Skip to main content
Log in

Theoretical studies of collective rotations of deformed high-K isomers

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article, we have reviewed our theoretical studies of collective rotations of high-K isomers in deformed nuclei. As one of methods which we have developed, the configuration-constrained total Routhian surface (CCTRS) based on a macroscopic–microscopic model has been found to be a powerful theoretical tool to describe isomers and their collective rotations. The CCTRS calculation provides a straightforward self-consistent way to determine the deformation which can change with increasing the collective rotational frequency and/or seniority of the state. To overcome the pairing collapse of numerical calculations encountered in the conventional pairing approach (e.g., BCS or Bogoliubov pairing) due to weakened pairings with unpaired nucleons in isomeric states, we have developed the CCTRS method using the particle-number-conserved (PNC) pairing approach in which the pairing is treated with the methodology of the many-body shell model. The CCTRS is calculated in a deformation lattice with the deformation parameters (\(\beta _2\), \(\gamma \), \(\beta _4\)). It is important that one should constrain the specific configuration in the CCTRS calculation, which has been achieved using the average Nilsson numbers to identify and track the single-particle orbitals specified in the intrinsic configuration of the isomer. With the CCTRS method, we have investigated many isomeric states and their rotational bands. As examples, we show in this review the calculations of collective rotational bands of isomers in rare-earth nuclei where rich data have been available. Furthermore, we have also developed a full microscopic configuration-constrained cranking model based on the Skyrme Hartree–Fock approach. Similar to the macroscopic–microscopic CCTRS, the pairing is treated by the PNC method to avoid the pairing collapse in pairing numerical calculations. As example, we show in this review the calculations of the rotational bands of \(^{178}\)W isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The isomers and their collective rotational bands of mass-170 nuclei have been investigated, where rich experimental data have been available.

References

  1. P. Walker, Z. Podolyák, 100 years of nuclear isomers-then and now. Phys. Scr. 95(4), 044004 (2020). https://doi.org/10.1088/1402-4896/ab635d

    Article  ADS  Google Scholar 

  2. S. Hofmann, F.P. Heßberger, D. Ackermann, S. Antalic, P. Cagarda, S. Ćwiok, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Münzenberg, A.G. Popeko, S. Saro, H.J. Schött, A.V. Yeremin, The new isotope \({}^{270}110\) and its decay products \({}^{266}\)Hs and \({}^{262}\)Sg. Eur. Phys. J. A 10(1), 5–10 (2001). https://doi.org/10.1007/s100500170137

    Article  ADS  Google Scholar 

  3. F.R. Xu, E.G. Zhao, R. Wyss, P.M. Walker, Enhanced stability of superheavy nuclei due to high-spin isomerism. Phys. Rev. Lett. 92, 252501 (2004). https://doi.org/10.1103/PhysRevLett.92.252501

    Article  ADS  Google Scholar 

  4. R.D. Herzberg, P.T. Greenlees, P.A. Butler, G.D. Jones, M. Venhart, I.G. Darby, S. Eeckhaudt, K. Eskola, T. Grahn, C. Gray-Jones, F.P. Hessberger, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, W. Korten, M. Leino, A.P. Leppänen, S. Moon, M. Nyman, R.D. Page, J. Pakarinen, A. Pritchard, P. Rahkila, J. Sarén, C. Scholey, A. Steer, Y. Sun, C. Theisen, J. Uusitalo, Nuclear isomers in superheavy elements as stepping stones towards the island of stability. Nature 442(7105), 896–899 (2006). https://doi.org/10.1038/nature05069

    Article  ADS  Google Scholar 

  5. H.L. Liu, F.R. Xu, S.W. Xu, R. Wyss, P.M. Walker, High-spin isomeric structures in exotic odd–odd nuclei: exploration of the proton drip line and beyond. Phys. Rev. C 76, 034313 (2007). https://doi.org/10.1103/PhysRevC.76.034313

    Article  ADS  Google Scholar 

  6. H.L. Liu, F.R. Xu, Y. Sun, P.M. Walker, R. Wyss, On the stability of high-\(K\) isomers in the second well of actinide nuclei. Eur. Phys. J. A 47(11), 135 (2011). https://doi.org/10.1140/epja/i2011-11135-y

    Article  ADS  Google Scholar 

  7. P.M. Walker, F.R. Xu, H.L. Liu, Y. Sun, On the possibility of enhanced fission stability for broken-pair excitations. J. Phys. G Nucl. Part. Phys. 39(10), 105106 (2012). https://doi.org/10.1088/0954-3899/39/10/105106

    Article  ADS  Google Scholar 

  8. Y. Shi, F.R. Xu, P.M. Walker, G.D. Dracoulis, Superdeformed multi-quasiparticle high-\(K\) states and possible isomers in Pb and Po isotopes. Phys. Rev. C 85, 064304 (2012). https://doi.org/10.1103/PhysRevC.85.064304

    Article  ADS  Google Scholar 

  9. H.Y. Lan, D. Wu, J.X. Liu, J.Y. Zhang, H.G. Lu, J.F. Lv, X.Z. Wu, W. Luo, X.Q. Yan, Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-Wakefield electrons. Nucl. Sci. Tech. 34(5), 74 (2023). https://doi.org/10.1007/s41365-023-01219-x

    Article  Google Scholar 

  10. W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, I. Ragnarsson, Microscopic study of the high-spin behaviour in selected \({A}\simeq \) 80 nuclei. Nucl. Phys. A 435(2), 397–447 (1985). https://doi.org/10.1016/0375-9474(85)90471-3

    Article  ADS  Google Scholar 

  11. R. Wyss, J. Nyberg, A. Johnson, R. Bengtsson, W. Nazarewicz, Highly deformed intruder bands in the \({A}\approx \) 130 mass region. Phys. Lett. B 215(2), 211–217 (1988). https://doi.org/10.1016/0370-2693(88)91422-0

    Article  ADS  Google Scholar 

  12. W. Nazarewicz, R. Wyss, A. Johnson, Structure of superdeformed bands in the \({A} \approx \) 150 mass region. Nucl. Phys. A 503(2), 285–330 (1989). https://doi.org/10.1016/0375-9474(89)90238-8

    Article  ADS  Google Scholar 

  13. W. Satuła, R. Wyss, P. Magierski, The Lipkin–Nogami formalism for the cranked mean field. Nucl. Phys. A 578(1), 45–61 (1994). https://doi.org/10.1016/0375-9474(94)90968-7

    Article  ADS  Google Scholar 

  14. F. Xu, W. Satuła, R. Wyss, Quadrupole pairing interaction and signature inversion. Nucl. Phys. A 669(1), 119–134 (2000). https://doi.org/10.1016/S0375-9474(99)00817-9

    Article  ADS  Google Scholar 

  15. F.R. Xu, P.M. Walker, R. Wyss, Limit to high-spin isomerism in hafnium isotopes. Phys. Rev. C 62, 014301 (2000). https://doi.org/10.1103/PhysRevC.62.014301

    Article  ADS  Google Scholar 

  16. F.R. Xu, P.M. Walker, R. Wyss, Oblate stability of \({A}\approx 110\) nuclei near the r-process path. Phys. Rev. C 65, 021303 (2002). https://doi.org/10.1103/PhysRevC.65.021303

    Article  ADS  Google Scholar 

  17. R. Wyss, W. Satuła, Blocking effects at super-deformed shape. Phys. Lett. B 351(4), 393–399 (1995). https://doi.org/10.1016/0370-2693(95)00439-R

    Article  ADS  Google Scholar 

  18. J. Zeng, T. Cheng, Particle-number-conserving method for treating the nuclear pairing correlation. Nucl. Phys. A 405(1), 1–28 (1983). https://doi.org/10.1016/0375-9474(83)90320-2

    Article  ADS  Google Scholar 

  19. J.Y. Zeng, T.H. Jin, Z.J. Zhao, Reduction of nuclear moment of inertia due to pairing interaction. Phys. Rev. C 50, 1388–1397 (1994). https://doi.org/10.1103/PhysRevC.50.1388

    Article  ADS  Google Scholar 

  20. J.Y. Zeng, S.X. Liu, L.X. Gong, H.B. Zhu, Blocking effect and the moments of inertia of high-\(K\) multiquasiparticle bands in \({}^{172,173,174,175}\rm Hf \). Phys. Rev. C 65, 044307 (2002). https://doi.org/10.1103/PhysRevC.65.044307

    Article  ADS  Google Scholar 

  21. X. Wu, Z.H. Zhang, J.Y. Zeng, Y.A. Lei, Nuclear pairing reduction due to rotation and blocking. Phys. Rev. C 83, 034323 (2011). https://doi.org/10.1103/PhysRevC.83.034323

    Article  ADS  Google Scholar 

  22. X.M. Fu, F.R. Xu, J.C. Pei, C.F. Jiao, Y. Shi, Z.H. Zhang, Y.A. Lei, Configuration-constrained total Routhian surfaces with particle-number-conserving pairing. Phys. Rev. C 87, 044319 (2013). https://doi.org/10.1103/PhysRevC.87.044319

    Article  ADS  Google Scholar 

  23. X.M. Fu, F.R. Xu, C.F. Jiao, W.Y. Liang, J.C. Pei, H.L. Liu, Irregularity in \({K}^{\pi }={8}^{-}\) rotational bands of \({N}=150\) isotones. Phys. Rev. C 89, 054301 (2014). https://doi.org/10.1103/PhysRevC.89.054301

    Article  ADS  Google Scholar 

  24. W.Y. Liang, C.F. Jiao, Q. Wu, X.M. Fu, F.R. Xu, Configuration-constrained cranking Hartree–Fock pairing calculations for sidebands of nuclei. Phys. Rev. C 92, 064325 (2015). https://doi.org/10.1103/PhysRevC.92.064325

    Article  ADS  Google Scholar 

  25. Z.H. Zhang, Y.A. Lei, J.Y. Zeng, Particle-number conserving analysis for the systematics of high-\(K\) pair-broken bands in hf and lu isotopes \((170\leqslant A\leqslant 178)\). Phys. Rev. C 80, 034313 (2009). https://doi.org/10.1103/PhysRevC.80.034313

    Article  ADS  Google Scholar 

  26. Z.H. Zhang, X.T. He, J.Y. Zeng, E.G. Zhao, S.G. Zhou, Systematic investigation of the rotational bands in nuclei with \(Z\approx 100\) using a particle-number conserving method based on a cranked shell model. Phys. Rev. C 85, 014324 (2012). https://doi.org/10.1103/PhysRevC.85.014324

    Article  ADS  Google Scholar 

  27. Z.H. Zhang, Systematic investigation of the high-\(K\) isomers and the high-spin rotational bands in the neutron-rich Nd and Sm isotopes by a particle-number conserving method. Phys. Rev. C 98, 034304 (2018). https://doi.org/10.1103/PhysRevC.98.034304

    Article  ADS  Google Scholar 

  28. X.T. He, Y.C. Li, Insight into nuclear midshell structures by studying \(K\) isomers in rare-earth neutron-rich nuclei. Phys. Rev. C 98, 064314 (2018). https://doi.org/10.1103/PhysRevC.98.064314

    Article  ADS  Google Scholar 

  29. S.Y. Liu, M. Huang, Z.H. Zhang, Configuration and bandhead spin assignments for the two-quasiparticle rotational bands in the neutron-rich nuclei \(^{154,156}\rm Pm \). Phys. Rev. C 100, 064307 (2019). https://doi.org/10.1103/PhysRevC.100.064307

    Article  ADS  Google Scholar 

  30. X.T. He, S.Y. Zhao, Z.H. Zhang, Z.Z. Ren, High-\(K\) multi-particle bands and pairing reduction in \(^{254}\)No\(^*\). Chin. Phys. C 44(3), 034106 (2020). https://doi.org/10.1088/1674-1137/44/3/034106

    Article  ADS  Google Scholar 

  31. Z.H. Zhang, M. Huang, A.V. Afanasjev, Rotational excitations in rare-earth nuclei: a comparative study within three cranking models with different mean fields and treatments of pairing correlations. Phys. Rev. C 101, 054303 (2020). https://doi.org/10.1103/PhysRevC.101.054303

    Article  ADS  Google Scholar 

  32. A.C. Dai, F.R. Xu, Configuration-constrained calculations of high-\(K\) rotational bands in even-even isotones around \(N\) = 100. Chin. Sci. Bull. 64(21), 2191–2198 (2019). https://doi.org/10.1360/TB-2019-0044

    Article  Google Scholar 

  33. W.D. Myers, W.J. Swiatecki, Nuclear masses and deformations. Nucl. Phys. 81(1), 1–60 (1966). https://doi.org/10.1016/0029-5582(66)90639-0

    Article  Google Scholar 

  34. F.R. Xu, P.M. Walker, J.A. Sheikh, R. Wyss, Multi-quasiparticle potential-energy surfaces. Phys. Lett. B 435(3), 257–263 (1998). https://doi.org/10.1016/S0370-2693(98)00857-0

    Article  ADS  Google Scholar 

  35. J. Dudek, Z. Szymański, T. Werner, Woods–Saxon potential parameters optimized to the high spin spectra in the lead region. Phys. Rev. C 23, 920–925 (1981). https://doi.org/10.1103/PhysRevC.23.920

    Article  ADS  Google Scholar 

  36. D.G. Madland, J. Nix, New model of the average neutron and proton pairing gaps. Nucl. Phys. A 476(1), 1–38 (1988). https://doi.org/10.1016/0375-9474(88)90370-3

    Article  ADS  Google Scholar 

  37. F.R. Xu, R. Wyss, P.M. Walker, Mean-field and blocking effects on odd–even mass differences and rotational motion of nuclei. Phys. Rev. C 60, 051301 (1999). https://doi.org/10.1103/PhysRevC.60.051301

    Article  ADS  Google Scholar 

  38. C.S. Purry, P.M. Walker, G.D. Dracoulis, T. Kibédi, S. Bayer, A.M. Bruce, A.P. Byrne, M. Dasgupta, W. Gelletly, F. Kondev, P.H. Regan, C. Thwaites, Rotation of an eight-quasiparticle isomer. Phys. Rev. Lett. 75, 406–409 (1995). https://doi.org/10.1103/PhysRevLett.75.406

    Article  ADS  Google Scholar 

  39. C. Purry, P. Walker, G. Dracoulis, T. Kibédi, F. Kondev, S. Bayer, A. Bruce, A. Byrne, W. Gelletly, P. Regan, C. Thwaites, O. Burglin, N. Rowley, Multi-quasiparticle isomers and rotational bands in \({}^{178}\)W. Nucl. Phys. A 632(2), 229–274 (1998). https://doi.org/10.1016/S0375-9474(97)00654-4

    Article  ADS  Google Scholar 

  40. D.M. Cullen, S.L. King, A.T. Reed, J.A. Sampson, P.M. Walker, C. Wheldon, F. Xu, G.D. Dracoulis, I.Y. Lee, A.O. Macchiavelli, R.W. MacLeod, A.N. Wilson, C. Barton, High-\(K\) multiquasiparticle configurations and limiting moments of inertia in \({}^{178}\rm W \). Phys. Rev. C 60, 064301 (1999). https://doi.org/10.1103/PhysRevC.60.064301

    Article  ADS  Google Scholar 

  41. T.L. Khoo, J.C. Waddington, R.A. O’Neil, Z. Preibisz, D.G. Burke, M.W. Johns, Mixing of two-proton bands with two-neutron bands in \(^{176}\)Hf. Phys. Rev. Lett. 28, 1717–1720 (1972). https://doi.org/10.1103/PhysRevLett.28.1717

    Article  ADS  Google Scholar 

  42. T.L. Khoo, F.M. Bernthal, R.A. Warner, G.F. Bertsch, G. Hamilton, Residual interactions in four-quasiparticle \({K}^{\pi }={14}^{-}\) isomer in \(^{176}\rm Hf \). Phys. Rev. Lett. 35, 1256–1259 (1975). https://doi.org/10.1103/PhysRevLett.35.1256

    Article  ADS  Google Scholar 

  43. T.L. Khoo, F.M. Bernthal, R.G.H. Robertson, R.A. Warner, High-spin multiquasiparticle yrast traps in \(^{176}\rm Hf \). Phys. Rev. Lett. 37, 823–826 (1976). https://doi.org/10.1103/PhysRevLett.37.823

    Article  ADS  Google Scholar 

  44. G. Mukherjee, P. Chowdhury, F.G. Kondev, P.M. Walker, G.D. Dracoulis, R. D’Alarcao, I. Shestakova, K. Abu Saleem, I. Ahmad, M.P. Carpenter, A. Heinz, R.V.F. Janssens, T.L. Khoo, T. Lauritsen, C.J. Lister, D. Seweryniak, I. Wiedenhoever, D.M. Cullen, C. Wheldon, D.L. Balabanski, M. Danchev, T.M. Goon, D.J. Hartley, L.L. Riedinger, O. Zeidan, M.A. Riley, R.A. Kaye, G. Sletten, \(K\)-hindered decay of a six-quasiparticle isomer in \(^{176}\rm Hf \). Phys. Rev. C 82, 054316 (2010). https://doi.org/10.1103/PhysRevC.82.054316

    Article  ADS  Google Scholar 

  45. E. Ngijoi-Yogo, S.K. Tandel, G. Mukherjee, I. Shestakova, P. Chowdhury, C.Y. Wu, D. Cline, A.B. Hayes, R. Teng, R.M. Clark, P. Fallon, A.O. Macchiavelli, K. Vetter, F.G. Kondev, S. Langdown, P.M. Walker, C. Wheldon, D.M. Cullen, Collective rotation and vibration in neutron-rich \(^{180,182}\rm Hf \) nuclei. Phys. Rev. C 75, 034305 (2007). https://doi.org/10.1103/PhysRevC.75.034305

    Article  ADS  Google Scholar 

  46. R. D’Alarcao, P. Chowdhury, E.H. Seabury, P.M. Walker, C. Wheldon, I. Ahmad, M.P. Carpenter, G. Hackman, R.V.F. Janssens, T.L. Khoo, C.J. Lister, D. Nisius, P. Reiter, D. Seweryniak, I. Wiedenhoever, High-\(K\) isomers in neutron-rich hafnium nuclei at and beyond the stability line. Phys. Rev. C 59, R1227–R1231 (1999). https://doi.org/10.1103/PhysRevC.59.R1227

    Article  ADS  Google Scholar 

  47. M.W. Reed, I.J. Cullen, P.M. Walker, Y.A. Litvinov, K. Blaum, F. Bosch, C. Brandau, J.J. Carroll, D.M. Cullen, A.Y. Deo, B. Detwiller, C. Dimopoulou, G.D. Dracoulis, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, W.R. Plass, A. Prochazka, C. Scheidenberger, M. Steck, T. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yamaguchi, Discovery of highly excited long-lived isomers in neutron-rich hafnium and tantalum isotopes through direct mass measurements. Phys. Rev. Lett. 105, 172501 (2010). https://doi.org/10.1103/PhysRevLett.105.172501

    Article  ADS  Google Scholar 

  48. W. Greiner, J.A. Maruhn, Nuclear Models (Springer, Berlin, Heidelberg, 1996). https://doi.org/10.1007/978-3-642-60970-1

    Book  Google Scholar 

  49. J. Dobaczewski, P. Olbratowski, Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version of the program. Comput. Phys. Commun. 158(3), 158–191 (2004). https://doi.org/10.1016/j.cpc.2004.02.003

    Article  ADS  Google Scholar 

  50. S.X. Liu, T. Li, B.R. Chen, Influence of the pairing interaction at ultrahigh spin. Phys. Rev. C 80, 044329 (2009). https://doi.org/10.1103/PhysRevC.80.044329

    Article  ADS  Google Scholar 

  51. W. Satuła, J. Dobaczewski, W. Nazarewicz, Odd–even staggering of nuclear masses: pairing or shape effect? Phys. Rev. Lett. 81, 3599–3602 (1998). https://doi.org/10.1103/PhysRevLett.81.3599

    Article  ADS  Google Scholar 

  52. J. Dobaczewski, J. Dudek, Solution of the Skyrme–Hartree–Fock equations in the Cartesian deformed harmonic oscillator basis II. The program HFODD. Comput. Phys. Commun. 102(1), 183–209 (1997). https://doi.org/10.1016/S0010-4655(97)00005-2

    Article  ADS  Google Scholar 

  53. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities part ii. Nuclei far from stabilities. Nucl. Phys. A 635(1), 231–256 (1998). https://doi.org/10.1016/S0375-9474(98)00180-8

    Article  ADS  Google Scholar 

  54. Y. Shi, J. Dobaczewski, P.T. Greenlees, Rotational properties of nuclei around \(^{254}\rm No \) investigated using a spectroscopic-quality Skyrme energy density functional. Phys. Rev. C 89, 034309 (2014). https://doi.org/10.1103/PhysRevC.89.034309

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grants nos. 12335007, 11835001, 11921006, 12035001. We acknowledge the High-Performance Computing Platform of Peking University for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Xu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F.R., Fu, X.M., Liang, W.Y. et al. Theoretical studies of collective rotations of deformed high-K isomers. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01092-8

Navigation