article  ADS  Google Scholar 

  8. J.J. Cowan, C. Sneden, J.E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, F.-K. Thielemann, Origin of the heaviest elements: the rapid neutron-capture process. Rev. Mod. Phys. 93, 015002 (2021). https://doi.org/10.1103/RevModPhys.93.015002

    Article  ADS  Google Scholar 

  9. K. Takahashi, K. Yokoi, Nuclear \(\beta\)-decays of highly ionized heavy atoms in stellar interiors. Nucl. Phys. A 404(3), 578–598 (1983). https://doi.org/10.1016/0375-9474(83)90277-4

    Article  ADS  Google Scholar 

  10. R. Caballero-Folch, C. Domingo-Pardo, G. Cortes, J. Tain, J. Agramunt, A. Algora, F. Ameil, Y. Ayyad, J. Benlliure, M. Bowry, F. Calvino, D. Cano-Ott, T. Davinson, I. Dillmann, A. Estrade, A. Evdokimov, T. Faestermann, F. Farinon, D. Galaviz, A. Garcia-Rios, H. Geissel, W. Gelletly, R. Gernhauser, M. Gomez-Hornillos, C. Guerrero, M. Heil, C. Hinke, R. Knobel, I. Kojouharov, J. Kurcewicz, N. Kurz, Y. Litvinov, L. Maier, J. Marganiec, M. Marta, T. Martinez, F. Montes, I. Mukha, D. Napoli, C. Nociforo, C. Paradela, S. Pietri, Z. Podolyak, A. Prochazka, S. Rice, A. Riego, B. Rubio, H. Schaffner, C. Scheidenberger, K. Smith, E. Sokol, K. Steiger, B. Sun, M. Takechi, D. Testov, H. Weick, E. Wilson, J. Winfield, R. Wood, P. Woods, A. Yeremin, Beta-decay and beta-delayed neutron emission measurements at GSI-FRS beyond n = 126, for r-process nucleosynthesis. Nucl. Data Sheets 120, 81–83 (2014). https://doi.org/10.1016/j.nds.2014.07.012

    Article  ADS  Google Scholar 

  11. K.A. Lund, J. Engel, G.C. McLaughlin, M.R. Mumpower, E.M. Ney, R. Surman, The influence of \(\beta\)-decay rates on r-process observables. Astrophys. J. 944(2), 144 (2023). https://doi.org/10.3847/1538-4357/acaf56

    Article  ADS  Google Scholar 

  12. J. Görres, S. Graff, M. Wiescher, R.E. Azuma, C.A. Barnes, T.R. Wang, Alpha capture on 14c and its astrophysical implications. Nucl. Phys. A 548(3), 414–426 (1992). https://doi.org/10.1016/0375-9474(92)90692-D

    Article  ADS  Google Scholar 

  13. T. Rauscher, F.-K. Thielemann, J. Görres, M. Wiescher, Capture of /\({{\alpha }}\) particles by isospin-symmetric nuclei. Nucl. Phys. A 675(3–4), 695–721 (2000). https://doi.org/10.1016/S0375-9474(00)00182-2. arXiv:nucl-th/0003057 [nucl-th]

    Article  ADS  Google Scholar 

  14. L. Siess, S. Goriely, N. Langer, Nucleosynthesis of s-elements in rotating AGB stars. A &A 415, 1089–1097 (2004). https://doi.org/10.1051/0004-6361:20034281

    Article  ADS  Google Scholar 

  15. S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T.A. Lähde, T. Luu, U.-G. Meißner, Ab initio alpha-alpha scattering. Nature 528(7580), 111–114 (2015). https://doi.org/10.1038/nature16067. arXiv:1506.03513 [nucl-th]

    Article  ADS  Google Scholar 

  16. M.R. Mumpower, T. Kawano, T.M. Sprouse, \({{\beta }}^{{{-}}}\)-delayed fission in the coupled quasiparticle random-phase approximation plus Hauser–Feshbach approach. Phys. Rev. C 106(6), 065805 (2022). https://doi.org/10.1103/PhysRevC.106.065805. arXiv:2201.02889 [nucl-th]

    Article  ADS  Google Scholar 

  17. E.M. Holmbeck, T.M. Sprouse, M.R. Mumpower, Nucleosynthesis and observation of the heaviest elements. Eur. Phys. J. A 59(2), 28 (2023). https://doi.org/10.1140/epja/s10050-023-00927-7. arXiv:2304.01850 [nucl-th]

    Article  ADS  Google Scholar 

  18. I.U. Roederer, N. Vassh, E.M. Holmbeck, M.R. Mumpower, R. Surman, J.J. Cowan, T.C. Beers, R. Ezzeddine, A. Frebel, T.T. Hansen, V.M. Placco, C.M. Sakari, Element abundance patterns in stars indicate fission of nuclei heavier than uranium. Science 382(6675), 1177–1180 (2023). https://doi.org/10.1126/science.adf1341

    Article  ADS  Google Scholar 

  19. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak-interaction rates for SD-shell nuclei. I-nuclear matrix element systematics with application to al-26 and selected nuclei of importance to the supernova problem. Astrophys. J. Suppl. Ser. 42, 447–473 (1980)

    Article  ADS  Google Scholar 

  20. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak interaction rates for intermediate-mass nuclei. ii-a = 21 to a = 60. Astrophys. J. 252(2), 715–715 (1982)

    Article  ADS  Google Scholar 

  21. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak interaction rates for intermediate mass nuclei. III—rate tables for the free nucleons and nuclei with a = 21 to a = 60. Astrophys. J. Suppl. Ser. 48(3), 279–279 (1982)

    Article  ADS  Google Scholar 

  22. G. Fuller, W. Fowler, M. Newman, Stellar weak interaction rates for intermediate-mass nuclei. IV—interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values. Astrophys. J. Part 1 (ISSN 0004-637X) 293, 1–16 (1985)

    ADS  Google Scholar 

  23. T. Oda, M. Hino, K. Muto, M. Takahara, K. Sato, Rate tables for the weak processes of SD-shell nuclei in stellar matter. At. Data Nucl. Data Tables 56(2), 231–403 (1994)

    Article  ADS  Google Scholar 

  24. K. Langanke, G. Martınez-Pinedo, Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range a = 45–65 in supernovae environments. Nucl. Phys. A 673(1–4), 481–508 (2000)

    Article  ADS  Google Scholar 

  25. K. Langanke, G. Martínez-Pinedo, Rate tables for the weak processes of pf-shell nuclei in stellar environments. At. Data Nucl. Data Tables 79(1), 1–46 (2001)

    Article  ADS  Google Scholar 

  26. G.W. Misch, Y. Sun, G.M. Fuller, Neutrino spectra from nuclear weak interactions in sd-shell nuclei under astrophysical conditions. Astrophys. J. 852(1), 43 (2018)

    Article  ADS  Google Scholar 

  27. M.R. Mumpower, R. Surman, G.C. McLaughlin, A. Aprahamian, The impact of individual nuclear properties on r-process nucleosynthesis. Progress Particle Nucl. Phys. 86, 86–126 (2016). https://doi.org/10.1016/j.ppnp.2015.09.001. arXiv:1508.07352 [nucl-th]

    Article  ADS  Google Scholar 

  28. O. Hahn, Über ein neues radioaktives Zerfallsprodukt im Uran. Naturwissenschaften 9(5), 84–84 (1921). https://doi.org/10.1007/BF01491321

    Article  ADS  Google Scholar 

  29. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Review of metastable states in heavy nuclei. Rep. Prog. Phys. 79(7), 076301 (2016). https://doi.org/10.1088/0034-4885/79/7/076301

    Article  ADS  Google Scholar 

  30. P.M. Walker, Z. Podolyák, in Nuclear Isomers. ed. by I. Tanihata, H. Toki, T. Kajino (Springer, Singapore, 2020), pp.1–37. https://doi.org/10.1007/978-981-15-8818-1_46-1

  31. P. Walker, G. Dracoulis, Energy traps in atomic nuclei. Nature 399(6731), 35–40 (1999)

    Article  ADS  Google Scholar 

  32. S. Solomon, D. Sargood, Stellar reaction rates for 45sc (p, y) 46ti. Astrophys. J. 223, 697–703 (1978)

    Article  ADS  Google Scholar 

  33. R.A. Ward, W.A. Fowler, Thermalization of long-lived nuclear isomeric states under stellar conditions. Astrophys. J. 238, 266–286 (1980)

    Article  ADS  Google Scholar 

  34. A. Coc, M.-G. Porquet, F. Nowacki, Lifetimes of 26 al and 34 cl in an astrophysical plasma. Phys. Rev. C 61(1), 015801 (1999)

    Article  ADS  Google Scholar 

  35. S.S. Gupta, B.S. Meyer, Internal equilibration of a nucleus with metastable states: \(^{26}\)Al as an example. Phys. Rev. C 64(2), 025805 (2001). https://doi.org/10.1103/PhysRevC.64.025805

    Article  ADS  Google Scholar 

  36. E.W. Dijkstra, A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290 (2022)

  37. G.W. Misch, S.K. Ghorui, P. Banerjee, Y. Sun, M.R. Mumpower, Astromers: nuclear isomers in astrophysics. ApJS 252(1), 2 (2021). https://doi.org/10.3847/1538-4365/abc41d. arXiv:2010.15238 [astro-ph.HE]

    Article  ADS  Google Scholar 

  38. T. Lee, D. Papanastassiou, G. Wasserburg, Aluminum-26 in the early solar system-fossil or fuel. Astrophys. J. 211, 107–110 (1977)

    Article  ADS  Google Scholar 

  39. R. Diehl, C. Dupraz, K. Bennett, H. Bloemen, W. Hermsen, J. Knoedlseder, G. Lichti, D. Morris, J. Ryan, V. Schoenfelder, H. Steinle, A. Strong, B. Swanenburg, M. Varendorff, C. Winkler, COMPTEL observations of Galactic \(\hat{2}6\hat{\text{ A }}\text{ l }\) emission. A &A 298, 445 (1995)

    ADS  Google Scholar 

  40. R. Runkle, A. Champagne, J. Engel, Thermal equilibration of 26al. Astrophys. J. 556(2), 970 (2001)

    Article  ADS  Google Scholar 

  41. P. Banerjee, G.W. Misch, S.K. Ghorui, Y. Sun, Effective stellar \(\beta\)-decay rates of nuclei with long-lived isomers: Al 26 and cl 34. Phys. Rev. C 97(6), 065807 (2018)

    Article  ADS  Google Scholar 

  42. W. Richter, B.A. Brown, R. Longland, C. Wrede, P. Denissenkov, C. Fry, F. Herwig, D. Kurtulgil, M. Pignatari, R. Reifarth, Shell-model studies of the astrophysical r p-process reactions s 34 (p, \(\gamma\)) cl 35 and cl 34 g, m (p, \(\gamma\)) ar 35. Phys. Rev. C 102(2), 025801 (2020)

    Article  ADS  Google Scholar 

  43. M.W. Reed, P.M. Walker, I.J. Cullen, Y.A. Litvinov, K. Blaum, F. Bosch, C. Brandau, J.J. Carroll, D.M. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, G.D. Dracoulis, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, W.R. Plaß, A. Prochazka, C. Scheidenberger, D. Shubina, M. Steck, T. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yamaguchi, Technique for resolving low-lying isomers in the experimental storage ring (ESR) and the occurrence of an isomeric state in 192re. J. Phys. Conf. Ser. 381(1), 012058 (2012). https://doi.org/10.1088/1742-6596/381/1/012058

    Article  Google Scholar 

  44. D. Kahl et al., Isomer beam elastic scattering: 26mAl(p, p) for astrophysics. EPJ Web Conf. 165, 01030 (2017). https://doi.org/10.1051/epjconf/201716501030

    Article  Google Scholar 

  45. K.A. Chipps, R.L. Kozub, C. Sumithrarachchi, T. Ginter, T. Baumann, K. Lund, A. Lapierre, A. Villari, F. Montes, S. Jin, K. Schmidt, S. Ayoub, S.D. Pain, D. Blankstein, \(^{38}{{\rm K}}\) isomer production via fast fragmentation. Phys. Rev. Accel. Beams 21, 121301 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.121301

    Article  ADS  Google Scholar 

  46. W. Fan, W. Qi, J. Zhang, Z. Cao, H. Lan, X. Li, Y. Xu, Y. Gu, Z. Deng, Z. Zhang et al., Efficient production of the nuclear isomer mo 93 m with laser-accelerated proton beam and its astrophysical implication on mo 92 production. Phys. Rev. Res. 5(4), 043120 (2023)

    Article  Google Scholar 

  47. R. Reifarth, S. Fiebiger, K. Göbel, T. Heftrich, T. Kausch, C. Köppchen, D. Kurtulgil, C. Langer, B. Thomas, M. Weigand, Treatment of isomers in nucleosynthesis codes. Int. J. Mod. Phys. A 33(09), 1843011 (2018). https://doi.org/10.1142/S0217751X1843011X

    Article  ADS  Google Scholar 

  48. J. Tannous, B. Meyer, Jaadt7/lvlspy: V3.0.0. https://doi.org/10.5281/zenodo.8193378

  49. C. Iliadis, A. Champagne, A. Chieffi, M. Limongi, The effects of thermonuclear reaction rate variations on 26al production in massive stars: a sensitivity study. Astrophys. J. Suppl. Ser. 193(1), 16 (2011)

    Article  ADS  Google Scholar 

  50. T.M. Sprouse, G.W. Misch, M.R. Mumpower, Isochronic evolution and the radioactive decay of r-process nuclei. ApJ 929(1), 22 (2022). https://doi.org/10.3847/1538-4357/ac470f. arXiv:2102.03846 [astro-ph.HE]

    Article  ADS  Google Scholar 

  51. B.S. Meyer, S.S. Gupta, L.-S. The, S. Long, Long-lived nuclear isomers and short-lived radioactivities. Meteoritics Planet. Sci. Suppl. 36, 134 (2001)

    Google Scholar 

  52. S.-I. Fujimoto, M.-A. Hashimoto, The impact of isomers on a Kilonova associated with neutron star mergers. Mon. Not. R. Astronom. Soc. Lett. 493(1), 103–107 (2020). https://doi.org/10.1093/mnrasl/slaa016

    Article  ADS  Google Scholar 

  53. G.W. Misch, T.M. Sprouse, M.R. Mumpower, Astromers in the radioactive decay of r-process nuclei. ApJ 913(1), 2 (2021). https://doi.org/10.3847/2041-8213/abfb74. arXiv:2011.11889 [astro-ph.HE]

    Article  Google Scholar 

  54. G.W. Misch, T.M. Sprouse, M.R. Mumpower, A.J. Couture, C.L. Fryer, B.S. Meyer, Y. Sun, Sensitivity of neutron-rich nuclear isomer behavior to uncertainties in direct transitions. Symmetry 13(10), 1831 (2021). https://doi.org/10.3390/sym13101831. arXiv:2103.09392 [astro-ph.HE]

    Article  ADS  Google Scholar 

  55. A. Aprahamian, Y. Sun, Long live isomer research. Nat. Phys. 1(2), 81–82 (2005)

    Article  Google Scholar 

  56. E.B. Norman, Isomers in the cosmos. Atomsphere 11, 11 (2023). https://doi.org/10.3390/atoms11110140

    Article  Google Scholar 

  57. S. Ghosh, B. Meyer, A directed-graph branching treatment of internal equilibration rates and application to astromers. In APS Division of Nuclear Physics Meeting Abstracts. APS Meeting Abstracts, vol. 2021, p. 008 (2021)

  58. W.A. Mahoney, J.C. Ling, A.S. Jacobson, R.E. Lingenfelter, Diffuse galactic gamma-ray line emission from nucleosynthetic Fe-60, Al-26, and Na-22—preliminary limits from HEAO 3. ApJ 262, 742–748 (1982). https://doi.org/10.1086/160469

    Article  ADS  Google Scholar 

  59. M. Lugaro, A.I. Karakas, 26al and 60fe yields from agb stars. New Astron. Rev. 52(7–10), 416–418 (2008)

    Article  ADS  Google Scholar 

  60. H. Norgaard, Al-26 from red giants. Astrophys. J. 236, 895–898 (1980)

    Article  ADS  Google Scholar 

  61. D.D. Clayton, Al-26 in the interstellar medium. Astrophys. J. Part 1 (ISSN 0004-637X) 280, 144–149 (1984)

    ADS  Google Scholar 

  62. M. Singh, Evaluation of the “aluminum-26 method” as star formation rate indicator. Masters Thesis, p. 43 (2012)

  63. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, The nubase2020 evaluation of nuclear physics properties *. Chin. Phys. C 45(3), 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  64. C. Lederer-Woods, P.J. Woods, T. Davinson, D. Kahl, S. Lonsdale, O. Aberle, S. Amaducci, J. Andrzejewski, L. Audouin, M. Bacak et al., Destruction of the cosmic \(\gamma\)-ray emitter al 26 in massive stars: Study of the key al 26 (n, p) reaction. Phys. Rev. C 104(2), 022803 (2021)

    Article  ADS  Google Scholar 

  65. C. Lederer-Woods, P.J. Woods, T. Davinson, A. Estrade, J. Heyse, D. Kahl, S.J. Lonsdale, C. Paradela, P. Schillebeeckx, O. Aberle, S. Amaducci, J. Andrzejewski, L. Audouin, M. Bacak, J. Balibrea, M. Barbagallo, F. Bečvář, E. Berthoumieux, J. Billowes, D. Bosnar, A. Brown, M. Caamaño, F. Calviño, M. Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, F. Cerutti, Y.H. Chen, E. Chiaveri, N. Colonna, G. Cortés, M.A. Cortés-Giraldo, L. Cosentino, S. Cristallo, L.A. Damone, M. Diakaki, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, B. Fernández-Domínguez, A. Ferrari, P. Ferreira, F.J. Ferrer, P. Finocchiaro, V. Furman, K. Göbel, A.R. García, A. Gawlik, S. Gilardoni, T. Glodariu, I.F. Gonçalves, E. González-Romero, E. Griesmayer, C. Guerrero, F. Gunsing, H. Harada, S. Heinitz, D.G. Jenkins, E. Jericha, F. Käppeler, Y. Kadi, A. Kalamara, P. Kavrigin, A. Kimura, N. Kivel, M. Kokkoris, M. Krtička, D. Kurtulgil, E. Leal-Cidoncha, H. Leeb, J. Lerendegui-Marco, S. Lo Meo, D. Macina, A. Manna, J. Marganiec, T. Martínez, A. Masi, C. Massimi, P. Mastinu, M. Mastromarco, E.A. Maugeri, A. Mazzone, E. Mendoza, A. Mengoni, P.M. Milazzo, F. Mingrone, A. Musumarra, A. Negret, R. Nolte, A. Oprea, N. Patronis, A. Pavlik, J. Perkowski, I. Porras, J. Praena, J.M. Quesada, D. Radeck, T. Rauscher, R. Reifarth, C. Rubbia, J.A. Ryan, M. Sabaté-Gilarte, A. Saxena, D. Schumann, P. Sedyshev, A.G. Smith, N.V. Sosnin, A. Stamatopoulos, G. Tagliente, J.L. Tain, A. Tarifeño-Saldivia, L. Tassan-Got, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, V. Vlachoudis, R. Vlastou, A. Wallner, S. Warren, C. Weiss, T. Wright, P. Žugec, n TOF collaboration: destruction of the cosmic \({{\gamma }}\) -ray emitter \(^{26}\)Al in massive stars: study of the key \(^{26}\)Al(n,\({{\alpha }}\) ) reaction. Phys. Rev. C 104(3), 032803 (2021). https://doi.org/10.1103/PhysRevC.104.L032803

    Article  ADS  Google Scholar 

  66. E. Temanson, J. Baker, S. Kuvin, K. Hanselman, G.W. McCann, L.T. Baby, A. Volya, P. Höflich, I. Wiedenhöver, Measurement of the \(^{25}\)al(d,n)\(^{26}\)si reaction and impact on the \(^{25}\)al(p,\(\gamma\))\(^{26}\)si reaction rate. arXiv:2305.17511 (arXiv preprint) (2023)

  67. U. Battino, C. Lederer-Woods, M. Pignatari, B. Soós, M. Lugaro, D. Vescovi, S. Cristallo, P.J. Woods, A. Karakas, Impact of newly measured 26al (n, p) 26mg and 26al (n, \(\alpha\)) 23na reaction rates on the nucleosynthesis of 26al in stars. Mon. Not. R. Astron. Soc. 520(2), 2436–2444 (2023)

    Article  ADS  Google Scholar 

  68. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, The \(s\) process: nuclear physics, stellar models, and observations. Rev. Mod. Phys. 83, 157–193 (2011). https://doi.org/10.1103/RevModPhys.83.157

    Article  ADS  Google Scholar 

  69. M. Lugaro, M. Pignatari, R. Reifarth, M. Wiescher, The s process and beyond. Annu. Rev. Nucl. Part. Sci. 73(1), 315–340 (2023). https://doi.org/10.1146/annurev-nucl-102422-080857

    Article  ADS  Google Scholar 

  70. B.S. Meyer, The r-, s-, and p-processes in nucleosynthesis. ARA &A 32, 153–190 (1994). https://doi.org/10.1146/annurev.aa.32.090194.001101

    Article  ADS  Google Scholar 

  71. F. Kaeppeler, W. Schanz, K. Wisshak, G. Reffo, The s-process between A = 120 and 124: signature of neutron density and temperature in red giants. ApJ 410, 370 (1993). https://doi.org/10.1086/172754

    Article  ADS  Google Scholar 

  72. F. Kappeler, H. Beer, K. Wisshak, s-process nucleosynthesis-nuclear physics and the classical model. Rep. Prog. Phys. 52(8), 945–1013 (1989). https://doi.org/10.1088/0034-4885/52/8/002

    Article  ADS  Google Scholar 

  73. G. Walter, H. Beer, F. Kaeppeler, R.-D. Penzhorn, The s-process branching at Kr-85. A &A 155(2), 247–255 (1986)

    ADS  Google Scholar 

  74. C. Abia, M. Busso, R. Gallino, I. Domínguez, O. Straniero, J. Isern, The 85kr s-process branching and the mass of carbon stars. Astrophys J 559(2), 1117 (2001). https://doi.org/10.1086/322383

    Article  ADS  Google Scholar 

  75. H. Beer, G. Walter, Cosmochronology with the\(^{87}\)Rb/\(^{87}\)Sr isobaric pair. Ap &SS 100(1–2), 243–253 (1984). https://doi.org/10.1007/BF00651599

    Article  ADS  Google Scholar 

  76. M. Busso, R. Gallino, G. Wasserburg, Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and solar system formation. Ann. Rev. Astron. Astrophys. 37(1), 239–309 (1999)

    Article  ADS  Google Scholar 

  77. O. Nebel, E.E. Scherer, K. Mezger, Evaluation of the 87rb decay constant by age comparison against the u-pb system. Earth Planet. Sci. Lett. 301(1), 1–8 (2011). https://doi.org/10.1016/j.epsl.2010.11.004

    Article  ADS  Google Scholar 

  78. P.W. Merrill, Technetium in the stars. Science 115, 484 (1952)

    Google Scholar 

  79. P. Richards, W.D. Tucker, S.C. Srivastava, Technetium-99m: an historical perspective. Int. J. Appl. Radiat. Isot. 33(10), 793–799 (1982)

    Article  Google Scholar 

  80. K. Takahashi, G.J. Mathews, S.D. Bloom, Shell-model calculation of \(^{99}{{\rm Tc}}\) beta decay in astrophysical environments. Phys. Rev. C 33, 296–302 (1986). https://doi.org/10.1103/PhysRevC.33.296

    Article  ADS  Google Scholar 

  81. R.R. Winters, F. Kaeppeler, K. Wisshak, A. Mengoni, G. Reffo, 148,150Sm: a test for s-process nucleosynthesis. ApJ 300, 41 (1986). https://doi.org/10.1086/163781

    Article  ADS  Google Scholar 

  82. K.T. Lesko, E.B. Norman, R.-M. Larimer, J.C. Bacelar, E.M. Beck, Level scheme of \(^{148}{{\rm Pm}}\) and the s-process neutron density. Phys. Rev. C 39, 619–625 (1989). https://doi.org/10.1103/PhysRevC.39.619

    Article  ADS  Google Scholar 

  83. H. Beer, G. Walter, F. Kappler, S-process studies on tin. A &A 211(1), 245–249 (1989)

    ADS  Google Scholar 

  84. T. Hayakawa, Y. Toh, A. Kimura, S. Nakamura, T. Shizuma, N. Iwamoto, S. Chiba, T. Kajino, Isomer production ratio of the \(^{112}\text{ Cd }(n,{\gamma })^{113}\text{ Cd }\) reaction in an \(s\)-process branching point. Phys. Rev. C 103, 045801 (2021). https://doi.org/10.1103/PhysRevC.103.045801

    Article  ADS  Google Scholar 

  85. S.K. Ghorui, C.R. Praharaj, Systematic study of high-k isomers in the midshell gd and dy nuclei. Eur. Phys. J. A 54, 10 (2018). https://doi.org/10.1140/epja/i2018-12596-0

    Article  Google Scholar 

  86. M. Heil, N. Winckler, S. Dababneh, F. Käppeler, K. Wisshak, S. Bisterzo, R. Gallino, A.M. Davis, T. Rauscher, 176lu/176hf: a sensitive test of s-process temperature and neutron density in agb stars. Astrophys. J. 673(1), 434 (2008). https://doi.org/10.1086/523892

    Article  ADS  Google Scholar 

  87. C. Doll, H.G. Börner, S. Jaag, F. Käppeler, W. Andrejtscheff, Lifetime measurement in \({}^{176}{{\rm Lu}}\) and its astrophysical consequences. Phys. Rev. C 59, 492–499 (1999). https://doi.org/10.1103/PhysRevC.59.492

    Article  ADS  Google Scholar 

  88. U. Söderlund, P.J. Patchett, J.D. Vervoort, C.E. Isachsen, The 176lu decay constant determined by lu-hf and u-pb isotope systematics of precambrian mafic intrusions. Earth Planet. Sci. Lett. 219(3), 311–324 (2004). https://doi.org/10.1016/S0012-821X(04)00012-3

    Article  ADS  Google Scholar 

  89. T. Hayakawa, T. Shizuma, T. Iizuka, Half-life of the nuclear cosmochronometer \(^{176}\)Lu measured with a windowless \(4{{\pi }}\) solid angle scintillation detector. Commun. Phys. 6(1), 299 (2023). https://doi.org/10.1038/s42005-023-01406-7

    Article  Google Scholar 

  90. U. Ratzel, C. Arlandini, F. Käppeler, A. Couture, M. Wiescher, R. Reifarth, R. Gallino, A. Mengoni, C. Travaglio, Nucleosynthesis at the termination point of the \(s\) process. Phys. Rev. C 70, 065803 (2004). https://doi.org/10.1103/PhysRevC.70.065803

    Article  ADS  Google Scholar 

  91. R.K. Wallace, S.E. Woosley, Explosive hydrogen burning. ApJS 45, 389–420 (1981). https://doi.org/10.1086/190717

    Article  ADS  Google Scholar 

  92. A. Kankainen, G.K. Vorobjev, S.A. Eliseev, W. Huang, J. Huikari, A. Jokinen, A. Nieminen, Y.N. Novikov, H. Penttilä, A.V. Popov, S. Rinta-Antila, H. Schatz, D.M. Seliverstov, Y.P. Suslov, J. Äystö, Isomers of astrophysical interest in neutron-deficient nuclei at masses A = 81, 85 and 86. Eur. Phys. J. A 25(3), 355–363 (2005). https://doi.org/10.1140/epja/i2005-10141-0

    Article  ADS  Google Scholar 

  93. Y. Sun, M. Wiescher, A. Aprahamian, J. Fisker, Nuclear structure of the exotic mass region along the rp process path. Nucl. Phys. A 758, 765–768 (2005). https://doi.org/10.1016/j.nuclphysa.2005.05.138

    Article  ADS  Google Scholar 

  94. A.B. Garnsworthy, P.H. Regan, S. Pietri, Y. Sun, F.R. Xu, D. Rudolph, M. Górska, L. Cáceres, Z. Podolyák, S.J. Steer, R. Hoischen, A. Heinz, F. Becker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, H. Grawe, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopwicz, T. Saito, H. Schaffner, S. Tachenov, E. Werner-Malento, H.J. Wollersheim, G. Benzoni, B. Blank, C. Brandau, A.M. Bruce, F. Camera, W.N. Catford, I.J. Cullen, Z. Dombrádi, E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, A. Jungclaus, M. Kmiecik, F.G. Kondev, T. Kurtukian-Nieto, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, M. Pfützner, S. Schwertel, T. Shizuma, A.J. Simons, P.M. Walker, O. Wieland, Isomeric states in neutron-deficient \(a~80\text{- }90\) nuclei populated in the fragmentation of \(^{107}{{\rm Ag}}\). Phys. Rev. C 80, 064303 (2009). https://doi.org/10.1103/PhysRevC.80.064303

    Article  ADS  Google Scholar 

  95. L. van Wormer, J. Görres, C. Iliadis, M. Wiescher, F.-K. Thielemann, Reaction rates and reaction sequences in the rp-process. ApJ 432, 326 (1994). https://doi.org/10.1086/174572

    Article  ADS  Google Scholar 

  96. J.L. Fisker, H. Schatz, F.-K. Thielemann, Explosive hydrogen burning during type i x-ray bursts. Astrophys. J. Suppl. Ser. 174(1), 261 (2008). https://doi.org/10.1086/521104

    Article  ADS  Google Scholar 

  97. P. Mohr, Nucleosynthesis of \(^{92}\text{ Nb }\) and the relevance of the low-lying isomer at 135.5 kev. Phys. Rev. C 93, 065804 (2016). https://doi.org/10.1103/PhysRevC.93.065804

    Article  ADS  Google Scholar 

  98. G. Lorusso, A. Becerril, A. Amthor, T. Baumann, D. Bazin, J.S. Berryman, B.A. Brown, R.H. Cyburt, H.L. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P.F. Mantica, M. Matos, R. Meharchand, K. Minamisono, F. Montes, G. Perdikakis, J. Pereira, M. Portillo, H. Schatz, K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers, Half-lives of ground and isomeric states in 97cd and the astrophysical origin of 96ru. Phys. Lett. B 699(3), 141–144 (2011). https://doi.org/10.1016/j.physletb.2011.03.043

    Article  ADS  Google Scholar 

  99. N. Gerken, S. Almaraz-Calderon, B.W. Asher, E. Lopez-Saveedra, L.T. Baby, K.W. Kemper, A. Morelock, J.F. Perello, A. Volya, I. Wiedenhöver, Experimental study of the \(^{24}\text{ Na}^{m}(d, p)^{25}\text{ Na }\) reaction and implications for the influence of the \(^{24}\text{ Al}^{m}\) isomer on \(rp\)-process nucleosynthesis. Phys. Rev. C 104, 065807 (2021). https://doi.org/10.1103/PhysRevC.104.065807

    Article  ADS  Google Scholar 

  100. A.D. Becerril, G. Lorusso, A.M. Amthor, T. Baumann, D. Bazin, J.S. Berryman, B.A. Brown, H.L. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P.F. Mantica, M. Matos, R. Meharchand, K. Minamisono, F. Montes, G. Perdikakis, J. Pereira, M. Portillo, H. Schatz, K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers, High-spin \({\mu }\)s isomeric states in \({}^{96}\)ag. Phys. Rev. C 84, 041303 (2011). https://doi.org/10.1103/PhysRevC.84.041303

    Article  ADS  Google Scholar 

  101. A. Kankainen, V.-V. Elomaa, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, T. Kessler, V.S. Kolhinen, I.D. Moore, S. Rahaman, M. Reponen, J. Rissanen, A. Saastamoinen, C. Weber, J. Äystö, Mass measurements in the vicinity of the doubly magic waiting point \(^{56}{{\rm Ni}}\). Phys. Rev. C 82, 034311 (2010). https://doi.org/10.1103/PhysRevC.82.034311

    Article  ADS  Google Scholar 

  102. J. Fallis, J.A. Clark, K.S. Sharma, G. Savard, F. Buchinger, S. Caldwell, A. Chaudhuri, J.E. Crawford, C.M. Deibel, S. Gulick, A.A. Hecht, D. Lascar, J.K.P. Lee, A.F. Levand, G. Li, B.F. Lundgren, A. Parikh, S. Russell, M. Vorst, N.D. Scielzo, R.E. Segel, H. Sharma, S. Sinha, M.G. Sternberg, T. Sun, I. Tanihata, J. Van Schelt, J.C. Wang, Y. Wang, C. Wrede, Z. Zhou, Mass measurements of isotopes of nb, mo, tc, ru, and rh along the \({\nu }p\)- and \(rp\)-process paths using the Canadian penning trap mass spectrometer. Phys. Rev. C 84, 045807 (2011). https://doi.org/10.1103/PhysRevC.84.045807

    Article  ADS  Google Scholar 

  103. A. Kankainen, Y.N. Novikov, M. Oinonen, L. Batist, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, P. Karvonen, M. Reponen, J. Rissanen, A. Saastamoinen, G. Vorobjev, C. Weber, J. Äystö, Isomer and decay studies for the rp process at IGISOL. Eur. Phys. J. A 48, 49 (2012). https://doi.org/10.1140/epja/i2012-12049-x

    Article  ADS  Google Scholar 

  104. X.L. Yan, H.S. Xu, Y.A. Litvinov, Y.H. Zhang, H. Schatz, X.L. Tu, K. Blaum, X.H. Zhou, B.H. Sun, J.J. He, Y. Sun, M. Wang, Y.J. Yuan, J.W. Xia, J.C. Yang, G. Audi, G.B. Jia, Z.G. Hu, X.W. Ma, R.S. Mao, B. Mei, P. Shuai, Z.Y. Sun, S.T. Wang, G.Q. Xiao, X. Xu, T. Yamaguchi, Y. Yamaguchi, Y.D. Zang, H.W. Zhao, T.C. Zhao, W. Zhang, W.L. Zhan, Mass measurement of 45cr and its impact on the ca-sc cycle in x-ray bursts. Astrophys. J. Lett. 766(1), 8 (2013). https://doi.org/10.1088/2041-8205/766/1/L8

    Article  ADS  Google Scholar 

  105. K. Kaneko, Y. Sun, M. Hasegawa, T. Mizusaki, Structure of upper-\({g}_{9/2}\)-shell nuclei and shape effect in the \(^{94}{{\rm Ag}}\) isomeric states. Phys. Rev. C 77, 064304 (2008). https://doi.org/10.1103/PhysRevC.77.064304

    Article  ADS  Google Scholar 

  106. J. Park, R. Krücken, D. Lubos, R. Gernhäuser, M. Lewitowicz, S. Nishimura, D.S. Ahn, H. Baba, B. Blank, A. Blazhev, P. Boutachkov, F. Browne, I. Celikovi, G. France, P. Doornenbal, T. Faestermann, Y. Fang, N. Fukuda, J. Giovinazzo, N. Goel, M. Górska, H. Grawe, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, G.D. Kim, Y.-K. Kim, I. Kojouharov, T. Kubo, N. Kurz, G. Lorusso, K. Moschner, D. Murai, I. Nishizuka, Z. Patel, M.M. Rajabali, S. Rice, H. Sakurai, H. Schaffner, Y. Shimizu, L. Sinclair, P.-A. Söderström, K. Steiger, T. Sumikama, H. Suzuki, H. Takeda, Z. Wang, H. Watanabe, J. Wu, Z.Y. Xu, Properties of \({\gamma }\)-decaying isomers and isomeric ratios in the \(^{100}{{\rm Sn}}\) region. Phys. Rev. C 96, 044311 (2017). https://doi.org/10.1103/PhysRevC.96.044311

    Article  ADS  Google Scholar 

  107. C. Hornung, D. Amanbayev, I. Dedes, G. Kripko-Koncz, I. Miskun, N. Shimizu, S. Ayet SanAndrés, J. Bergmann, T. Dickel, J. Dudek, J. Ebert, H. Geissel, M. Górska, H. Grawe, F. Greiner, E. Haettner, T. Otsuka, W.R. Plass, S. Purushothaman, A.-K. Rink, C. Scheidenberger, H. Weick, S. Bagchi, A. Blazhev, O. Charviakova, D. Curien, A. Finlay, S. Kaur, W. Lippert, J.-H. Otto, Z. Patyk, S. Pietri, Y.K. Tanaka, Y. Tsunoda, J.S. Winfield, Isomer studies in the vicinity of the doubly-magic nucleus \(^{100}\)Sn: Observation of a new low-lying isomeric state in \(^{97}\)Ag. Phys. Lett. B 802, 135200 (2020). https://doi.org/10.1016/j.physletb.2020.135200

    Article  Google Scholar 

  108. C.J. Horowitz, A. Arcones, B. Côté, I. Dillmann, W. Nazarewicz, I.U. Roederer, H. Schatz, A. Aprahamian, D. Atanasov, A. Bauswein, T.C. Beers, J. Bliss, M. Brodeur, J.A. Clark, A. Frebel, F. Foucart, C.J. Hansen, O. Just, A. Kankainen, G.C. McLaughlin, J.M. Kelly, S.N. Liddick, D.M. Lee, J. Lippuner, D. Martin, J. Mendoza-Temis, B.D. Metzger, M.R. Mumpower, G. Perdikakis, J. Pereira, B.W. O’Shea, R. Reifarth, A.M. Rogers, D.M. Siegel, A. Spyrou, R. Surman, X. Tang, T. Uesaka, M. Wang, r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J. Phys. G: Nucl. Phys. 46(8), 083001 (2019). https://doi.org/10.1088/1361-6471/ab0849. arXiv:1805.04637 [astro-ph.SR]

    Article  ADS  Google Scholar 

  109. T. Kajino, W. Aoki, A.B. Balantekin, R. Diehl, M.A. Famiano, G.J. Mathews, Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys. 107, 109–166 (2019). https://doi.org/10.1016/j.ppnp.2019.02.008

    Article  ADS  Google Scholar 

  110. D.E.M. Hoff, K. Kolos, G.W. Misch, D. Ray, B. Liu, A.A. Valverde, M. Brodeur, D.P. Burdette, N. Callahan, J.A. Clark, A.T. Gallant, F.G. Kondev, G.E. Morgan, M.R. Mumpower, R. Orford, W.S. Porter, F. Rivero, G. Savard, N.D. Scielzo, K.S. Sharma, K. Sieja, T.M. Sprouse, L. Varriano, Direct mass measurements to inform the behavior of \(^{128\text{ m }}\text{ Sb }\) in nucleosynthetic environments. Phys. Rev. Lett. 131, 262701 (2023). https://doi.org/10.1103/PhysRevLett.131.262701

    Article  ADS  Google Scholar 

  111. T. Shizuma, Nuclear isomer research with photons (2002)

  112. D. Belic, C. Arlandini, J. Besserer, J. De Boer, J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl et al., Photoactivation of 180 ta m and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope. Phys. Rev. Lett. 83(25), 5242 (1999)

    Article  ADS  Google Scholar 

  113. D. Belic, C. Arlandini, J. Besserer, J. De Boer, J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl et al., Photo-induced depopulation of the 180 ta m isomer via low-lying intermediate states: structure and astrophysical implications. Phys. Rev. C 65(3), 035801 (2002)

    Article  ADS  Google Scholar 

  114. P. Mohr, F. Käppeler, R. Gallino, Survival of nature’s rarest isotope ta 180 under stellar conditions. Phys. Rev. C 75(1), 012802 (2007)

    Article  ADS  Google Scholar 

  115. T. Hayakawa, T. Kajino, S. Chiba, G. Mathews, New estimate for the time-dependent thermal nucleosynthesis of ta 180 m. Phys. Rev. C 81(5), 052801 (2010)

    Article  ADS  Google Scholar 

  116. S. Bisterzo, R. Gallino, F. Käppeler, M. Wiescher, G. Imbriani, O. Straniero, S. Cristallo, J. Görres, R.J. deBoer, The branchings of the main s-process: their sensitivity to \(\alpha\)-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 449(1), 506–527 (2015). https://doi.org/10.1093/mnras/stv271

    Article  ADS  Google Scholar 

  117. B. Brown, W. Rae, The shell-model code nushellx@ msu. Nucl. Data Sheets 120, 115–118 (2014)

    Article  ADS  Google Scholar 

  118. C.W. Johnson, W.E. Ormand, P.G. Krastev, Comp. Phys. Comm. 184, 2761–2774 (2013)

  119. C.W. Johnson, W.E. Ormand, K.S. McElvain, H.Z. Shan, UCRLnumber LLNL-SM-739926, arXiv:1801.08432

  120. K. Hara, Y. Sun, Projected shell model and high-spin spectroscopy. Int. J. Mod. Phys. E 04(04), 637–785 (1995). https://doi.org/10.1142/S0218301395000250

    Article  ADS  Google Scholar 

  121. Y. Sun, Theoretical description of K-isomers. AIP Conf. Proc. 819(1), 30–34 (2006). https://doi.org/10.1063/1.2187831

    Article  ADS  Google Scholar 

  122. Y. Sun, Projected shell model description for nuclear isomers (2008)

  123. L.-J. Wang, Y. Sun, Z.-C. Gao, S. KiranGhorui, Projected shell model for Gamow–Teller transitions in heavy, deformed nuclei. Eur. Phys. J. Web Conf. 109, 05001 (2016). https://doi.org/10.1051/epjconf/201610905001

    Article  Google Scholar 

  124. G.X. Zhang, H. Watanabe, G.D. Dracoulis, F.G. Kondev, G.J. Lane, P.H. Regan, P.-A. Söderström, P.M. Walker, K. Yoshida, H. Kanaoka, Z. Korkulu, P.S. Lee, J.J. Liu, S. Nishimura, J. Wu, A. Yagi, D.S. Ahn, T. Alharbi, H. Baba, F. Browne, A.M. Bruce, M.P. Carpenter, R.J. Carroll, K.Y. Chae, C.J. Chiara, Z. Dombradi, P. Doornenbal, A. Estrade, N. Fukuda, C. Griffin, E. Ideguchi, N. Inabe, T. Isobe, S. Kanaya, I. Kojouharov, T. Kubo, S. Kubono, N. Kurz, I. Kuti, S. Lalkovski, T. Lauritsen, C.S. Lee, E.J. Lee, C.J. Lister, G. Lorusso, G. Lotay, E.A. McCutchan, C.-B. Moon, I. Nishizuka, C.R. Nita, A. Odahara, Z. Patel, V.H. Phong, Z. Podolyák, O.J. Roberts, H. Sakurai, H. Schaffner, D. Seweryniak, C.M. Shand, Y. Shimizu, T. Sumikama, H. Suzuki, H. Takeda, S. Terashima, Z. Vajta, J.J. Valiente-Dóbon, Z.Y. Xu, S. Zhu, Interplay of quasiparticle and vibrational excitations: first observation of isomeric states in 168dy and 169dy. Phys. Lett. B 799, 135036 (2019). https://doi.org/10.1016/j.physletb.2019.135036

    Article  Google Scholar 

  125. T. Masuda, A. Yoshimi, A. Fujieda, H. Fujimoto, H. Haba, H. Hara, T. Hiraki, H. Kaino, Y. Kasamatsu, S. Kitao et al., X-ray pumping of the 229th nuclear clock isomer. Nature 573(7773), 238–242 (2019)

    Article  ADS  Google Scholar 

  126. T. Sikorsky, J. Geist, D. Hengstler, S. Kempf, L. Gastaldo, C. Enss, C. Mokry, J. Runke, C.E. Düllmann, P. Wobrauschek et al., Measurement of the th 229 isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125(14), 142503 (2020)

    Article  ADS  Google Scholar 

  127. J. Liu, J. Lee, H. Watanabe, S. Nishimura, G. Zhang, J. Wu, P. Walker, P. Regan, P.-A. Söderström, H. Kanaoka et al., Isomeric and \(\beta\)-decay spectroscopy of ho 173, 174. Phys. Rev. C 102(2), 024301 (2020)

    Article  ADS  Google Scholar 

  128. P. Walker, Y. Hirayama, G. Lane, H. Watanabe, G. Dracoulis, M. Ahmed, M. Brunet, T. Hashimoto, S. Ishizawa, F. Kondev et al., Properties of ta 187 revealed through isomeric decay. Phys. Rev. Lett. 125(19), 192505 (2020)

    Article  ADS  Google Scholar 

  129. V. Manea et al., First glimpse of the N = 82 shell closure below Z = 50 from masses of neutron-rich cadmium isotopes and isomers. Phys. Rev. Lett. 124(9), 092502 (2020)

    Article  ADS  Google Scholar 

  130. R. Orford, F.G. Kondev, G. Savard, J.A. Clark, W.S. Porter, D. Ray, F. Buchinger, M.T. Burkey, D.A. Gorelov, D.J. Hartley, J.W. Klimes, K.S. Sharma, A.A. Valverde, X.L. Yan, Spin-trap isomers in deformed, odd-odd nuclei in the light rare-earth region near \(n=98\). Phys. Rev. C 102, 011303 (2020). https://doi.org/10.1103/PhysRevC.102.011303

    Article  ADS  Google Scholar 

  131. D.A. Nesterenko, A. Kankainen, J. Kostensalo, C.R. Nobs, A.M. Bruce, O. Beliuskina, L. Canete, T. Eronen, E.R. Gamba, S. Geldhof, R. de Groote, A. Jokinen, J. Kurpeta, I.D. Moore, L. Morrison, Z. Podolyák, I. Pohjalainen, S. Rinta-Antila, A. de Roubin, M. Rudigier, J. Suhonen, M. Vilén, V. Virtanen, J. Äystö, Novel Penning-trap techniques reveal isomeric states in \(^{128}\)In and \(^{130}\)In for the first time (2020). arXiv:2005.09398 [nucl-ex] (arXiv e-prints)

  132. L. Lakosi, J. Sáfár, T. Veres Sekine, K. Yoshihara, Photonuclear reactions on 99tc isomer excitation and deexcitation, implications in nucleosynthesis. Radiochim. Acta 63(s1), 23–28 (1993). https://doi.org/10.1524/ract.1993.63.special-issue.23

    Article  Google Scholar 

  133. Z. Ma, C. Fu, W. He, Y. Ma, Manipulation of nuclear isomers with lasers: mechanisms and prospects. Sci. Bull. 67(15), 1526–1529 (2022). https://doi.org/10.1016/j.scib.2022.06.020

    Article  Google Scholar 

  134. J.F. Ong, M.-H. Koh, I.H. Hashim, Nuclear photonics: laser-driven nuclear physics. IOP Conf. Ser. Mater. Sci. Eng. 1285(1), 012003 (2023). https://doi.org/10.1088/1757-899X/1285/1/012003

    Article  Google Scholar 

  135. C.-B. Moon, A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea. AIP Adv. 4(4), 041001 (2014). https://doi.org/10.1063/1.4863943

    Article  ADS  Google Scholar 

  136. A. Jungclaus, L. Caceres, M. Gorska, M. Pfutzner, S. Pietri, E. Werner-Malento, H. Grawe, K. Langanke, G. Martinez-Pinedo, F. Nowacki, A. Poves, J.J. Cuenca-Garcia, D. Rudolph, Z. Podolyak, P.H. Regan, P. Detistov, S. Lalkovski, V. Modamio, J. Walker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casarejos, B. Cederwall, F.C. Crespi, B. Hadinia, M. Hellstrom, R. Hoischen, G. Ilie, J. Jolie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G.S. Simpson, S.J. Steer, S. Tashenov, O. Wieland, Observation of isomeric decays in the r-process waiting-point nucleus cd-130(82). Phys. Rev. Lett. 99, 13 (2007). https://doi.org/10.1103/PhysRevLett.99.132501

    Article  Google Scholar 

  137. M. Pfützner, R. Grzywacz, M. Lewitowicz, K. Rykaczewski, Experiments with isomeric beams. Nucl. Phys. A 626(1), 259–262 (1997). https://doi.org/10.1016/S0375-9474(97)00544-7

    Article  ADS  Google Scholar 

  138. K. Rykaczewski, R. Grzywacz, M. Lewitowicz, M. Pfützner, New \(\mu\)s-isomers and isomeric beams. Nucl. Phys. A 630(1), 307–315 (1998). https://doi.org/10.1016/S0375-9474(97)00768-9. (Nucleus-Nucleus Collisions)

    Article  ADS  Google Scholar 

  139. D. Santiago-Gonzalez, K. Auranen, M.L. Avila, A.D. Ayangeakaa, B.B. Back, S. Bottoni, M.P. Carpenter, J. Chen, C.M. Deibel, A.A. Hood, C.R. Hoffman, R.V.F. Janssens, C.L. Jiang, B.P. Kay, S.A. Kuvin, A. Lauer, J.P. Schiffer, J. Sethi, R. Talwar, I. Wiedenhöver, J. Winkelbauer, S. Zhu, Probing the single-particle character of rotational states in \(^{19}{{\rm F}}\) using a short-lived isomeric beam. Phys. Rev. Lett. 120, 122503 (2018). https://doi.org/10.1103/PhysRevLett.120.122503

    Article  ADS  Google Scholar 

  140. B.W. Asher, S. Almaraz-Calderon, O. Nusair, K.E. Rehm, M.L. Avila, A.A. Chen, C.A. Dickerson, C.L. Jiang, B.P. Kay, R.C. Pardo, D. Santiago-Gonzalez, R. Talwar, Development of an isomeric beam of26al for nuclear reaction studies. Nucl. Instrum. Methods Phys. Res. Sect. A 899, 6–9 (2018). https://doi.org/10.1016/j.nima.2018.05.015

    Article  ADS  Google Scholar 

  141. S. Ayet San Andrés, C. Hornung, J. Ebert, W.R. Plaß, T. Dickel, H. Geissel, C. Scheidenberger, J. Bergmann, F. Greiner, E. Haettner, C. Jesch, W. Lippert, I. Mardor, I. Miskun, Z. Patyk, S. Pietri, A. Pihktelev, S. Purushothaman, M.P. Reiter, A.-K. Rink, H. Weick, M.I. Yavor, S. Bagchi, V. Charviakova, P. Constantin, M. Diwisch, A. Finlay, S. Kaur, R. Knöbel, J. Lang, B. Mei, I.D. Moore, J.-H. Otto, I. Pohjalainen, A. Prochazka, C. Rappold, M. Takechi, Y.K. Tanaka, J.S. Winfield, X. Xu, High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states. Phys. Rev. C 99, 064313 (2019). https://doi.org/10.1103/PhysRevC.99.064313

    Article  ADS  Google Scholar 

  142. Z. Nemeth, F. Kaeppeler, C. Theis, T. Belgya, S.W. Yates, Nucleosynthesis in the Cd-In-Sn region. ApJ 426, 357 (1994). https://doi.org/10.1086/174071

    Article  ADS  Google Scholar 

  143. G. Lotay, A. Lennarz, C. Ruiz, C. Akers, A.A. Chen, G. Christian, D. Connolly, B. Davids, T. Davinson, J. Fallis, D.A. Hutcheon, P. Machule, L. Martin, D.J. Mountford, A.S.J. Murphy, Radiative capture on nuclear isomers: direct measurement of the \(^{26m}\text{ Al }(p,{\gamma })^{27}\text{ Si }\) reaction. Phys. Rev. Lett. 128, 042701 (2022). https://doi.org/10.1103/PhysRevLett.128.042701

    Article  ADS  Google Scholar 

  144. A.K. Jain, B. Maheshwari, S. Garg, M. Patial, B. Singh, Atlas of nuclear isomers. Nucl. Data Sheets 128, 1–130 (2015). https://doi.org/10.1016/j.nds.2015.08.001

    Article  ADS  Google Scholar 

  145. S. Garg, B. Maheshwari, B. Singh, Y. Sun, A. Goel, A.K. Jain, Atlas of nuclear isomers–second edition. At. Data Nucl. Data Tables 150, 101546 (2023). https://doi.org/10.1016/j.adt.2022.101546

    Article  Google Scholar 

  146. H.L. Crawford, K. Fossez, S. König, A. Spyrou, A vision for the science of rare isotopes (2023)

Download references

Acknowledgements

LANL is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This work was partially supported by the Los Alamos National Laboratory (LANL) through its Center for Space and Earth Science (CSES). CSES is funded by LANL’s Laboratory Directed Research and Development (LDRD) program under project number 20240477CR-SES. This work was partially supported by LANL’s Laboratory Directed Research and Development (LDRD) program under project number 20230052ER. M. R. M. acknowledges support from the Directed Asymmetric Network Graphs for Research (DANGR) initiative at LANL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wendell Misch.

Additional information

This article is intended for unlimited release under LA-UR-24-20183.

Appendix: Known missing data

Appendix: Known missing data

Many isotopes with isomers are known to have incomplete data. Table 1 summarizes missing data for nuclear isomers, not necessarily astromers; this information underlies Fig. 5. Before one can determine whether the particular state acts as an astromer, a substantial amount of data is required. Determining whether an astromer meaningfully affects its host isotope’s behavior requires even more. This table should serve as a starting point for exploration.

Table 1 Experimental data known to be missing. An “X” denotes that the data in the corresponding category is incomplete for that isotope. “Mass” refers to the isomer energy. “\(\gamma\)” is important \(\gamma\) transition rates identified in Misch et al. [54] (that work only examined neutron-rich isotopes of interest in the r process), and “Branching” means that decay feeding from a parent nucleus is incomplete. The “Started” column indicates whether experimental work is known by the authors to have been initiated

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misch, G.W., Mumpower, M.R. Astromers: status and prospects. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01136-z

Navigation