Skip to main content
Log in

Abstract

In this paper, we study the singularities of Feynman integrals by compactifying the integration domain as well as the ambient space of these integrals, by embedding them in higher-dimensional space. In this compactified space, the singularities occur due to the meeting of compactified propagators at non-general position. The present analysis, which had been previously used only for the singularities of second type, is used to study other kinds of singularities viz threshold, pseudo-threshold and anomalous threshold singularities. We study various one-loop and two-loop examples and obtain their singularities. We also present observations based on results obtained, that allow us to determine whether the singularities lie on the physical sheet or not for some simple cases. Thus, this work at the frontier of our knowledge of Feynman integral calculus sheds insight into the analytic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. We stick to the notation of [29].

  2. We assume that in all the Feynman integrals we consider the parameters that appear are “dimensionless” quantities which are divided by some fundamental ‘mass’ relevant to a particular theory under consideration.

  3. We introduce parameters \(\alpha _{i}\) sticking to the notation in [29], they are not same as the Feynman parameters.

References

  1. V.A. Smirnov, V.A. Smirnov, Feynman integral calculus, vol. 10 (Springer, Berlin, 2006)

    Google Scholar 

  2. S. Weinzierl, Feynman integrals (2022), https://doi.org/10.1007/978-3-030-99558-4, [arXiv:2201.03593]

  3. B. Ananthanarayan, S. Banik, S. Friot, S. Ghosh, Double box and hexagon conformal Feynman integrals. Phys. Rev. D 102, 091901 (2020). https://doi.org/10.1103/PhysRevD.102.091901. [arXiv:2007.08360]

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Ananthanarayan, S. Banik, S. Friot, S. Ghosh, Multiple series representations of N-fold Mellin-Barnes integrals. Phys. Rev. Lett. 127, 151601 (2021). https://doi.org/10.1103/PhysRevLett.127.151601. [arXiv:2012.15108]

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Abreu, R. Britto, C. Duhr, E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals. JHEP 10, 125 (2014). https://doi.org/10.1007/JHEP10(2014)125. [arXiv:1401.3546]

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Abreu, R. Britto, H. Grönqvist, Cuts and coproducts of massive triangle diagrams. JHEP 07, 111 (2015). https://doi.org/10.1007/JHEP07(2015)111. [arXiv:1504.00206]

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Abreu, R. Britto, C. Duhr, E. Gardi, Cuts from residues: the one-loop case. JHEP 06, 114 (2017). https://doi.org/10.1007/JHEP06(2017)114. [arXiv:1702.03163]

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Abreu, R. Britto, C. Duhr, E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case. JHEP 12, 090 (2017). https://doi.org/10.1007/JHEP12(2017)090. [arXiv:1704.07931]

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Ananthanarayan, A.B. Das, D. Wyler, Hopf algebra structure of the two loop three mass nonplanar Feynman diagram. Phys. Rev. D 104, 076002 (2021). https://doi.org/10.1103/PhysRevD.104.076002. [arXiv:2104.00967]

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Abreu, R. Britto, C. Duhr, E. Gardi, Algebraic structure of cut Feynman integrals and the diagrammatic coaction. Phys. Rev. Lett. 119, 051601 (2017). https://doi.org/10.1103/PhysRevLett.119.051601. [arXiv:1703.05064]

    Article  ADS  Google Scholar 

  11. S. Abreu, R. Britto, C. Duhr, The SAGEX review on scattering amplitudes Chapter 3: mathematical structures in Feynman integrals. J. Phys. A 55, 443004 (2022). https://doi.org/10.1088/1751-8121/ac87de. [arXiv:2203.13014]

    Article  ADS  Google Scholar 

  12. P. Federbush, Calculation of some homology groups relevant to sixth-order Feynman diagrams. J. Math. Phys. 6, 941 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. L. de la Cruz, Feynman integrals as A-hypergeometric functions. JHEP 12, 123 (2019). https://doi.org/10.1007/JHEP12(2019)123. [arXiv:1907.00507]

    Article  ADS  MathSciNet  Google Scholar 

  14. R.P. Klausen, Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems. JHEP 04, 121 (2020). https://doi.org/10.1007/JHEP04(2020)121. [arXiv:1910.08651]

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Ananthanarayan, S. Banik, S. Bera, S. Datta, FeynGKZ: a mathematica package for solving Feynman integrals using GKZ hypergeometric systems. Comput. Phys. Commun. 287, 108699 (2023). https://doi.org/10.1016/j.cpc.2023.108699. [arXiv:2211.01285]

    Article  Google Scholar 

  16. G. Barton, Introduction to dispersion techniques in field theory, vol. 6 (WA Benjamin, 1965)

    Google Scholar 

  17. I.T. Todorov, Analytic properties of Feynman diagrams in quantum field theory: international series of monographs in natural philosophy, vol. 38 (Elsevier, 2014)

    Google Scholar 

  18. R.J. Eden, R.J. Eden, P. Landshoff, D. Olive, J. Polkinghorne, The analytic S-matrix (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  19. H.P. Stapp, Finiteness of the number of positive-\(\alpha\) Landau surfaces in bounded portions of the physical region. J. Math. Phys. 8, 1606–1610 (1967)

    Article  ADS  Google Scholar 

  20. V. Gribov, I. Dyatlov, Analytic continuation of the three-particle unitarity condition simplest diagrams. Sov. Phys. JETP 15, 140 (1962)

    MathSciNet  Google Scholar 

  21. V. Kolkunov, L. Okun, A. Rudik, V. Sudakov, Location of the nearest singularities of the pi-pi-scattering amplitude. Soviet Phys. JETP-Ussr 12, 242 (1961)

    Google Scholar 

  22. R. Karplus, C.M. Sommerfield, E.H. Wichmann, Spectral representations in perturbation theory. I. vertex function. Phys. Rev. 111, 1187 (1958). https://doi.org/10.1103/PhysRev.111.1187

    Article  ADS  MathSciNet  Google Scholar 

  23. D.Y. Petrina, The Mandelstam representation and the continuity theorem. Soviet Phys. JETP Ser. 19, 370 (1964)

    MathSciNet  Google Scholar 

  24. L. Landau, On analytic properties of vertex parts in quantum field theory. Nuclear Phys. 13, 181 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Zwicky, A brief introduction to dispersion relations and analyticity. In: Quantum field theory at the limits: from strong fields to heavy quarks, pp. 93–120, 2017, https://doi.org/10.3204/DESY-PROC-2016-04/Zwicky. [arXiv:1610.06090]

  26. B. Ananthanarayan, A. Pal, S. Ramanan, R. Sarkar, Unveiling regions in multi-scale Feynman integrals using singularities and power geometry. Eur. Phys. J. C 79, 57 (2019). https://doi.org/10.1140/epjc/s10052-019-6533-x. [arXiv:1810.06270]

    Article  ADS  Google Scholar 

  27. W. Flieger, W.J. Torres Bobadilla, Landau and leading singularities in arbitrary space-time dimensions, arXiv:2210.09872

  28. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1, 429 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  29. R.C. Hwa, V.L. Teplitz, Homology and Feynman integrals, (No Title) (1966)

  30. D. Fotiadi, M. Froissart, J. Lascoux, F. Pham, Applications of an isotopy theorem. Topology 4, 159 (1965)

    Article  MathSciNet  Google Scholar 

  31. P. Federbush, Note on non-landau singularities. J. Math. Phys. 6, 825 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Coleman, R.E. Norton, Singularities in the physical region. Nuovo Cim. 38, 438 (1965). https://doi.org/10.1007/BF02750472

    Article  Google Scholar 

  33. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical methods for physicists: a comprehensive guide (Academic Press, London, 2011)

    Google Scholar 

  34. J.H. Silverman, J.T. Tate, Rational points on elliptic curves, vol. 9 (Springer, Berlin, 1992)

    Book  Google Scholar 

  35. S. Mizera, S. Telen, Landau discriminants. JHEP 08, 200 (2022). https://doi.org/10.1007/JHEP08(2022)200. [arXiv:2109.08036]

    Article  ADS  MathSciNet  Google Scholar 

  36. F.A. Berends, A.I. Davydychev, N.I. Ussyukina, Threshold and pseudothreshold values of the sunset diagram. Phys. Lett. B 426, 95 (1998). https://doi.org/10.1016/S0370-2693(98)00166-X. [arXiv:hep-ph/9712209]

    Article  ADS  Google Scholar 

  37. J. Boyling, Construction of vanishing cycles for integrals over hyperspheres. J. Math. Phys. 7, 1749 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Boyling, A homological approach to parametric Feynman integrals, Tech. Rep. Cambridge University(England) Dept. of Applied Mathematica and Theoretical Physics (1967)

  39. C. Bogner, A. Schweitzer, S. Weinzierl, Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral. Nucl. Phys. B 922, 528 (2017). https://doi.org/10.1016/j.nuclphysb.2017.07.008. [arXiv:1705.08952]

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Mühlbauer, On the homology of unions of certain non-degenerate quadrics in general position, arXiv preprint arXiv:2211.06683 (2022)

  41. M. Mühlbauer, Momentum space landau equations via isotopy techniques, arXiv preprintarXiv:2011.10368 (2020)

  42. M. Mühlbauer, Cutkosky’s theorem for massive one-loop Feynman integrals: part 1. Lett. Math. Phys. 112, 118 (2022)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Ananthanarayan for proposing the current investigation and for providing useful comments. The authors would also like to thank Souvik Bera, and Sudeepan Datta for their contribution during the initial stages of the project and also the Centre for High Energy Physics, Indian Institute of Science Bangalore, where this work was done. This work is a part of TP’s doctoral work at CHEP, IISc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanay Pathak.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Appendix: A toy example

Appendix: A toy example

In this appendix, we consider a toy example to demonstrate the method. We consider the following one-dimensional version of the bubble integral

$$\begin{aligned} I_{2} = \int _{{\mathbb {R}}} \frac{dk}{(k^{2}-m_{1}^{2})((k-p)^{2}-m_{2}^{2})}. \end{aligned}$$
(A.1)

Here, the integration cycle is \({\mathbb {R}}\) and the ambient space is \({\mathbb {C}}\), so we use the compactification procedure outlined in Sect. 2.2. Compactifying the propagators, we get the following

$$\begin{aligned} S_1&= \frac{x_{2}(-m_{1}^{2}-1)+ x_{3}(-m_{2}^{2}+1)}{x_{2}+x_3},\nonumber \\ S_2&= \frac{-2 p x_{1} +x_{2}(p^{2}-m_{2}^{2}-1)+x_{3}(p^{2}-m_{1}^{2}+1)}{x_{2}+x_3}, \end{aligned}$$
(A.2)

and the new ambient space W is given by

$$\begin{aligned} W= \{(x_{1},x_{2},x_{3})|x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=0 \}\subset \mathbb{C}\mathbb{P}^2. \end{aligned}$$

Similarly, we have \(dk \rightarrow \frac{dx_{1}}{x_{2}+x_{3}}\). This gave rise to an effective denominator

$$\begin{aligned} S_{3}= x_{2}+x_{3}. \end{aligned}$$
(A.3)

The singularities of integral (A.1) correspond to the following two cases

  1. 1.

    When \(S_{1}\) and \(S_{2}\) meet in non-general position in W. This case is similar to the case of the Bubble Integral in Sect. 3. We get the two singularities: \(p^{2}= (m_{1}+m_{2})^{2}\) and \(p^{2}=(m_{1}-m_{2})^2\).

  2. 2.

    When \(S_{1},S_{2}\) and \(S_{3}\) meet in non-general position in W. This case is similar to the Bubble Integral case and we get \(p^{2}=0\).

The situation for the \(S_{1}\) and \(S_{2}\) meeting in non-general position (for real \(x_{1}, x_{2}, x_{3}\)) is as shown in Fig. 7. We can also look at the situation in the real \((x_{1},x_{2})\)-plane (with \(x_{3}=1\)). The situation of general and non-general positions is shown in Fig. 8. We note a special feature of the intersection of these surfaces is the ‘vanishing cycle’. In the plots shown in Fig. 8, notice that the green circle is divided into four parts in Fig. 8a and into three parts in Fig. 8b. The region that vanishes due to the meeting of the surfaces at non-general position is called the ‘vanishing cycle’. So whenever the surfaces meet at non-general position it corresponds to the vanishing of a cycle.

Fig. 7
figure 7

\(S_{1}\) and \(S_{2}\) (in blue and yellow color, respectively) meeting in non-general position in W(in green)

Fig. 8
figure 8

a \(S_{1}\) and \(S_{2}\) meeting in general position in W. b \(S_{1}\) and \(S_{2}\) meeting in non-general position in W, corresponding to singularity \(p^{2}=(m_{1}+m_{2})^{2}\). The plots shows the situation shown in Fig. 7 in \((x_{1},x_{2})\)-plane with \(x_{3}=1\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, T., Sreekantan, R. Singularities of Feynman integrals. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-023-01084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01084-0

Navigation