Skip to main content
Log in

Review of semileptonic B anomalies

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We review the current status and implications of the anomalies (i.e. deviations from the Standard Model predictions) in semi-leptonic B meson decays, both in the charged and in the neutral current. In \(b\rightarrow s\ell ^+\ell ^-\) transitions significant tensions between measurements and the Standard Model predictions exist. They are most pronounced in the branching ratios \({{\mathcal {B}}}_{B \rightarrow K\mu ^+\mu ^-}\) and \({{\mathcal {B}}}_{B_s\rightarrow \phi \mu ^+\mu ^-}\) (albeit quite dependent on the form factors used) as well as in angular observables in \(B\rightarrow K^*\mu ^+\mu ^-\) (the \(P_5^\prime\) anomaly). Because the measurements of \({{\mathcal {B}}}_{B_s\rightarrow \mu ^+\mu ^-}\) and of the ratios R(K) and \(R(K^*)\) agree reasonably well with the SM predictions, this points towards (dominantly) lepton flavour universal NP coupling vectorially to leptons, i.e. contributions to \(C_9^{\textrm{U}}\). In fact, global fits prefer this scenario over the SM hypothesis by \(5.8\sigma\). Concerning \(b\rightarrow c\tau \nu\) transitions, R(D) and \(R(D^*)\) suggest constructive new physics at the level of \(10\%\) (w.r.t. the Standard Model amplitude) with a significance above \(3\sigma\). We discuss new physics explanations of both anomalies separately as well as possible combined explanations. In particular, a left-handed vector current solution to \(R(D^{(*)})\), either via the \(U_1\) leptoquark or the combination of the scalar leptoquarks \(S_1\) and \(S_3\), leads to an effect in \(C_9^{\textrm{U}}\) via an off-shell penguin with the right sign and magnitude and a combined significance (including a tree-level effect resulting in \(C_9^\mu =-C_{10}^\mu\) and \(R(D^{(*)})\)) of \(6.3\sigma\). Such a scenario can be tested with \(b \rightarrow s \tau ^+\tau ^-\) decays. Finally, we point out an interesting possible correlation of \(R(D^{(*)})\) with non-leptonic B anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Notes

  1. In Ref. [33] the NLO corrections to the leading-power contributions together with the subleading-power effects at twist-6 accuracy were computed.

  2. Interestingly it was recently found in Ref. [61] that semi-inclusive \(b \rightarrow s \ell ^+\ell ^-\) transitions at high-q\(^2\) also points towards the same solution.

  3. The SM prediction, where the absence of a subleading Isgur-Wise function at \(\mathcal {O}({{\bar{\Lambda }}}/m_{c,b})\) in the \(\Lambda _b \rightarrow \Lambda _c\) transition suppresses the theoretical uncertainty [85], is equal to [86,87,88,89,90,91,92] \({{\mathcal {R}}}_{\textrm{SM}}(\Lambda _c) = 0.324 \pm 0.004\)

  4. A PhD thesis on \(R(D^{(*)})\) analyzing BaBar data exists which finds significantly lower values [96]. However, these results are neither published nor approved by the BaBar collaboration.

  5. This does not include the case of light right-handed neutrinos.

  6. Recently, BELLE II presented results with an excess in \(B\rightarrow K^*\nu \nu\) [159], which could be related to the B anomalies discussed here. However, the differential distribution seems to prefer light NP.

  7. A precise computation of the tension requires the use of the SM distribution of these observables that can be found in Ref. [169].

References

  1. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973). https://doi.org/10.1143/PTP.49.652

    Article  ADS  Google Scholar 

  2. A. Abashian et al., The Belle detector. Nucl. Instrum. Methods A 479, 117–232 (2002). https://doi.org/10.1016/S0168-9002(01)02013-7

    Article  ADS  Google Scholar 

  3. B. Aubert et al., The BaBar detector. Nucl. Instrum. Methods A 479, 1–116 (2002). https://doi.org/10.1016/S0168-9002(01)02012-5. arXiv:hep-ex/0105044

    Article  ADS  Google Scholar 

  4. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964). https://doi.org/10.1016/0031-9163(64)91136-9

    Article  ADS  Google Scholar 

  5. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964). https://doi.org/10.1103/PhysRevLett.13.321

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  7. S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  8. O. Fischer et al., Unveiling hidden physics at the LHC. Eur. Phys. J. C 82(8), 665 (2022). https://doi.org/10.1140/epjc/s10052-022-10541-4. arXiv:2109.06065 [hep-ph]

    Article  ADS  Google Scholar 

  9. S. Bhattacharya, G. Coloretti, , A. Crivellin, S.-E. Dahbi, Y. Fang, M. Kumar, B. Mellado, Growing excesses of new scalars at the electroweak scale (2023). arXiv:2306.17209 [hep-ph]

  10. S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, Optimizing the basis of \(B\rightarrow K^*\ell ^+\ell ^-\) observables in the full kinematic range. JHEP 05, 137 (2013). https://doi.org/10.1007/JHEP05(2013)137. arXiv:1303.5794 [hep-ph]

    Article  ADS  Google Scholar 

  11. F. Sala, D.M. Straub, A new light particle in \(B\) decays? Phys. Lett. B 774, 205–209 (2017). https://doi.org/10.1016/j.physletb.2017.09.072. arXiv:1704.06188 [hep-ph]

    Article  ADS  Google Scholar 

  12. A. Crivellin, C.A. Manzari, W. Altmannshofer, G. Inguglia, P. Feichtinger, J. Martin Camalich, Toward excluding a light \(Z^{\prime }\) explanation of \(b\rightarrow s \ell ^+ \ell ^-\). Phys. Rev. D 106(3), 031703 (2022). https://doi.org/10.1103/PhysRevD.106.L031703. arXiv:2202.12900 [hep-ph]

    Article  ADS  Google Scholar 

  13. E. Witten, Short distance analysis of weak interactions. Nucl. Phys. B 122, 109–143 (1977). https://doi.org/10.1016/0550-3213(77)90428-X

    Article  ADS  Google Scholar 

  14. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125–1144 (1996). https://doi.org/10.1103/RevModPhys.68.1125. arXiv:hep-ph/9512380

    Article  ADS  Google Scholar 

  15. C. Bobeth, T. Ewerth, F. Kruger, J. Urban, Analysis of neutral Higgs boson contributions to the decays \(\bar{B}\)( \(s^{)} \rightarrow \ell ^{+} \ell ^{-}\) and \(\bar{B} \rightarrow K \ell ^{+} \ell ^{-}\). Phys. Rev. D 64, 074014 (2001). https://doi.org/10.1103/PhysRevD.64.074014. arXiv:hep-ph/0104284

    Article  ADS  Google Scholar 

  16. C. Bobeth, G. Hiller, G. Piranishvili, Angular distributions of \(\bar{B} \rightarrow \bar{K} \ell ^+\ell ^-\) decays. JHEP 12, 040 (2007). https://doi.org/10.1088/1126-6708/2007/12/040. arXiv:0709.4174 [hep-ph]

    Article  ADS  Google Scholar 

  17. R. Aaij et al., Measurement of the ratio of branching fractions \(mathcal B (\bar{B}^0 \rightarrow D^{*+}\tau ^{-}\bar{\nu }_{\tau })/mathcal B (\bar{B}^0 \rightarrow D^{*+}\mu ^{-}\bar{\nu }_{\mu })\). Phys. Rev. Lett. 115(11), 111803 (2015). https://doi.org/10.1103/PhysRevLett.115.111803. arXiv:1506.08614 [hep-ex]. [Erratum: Phys.Rev.Lett. 115, 159901 (2015)]

    Article  ADS  Google Scholar 

  18. F. Kruger, J. Matias, Probing new physics via the transverse amplitudes of \(B^0\rightarrow K^{*0} (\rightarrow K^- \pi ^+) l^+l^-\) at large recoil. Phys. Rev. D 71, 094009 (2005). https://doi.org/10.1103/PhysRevD.71.094009. arXiv:hep-ph/0502060

    Article  ADS  Google Scholar 

  19. J. Matias, F. Mescia, M. Ramon, J. Virto, Complete anatomy of \(\bar{B}_d \rightarrow \bar{K}^{* 0} (\rightarrow K \pi )\ell ^+\ell ^-\) and its angular distribution. JHEP 04, 104 (2012). https://doi.org/10.1007/JHEP04(2012)104. arXiv:1202.4266 [hep-ph]

    Article  ADS  Google Scholar 

  20. U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, New physics reach of the decay mode \(\bar{B} \rightarrow \bar{K}^{*0}\ell ^+\ell ^-\). JHEP 10, 056 (2010). https://doi.org/10.1007/JHEP10(2010)056. arXiv:1005.0571 [hep-ph]

    Article  ADS  Google Scholar 

  21. M. Beneke, T. Feldmann, Symmetry breaking corrections to heavy to light \(B\) meson form-factors at large recoil. Nucl. Phys. B 592, 3–34 (2001). https://doi.org/10.1016/S0550-3213(00)00585-X. arXiv:hep-ph/0008255

    Article  ADS  Google Scholar 

  22. M. Beneke, T. Feldmann, D. Seidel, Systematic approach to exclusive \(B \rightarrow V \ell ^+ \ell ^-\), \(V \gamma \) decays. Nucl. Phys. B 612, 25–58 (2001). https://doi.org/10.1016/S0550-3213(01)00366-2. arXiv:hep-ph/0106067

    Article  ADS  Google Scholar 

  23. G. Hiller, F. Kruger, More model-independent analysis of \(b \rightarrow s\) processes. Phys. Rev. D 69, 074020 (2004). https://doi.org/10.1103/PhysRevD.69.074020. arXiv:hep-ph/0310219

    Article  ADS  Google Scholar 

  24. S. Descotes-Genon, J. Matias, M. Ramon, J. Virto, Implications from clean observables for the binned analysis of \(B \rightarrow K*\mu ^+\mu ^-\) at large recoil. JHEP 01, 048 (2013). https://doi.org/10.1007/JHEP01(2013)048. arXiv:1207.2753 [hep-ph]

    Article  ADS  Google Scholar 

  25. R. Aaij et al., Measurement of form-factor-independent observables in the decay \(B^{0} \rightarrow K^{*0} \mu ^+ \mu ^-\). Phys. Rev. Lett. 111, 191801 (2013). https://doi.org/10.1103/PhysRevLett.111.191801. arXiv:1308.1707 [hep-ex]

    Article  ADS  Google Scholar 

  26. A. Abdesselam et al.: Angular analysis of \(B^0 \rightarrow K^*(892)^0 \ell ^+ \ell ^-\) (2016). arXiv:1604.04042 [hep-ex]

  27. S. Wehle et al., Lepton-flavor-dependent angular analysis of \(B\rightarrow K^\ast \ell ^+\ell ^-\). Phys. Rev. Lett. 118(11), 111801 (2017). https://doi.org/10.1103/PhysRevLett.118.111801. arXiv:1612.05014 [hep-ex]

    Article  ADS  Google Scholar 

  28. M. Aaboud et al., Angular analysis of \(B^0_d \rightarrow K^{*}\mu ^+\mu ^-\) decays in \(pp\) collisions at \(\sqrt{s}= 8\) TeV with the ATLAS detector. JHEP 10, 047 (2018). https://doi.org/10.1007/JHEP10(2018)047. arXiv:1805.04000 [hep-ex]

    Article  ADS  Google Scholar 

  29. A.M. Sirunyan et al., Measurement of angular parameters from the decay \(\rm B ^0 \rightarrow \rm K ^{*0} \mu ^+ \mu ^-\) in proton-proton collisions at \(\sqrt{s} = \) 8 TeV. Phys. Lett. B 781, 517–541 (2018). https://doi.org/10.1016/j.physletb.2018.04.030. arXiv:1710.02846 [hep-ex]

    Article  ADS  Google Scholar 

  30. B. Capdevila, S. Descotes-Genon, L. Hofer, J. Matias, Hadronic uncertainties in \(B \rightarrow K^* \mu ^+ \mu ^-\): a state-of-the-art analysis. JHEP 04, 016 (2017). https://doi.org/10.1007/JHEP04(2017)016. arXiv:1701.08672 [hep-ph]

    Article  ADS  Google Scholar 

  31. M. Algueró, A. Biswas, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet, To (b)e or not to (b)e: no electrons at LHCb. Eur. Phys. J. C 83(7), 648 (2023). https://doi.org/10.1140/epjc/s10052-023-11824-0. arXiv:2304.07330 [hep-ph]

    Article  ADS  Google Scholar 

  32. N. Gubernari, A. Kokulu, D. Dyk, \(B\rightarrow P\) and \(B\rightarrow V\) form factors from \(B\)-meson light-cone sum rules beyond leading twist. JHEP 01, 150 (2019). https://doi.org/10.1007/JHEP01(2019)150. arXiv:1811.00983 [hep-ph]

    Article  ADS  Google Scholar 

  33. J. Gao, C.-D. Lü, Y.-L. Shen, Y.-M. Wang, Y.-B. Wei, Precision calculations of \(B \rightarrow V\) form factors from soft-collinear effective theory sum rules on the light-cone. Phys. Rev. D 101(7), 074035 (2020). https://doi.org/10.1103/PhysRevD.101.074035. arXiv:1907.11092 [hep-ph]

    Article  ADS  Google Scholar 

  34. A. Khodjamirian, T. Mannel, A.A. Pivovarov, Y.-M. Wang, Charm-loop effect in \(B \rightarrow K^{(*)} \ell ^{+} \ell ^{-}\) and \(B\rightarrow K^*\gamma \). JHEP 09, 089 (2010). https://doi.org/10.1007/JHEP09(2010)089. arXiv:1006.4945 [hep-ph]

    Article  ADS  Google Scholar 

  35. S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, On the impact of power corrections in the prediction of \(B \rightarrow K^*\mu ^+\mu ^-\) observables. JHEP 12, 125 (2014). https://doi.org/10.1007/JHEP12(2014)125. arXiv:1407.8526 [hep-ph]

    Article  ADS  Google Scholar 

  36. N. Gubernari, D. Dyk, J. Virto, Non-local matrix elements in \(B_{(s)}\rightarrow \{K^{(*)},\phi \}\ell ^+\ell ^-\). JHEP 02, 088 (2021). https://doi.org/10.1007/JHEP02(2021)088. arXiv:2011.09813 [hep-ph]

    Article  ADS  Google Scholar 

  37. C. Bobeth, M. Chrzaszcz, D. Dyk, J. Virto, Long-distance effects in \(B\rightarrow K^*\ell \ell \) from analyticity. Eur. Phys. J. C 78(6), 451 (2018). https://doi.org/10.1140/epjc/s10052-018-5918-6. arXiv:1707.07305 [hep-ph]

    Article  ADS  Google Scholar 

  38. N. Gubernari, M. Reboud, D. Dyk, J. Virto, Dispersive analysis of \(B\rightarrow K^{(*)}\) and \(B_s\rightarrow \phi \) form factors (2023). arXiv:2305.06301 [hep-ph]

  39. T. Blake, U. Egede, P. Owen, K.A. Petridis, G. Pomery, An empirical model to determine the hadronic resonance contributions to \(\overline{B}{} ^0 \!\rightarrow \overline{K}{} ^{*0} \mu ^+ \mu ^- \) transitions. Eur. Phys. J. C 78(6), 453 (2018). https://doi.org/10.1140/epjc/s10052-018-5937-3. arXiv:1709.03921 [hep-ph]

    Article  ADS  Google Scholar 

  40. R. Aaij et al., Angular analysis of the \(B^{+}\rightarrow K^{\ast +}\mu ^{+}\mu ^{-}\) decay. Phys. Rev. Lett. 126(16), 161802 (2021). https://doi.org/10.1103/PhysRevLett.126.161802. arXiv:2012.13241 [hep-ex]

    Article  ADS  Google Scholar 

  41. R. Aaij et al., Differential branching fractions and isospin asymmetries of \(B \rightarrow K^{(*)} \mu ^+ \mu ^-\) decays. JHEP 06, 133 (2014). https://doi.org/10.1007/JHEP06(2014)133. arXiv:1403.8044 [hep-ex]

    Article  ADS  Google Scholar 

  42. R. Aaij et al., Measurements of the S-wave fraction in \(B^{0}\rightarrow K^{+}\pi ^{-}\mu ^{+}\mu ^{-}\) decays and the \(B^{0}\rightarrow K^{\ast }(892)^{0}\mu ^{+}\mu ^{-}\) differential branching fraction. JHEP 11, 047 (2016). https://doi.org/10.1007/JHEP11(2016)047. arXiv:1606.04731 [hep-ex]. [Erratum: JHEP 04, 142 (2017)]

    Article  ADS  Google Scholar 

  43. R. Aaij et al., Branching fraction measurements of the rare \(B^0_s\rightarrow \phi \mu ^+\mu ^-\) and \(B^0_s\rightarrow f_2^\prime (1525)\mu ^+\mu ^-\)-decays. Phys. Rev. Lett. 127(15), 151801 (2021). https://doi.org/10.1103/PhysRevLett.127.151801. arXiv:2105.14007 [hep-ex]

    Article  ADS  Google Scholar 

  44. A. Bharucha, D.M. Straub, R. Zwicky, \(B\rightarrow V\ell ^+\ell ^-\) in the standard model from light-cone sum rules. JHEP 08, 098 (2016). https://doi.org/10.1007/JHEP08(2016)098. arXiv:1503.05534 [hep-ph]

    Article  ADS  Google Scholar 

  45. N. Gubernari, M. Reboud, D. Dyk, J. Virto, Improved theory predictions and global analysis of exclusive \(b \rightarrow s\mu ^+\mu ^-\) processes. JHEP 09, 133 (2022). https://doi.org/10.1007/JHEP09(2022)133. arXiv:2206.03797 [hep-ph]

    Article  ADS  Google Scholar 

  46. W.G. Parrott, C. Bouchard, C.T.H. Davies, \(B\rightarrow K and D\rightarrow K\) form factors from fully relativistic lattice QCD. Phys. Rev. D 107(1), 014510 (2023). https://doi.org/10.1103/PhysRevD.107.014510. arXiv:2207.12468 [hep-lat]

    Article  ADS  Google Scholar 

  47. M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet, \(b\rightarrow s\ell ^+\ell ^-\) global fits after \(R_{K_S}\) and \(R_{K^{*+}}\). Eur. Phys. J. C 82(4), 326 (2022). https://doi.org/10.1140/epjc/s10052-022-10231-1. arXiv:2104.08921 [hep-ph]

    Article  ADS  Google Scholar 

  48. A. Tumasyan et al., Measurement of the \(B^{0}_{{\rm S}} \rightarrow \mu ^{+}\mu ^{-}\) decay properties and search for the \(B^0\rightarrow \mu ^{+}\mu ^{-}\) decay in proton–proton collisions at \(\sqrt{s}\) = 13 TeV. Phys. Lett. B 842, 137955 (2023). https://doi.org/10.1016/j.physletb.2023.137955. arXiv:2212.10311 [hep-ex]

    Article  Google Scholar 

  49. R. Aaij et al., Measurement of lepton universality parameters in \(B^+\rightarrow K^+\ell ^+\ell ^-\) and \(B^0\rightarrow K^{*0}\ell ^+\ell ^-\) decays. Phys. Rev. D 108(3), 032002 (2023). https://doi.org/10.1103/PhysRevD.108.032002. arXiv:2212.09153 [hep-ex]

    Article  ADS  Google Scholar 

  50. R. Aaij et al., Test of lepton universality in \(b \rightarrow s \ell ^+ \ell ^-\) decays. Phys. Rev. Lett. 131(5), 051803 (2023). https://doi.org/10.1103/PhysRevLett.131.051803. arXiv:2212.09152 [hep-ex]

    Article  ADS  Google Scholar 

  51. B. Grinstein, R.P. Springer, M.B. Wise, Effective Hamiltonian for weak radiative \(B\) meson decay. Phys. Lett. B 202, 138–144 (1988). https://doi.org/10.1016/0370-2693(88)90868-4

    Article  ADS  Google Scholar 

  52. P. Gambino, M. Gorbahn, U. Haisch, Anomalous dimension matrix for radiative and rare semileptonic \(B\) decays up to three loops. Nucl. Phys. B 673, 238–262 (2003). https://doi.org/10.1016/j.nuclphysb.2003.09.024. arXiv:hep-ph/0306079

    Article  ADS  Google Scholar 

  53. C. Bobeth, P. Gambino, M. Gorbahn, U. Haisch, Complete NNLO QCD analysis of \(\bar{B} \rightarrow X_s \ell ^+ \ell ^-\) and higher order electroweak effects. JHEP 04, 071 (2004). https://doi.org/10.1088/1126-6708/2004/04/071. arXiv:hep-ph/0312090

    Article  ADS  Google Scholar 

  54. M. Misiak, M. Steinhauser, NNLO QCD corrections to the \(\bar{B} \rightarrow X_s \gamma \) matrix elements using interpolation in \(m_c\). Nucl. Phys. B 764, 62–82 (2007). https://doi.org/10.1016/j.nuclphysb.2006.11.027. arXiv:hep-ph/0609241

    Article  ADS  Google Scholar 

  55. T. Huber, E. Lunghi, M. Misiak, D. Wyler, Electromagnetic logarithms in \(\bar{B} \rightarrow X_s \ell ^+ \ell ^-\). Nucl. Phys. B 740, 105–137 (2006). https://doi.org/10.1016/j.nuclphysb.2006.01.037. arXiv:hep-ph/0512066

    Article  ADS  Google Scholar 

  56. T. Huber, T. Hurth, E. Lunghi, Logarithmically enhanced corrections to the decay rate and forward backward asymmetry in \(\bar{B} \rightarrow X_s \ell ^+ \ell ^-\). Nucl. Phys. B 802, 40–62 (2008). https://doi.org/10.1016/j.nuclphysb.2008.04.028. arXiv:0712.3009 [hep-ph]

    Article  ADS  Google Scholar 

  57. A. Greljo, J. Salko, A. Smolkovič, P. Stangl, Rare \(b\) decays meet high-mass Drell–Yan. JHEP 05, 087 (2023). https://doi.org/10.1007/JHEP05(2023)087. arXiv:2212.10497 [hep-ph]

    Article  ADS  Google Scholar 

  58. M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli, Constraints on lepton universality violation from rare B decays. Phys. Rev. D 107(5), 055036 (2023). https://doi.org/10.1103/PhysRevD.107.055036. arXiv:2212.10516 [hep-ph]

    Article  ADS  Google Scholar 

  59. T. Hurth, F. Mahmoudi, D.M. Santos, S. Neshatpour, More indications for lepton nonuniversality in \(b \rightarrow s \ell ^+ \ell ^-\). Phys. Lett. B 824, 136838 (2022). https://doi.org/10.1016/j.physletb.2021.136838. arXiv:2104.10058 [hep-ph]

    Article  Google Scholar 

  60. M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, Are we overlooking lepton flavour universal new physics in \(b\rightarrow s\ell ^+\ell ^-\)? Phys. Rev. D 99(7), 075017 (2019). https://doi.org/10.1103/PhysRevD.99.075017. arXiv:1809.08447 [hep-ph]

    Article  ADS  Google Scholar 

  61. G. Isidori, Z. Polonsky, A. Tinari, Semi-inclusive \(b\rightarrow s\bar{\ell }\ell \) transitions at high \(q^2\) (2023). arXiv:2305.03076 [hep-ph]

  62. M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias, M. Novoa Brunet, J. Virto, Emerging patterns of new physics with and without lepton flavour universal contributions. Eur. Phys. J. C 79(8), 714 (2019). https://doi.org/10.1140/epjc/s10052-019-7216-3. arXiv:1903.09578 [hep-ph]. [Addendum: Eur.Phys.J.C 80, 511 (2020)]

    Article  ADS  Google Scholar 

  63. D. London, J. Matias, \(B\) flavour anomalies: 2021 theoretical status report. Ann. Rev. Nucl. Part. Sci. 72, 37–68 (2022). https://doi.org/10.1146/annurev-nucl-102020-090209. arXiv:2110.13270 [hep-ph]

    Article  ADS  Google Scholar 

  64. J. Albrecht, D. Dyk, C. Langenbruch, Flavour anomalies in heavy quark decays. Prog. Part. Nucl. Phys. 120, 103885 (2021). https://doi.org/10.1016/j.ppnp.2021.103885. arXiv:2107.04822 [hep-ex]

    Article  Google Scholar 

  65. M.T. Prim et al., Measurement of differential distributions of B\(\rightarrow \)D*\(\ell \)\(\nu \)\(^{-}\)\(\ell \) and implications on \(|V_{cb}|\). Phys. Rev. D 108(1), 012002 (2023). https://doi.org/10.1103/PhysRevD.108.012002. arXiv:2301.07529 [hep-ex]

    Article  ADS  Google Scholar 

  66. Talk by Chaoyi Lyu on “Recent semileptonic results from Belle II” at ALPS 2023 conference in Obergurgl (Austria)

  67. J.P. Lees et al., Evidence for an excess of \(\bar{B} \rightarrow D^{(*)} \tau ^-\bar{\nu }_\tau \) decays. Phys. Rev. Lett. 109, 101802 (2012). https://doi.org/10.1103/PhysRevLett.109.101802. arXiv:1205.5442 [hep-ex]

    Article  ADS  Google Scholar 

  68. J.P. Lees et al., Measurement of an excess of \(\bar{B} \rightarrow D^{(*)}\tau ^- \bar{\nu }_\tau \) decays and implications for charged higgs bosons. Phys. Rev. D 88(7), 072012 (2013). https://doi.org/10.1103/PhysRevD.88.072012. arXiv:1303.0571 [hep-ex]

    Article  ADS  Google Scholar 

  69. M. Huschle et al., Measurement of the branching ratio of \(\bar{B} \rightarrow D^{(\ast )} \tau ^- \bar{\nu }_\tau \) relative to \(\bar{B} \rightarrow D^{(\ast )} \ell ^- \bar{\nu }_\ell \) decays with hadronic tagging at Belle. Phys. Rev. D 92(7), 072014 (2015). https://doi.org/10.1103/PhysRevD.92.072014. arXiv:1507.03233 [hep-ex]

    Article  ADS  Google Scholar 

  70. Y. Sato et al., Measurement of the branching ratio of \(\bar{B}^0 \rightarrow D^{*+} \tau ^- \bar{\nu }_{\tau }\) relative to \(\bar{B}^0 \rightarrow D^{*+} \ell ^- \bar{\nu }_{\ell }\) decays with a semileptonic tagging method. Phys. Rev. D 94(7), 072007 (2016). https://doi.org/10.1103/PhysRevD.94.072007. arXiv:1607.07923 [hep-ex]

    Article  ADS  Google Scholar 

  71. S. Hirose et al., Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \). Phys. Rev. Lett. 118(21), 211801 (2017). https://doi.org/10.1103/PhysRevLett.118.211801. arXiv:1612.00529 [hep-ex]

    Article  ADS  Google Scholar 

  72. S. Hirose et al., Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \) with one-prong hadronic \(\tau \) decays at Belle. Phys. Rev. D 97(1), 012004 (2018). https://doi.org/10.1103/PhysRevD.97.012004. arXiv:1709.00129 [hep-ex]

    Article  ADS  Google Scholar 

  73. G. Caria et al., Measurement of \(\cal{R} (D)\) and \(\cal{R} (D^*)\) with a semileptonic tagging method. Phys. Rev. Lett. 124(16), 161803 (2020). https://doi.org/10.1103/PhysRevLett.124.161803. arXiv:1910.05864 [hep-ex]

    Article  ADS  Google Scholar 

  74. R. Aaij et al., Measurement of the ratio of the \(B^0 \rightarrow D^{*-} \tau ^+ \nu _{\tau }\) and \(B^0 \rightarrow D^{*-} \mu ^+ \nu _{\mu }\) branching fractions using three-prong \(\tau \)-lepton decays. Phys. Rev. Lett. 120(17), 171802 (2018). https://doi.org/10.1103/PhysRevLett.120.171802. arXiv:1708.08856 [hep-ex]

    Article  ADS  Google Scholar 

  75. R. Aaij et al., Test of lepton flavor universality by the measurement of the \(B^0 \rightarrow D^{*-} \tau ^+ \nu _\tau \) branching fraction using three-prong \(\tau \) decays. Phys. Rev. D 97(7), 072013 (2018). https://doi.org/10.1103/PhysRevD.97.072013. arXiv:1711.02505 [hep-ex]

    Article  ADS  Google Scholar 

  76. R. Aaij et al., Test of lepton flavor universality using \(B^0\rightarrow D^*-\tau ^+\nu _\tau \) decays with hadronic \(\tau \) channels. Phys. Rev. D 108(1), 012018 (2023). https://doi.org/10.1103/PhysRevD.108.012018. arXiv:2305.01463 [hep-ex]

    Article  ADS  Google Scholar 

  77. Y.S. Amhis et al., Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of 2021. Phys. Rev. D 107(5), 052008 (2023). https://doi.org/10.1103/PhysRevD.107.052008. arXiv:2206.07501 [hep-ex]

    Article  ADS  Google Scholar 

  78. R. Aaij et al., Measurement of the ratio of branching fractions \(\cal{B} (B_c^+\,\rightarrow \, J/\psi \tau ^+\nu _\tau )\)/\(\cal{B} (B_c^+\,\rightarrow \, J/\psi \mu ^+\nu _\mu )\). Phys. Rev. Lett. 120(12), 121801 (2018). https://doi.org/10.1103/PhysRevLett.120.121801. arXiv:1711.05623 [hep-ex]

    Article  ADS  Google Scholar 

  79. T.D. Cohen, H. Lamm, R.F. Lebed, Model-independent bounds on \(R(J/\psi )\). JHEP 09, 168 (2018). https://doi.org/10.1007/JHEP09(2018)168. arXiv:1807.02730 [hep-ph]

    Article  ADS  Google Scholar 

  80. D. Leljak, B. Melic, M. Patra, On lepton flavour universality in semileptonic B\(_{c}\rightarrow \)\(\eta \)\(_{c}\), J/\(\psi \) decays. JHEP 05, 094 (2019). https://doi.org/10.1007/JHEP05(2019)094. arXiv:1901.08368 [hep-ph]

    Article  ADS  Google Scholar 

  81. J. Harrison, C.T.H. Davies, A. Lytle, \(R(J/\psi )\) and \(B_c^- \rightarrow J/\psi \ell ^-\bar{\nu }_\ell \) lepton flavor universality violating observables from lattice QCD. Phys. Rev. Lett. 125(22), 222003 (2020). https://doi.org/10.1103/PhysRevLett.125.222003. arXiv:2007.06956 [hep-lat]

    Article  ADS  Google Scholar 

  82. J. Harrison, C.T.H. Davies, A. Lytle, \(B_c \rightarrow J/\psi \) form factors for the full \(q^2\) range from lattice QCD. Phys. Rev. D 102(9), 094518 (2020). https://doi.org/10.1103/PhysRevD.102.094518. arXiv:2007.06957 [hep-lat]

    Article  ADS  Google Scholar 

  83. R. Aaij et al., Observation of the decay \( \Lambda _b^0\rightarrow \Lambda _c^+\tau ^-\overline{\nu }_{\tau }\). Phys. Rev. Lett. 128(19), 191803 (2022). https://doi.org/10.1103/PhysRevLett.128.191803. arXiv:2201.03497 [hep-ex]

    Article  ADS  Google Scholar 

  84. F.U. Bernlochner, Z. Ligeti, M. Papucci, D.J. Robinson, Interpreting LHCb’s \(\Lambda _b\rightarrow \Lambda _c\tau \bar{\nu }\) measurement and puzzles in semileptonic \(\Lambda _b\) decays. Phys. Rev. D 107(1), 011502 (2023). https://doi.org/10.1103/PhysRevD.107.L011502. arXiv:2206.11282 [hep-ph]

    Article  ADS  Google Scholar 

  85. M. Neubert, Heavy quark symmetry. Phys. Rept. 245, 259–396 (1994). https://doi.org/10.1016/0370-1573(94)90091-4. arXiv:hep-ph/9306320

    Article  ADS  Google Scholar 

  86. T. Gutsche, M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, P. Santorelli, N. Habyl, Semileptonic decay \(\Lambda _b \rightarrow \Lambda _c + \tau ^- + \bar{\nu _\tau }\) in the covariant confined quark model. Phys. Rev. D 91(7), 074001 (2015). https://doi.org/10.1103/PhysRevD.91.074001. arXiv:1502.04864 [hep-ph]. [Erratum: Phys.Rev.D 91, 119907 (2015)]

    Article  ADS  Google Scholar 

  87. S. Shivashankara, W. Wu, A. Datta, \(\Lambda _b \rightarrow \Lambda _c \tau \bar{\nu }_{\tau }\) decay in the standard model and with new physics. Phys. Rev. D 91(11), 115003 (2015). https://doi.org/10.1103/PhysRevD.91.115003. arXiv:1502.07230 [hep-ph]

    Article  ADS  Google Scholar 

  88. W. Detmold, C. Lehner, S. Meinel, \(\Lambda _b \rightarrow p \ell ^- \bar{\nu }_\ell \) and \(\Lambda _b \rightarrow \Lambda _c \ell ^- \bar{\nu }_\ell \) form factors from lattice QCD with relativistic heavy quarks. Phys. Rev. D 92(3), 034503 (2015). https://doi.org/10.1103/PhysRevD.92.034503. arXiv:1503.01421 [hep-lat]

    Article  ADS  Google Scholar 

  89. X.-Q. Li, Y.-D. Yang, X. Zhang, \( {\Lambda }_b\rightarrow {\Lambda }_c\tau {\overline{\nu }}_{\tau } \) decay in scalar and vector leptoquark scenarios. JHEP 02, 068 (2017). https://doi.org/10.1007/JHEP02(2017)068. arXiv:1611.01635 [hep-ph]

    Article  ADS  Google Scholar 

  90. A. Datta, S. Kamali, S. Meinel, A. Rashed, Phenomenology of \( {\Lambda }_b\rightarrow {\Lambda }_c\tau {\overline{\nu }}_{\tau } \) using lattice QCD calculations. JHEP 08, 131 (2017). https://doi.org/10.1007/JHEP08(2017)131. arXiv:1702.02243 [hep-ph]

    Article  ADS  Google Scholar 

  91. F.U. Bernlochner, Z. Ligeti, D.J. Robinson, W.L. Sutcliffe, New predictions for \(\Lambda _b\rightarrow \Lambda _c\) semileptonic decays and tests of heavy quark symmetry. Phys. Rev. Lett. 121(20), 202001 (2018). https://doi.org/10.1103/PhysRevLett.121.202001. arXiv:1808.09464 [hep-ph]

    Article  ADS  Google Scholar 

  92. F.U. Bernlochner, Z. Ligeti, D.J. Robinson, W.L. Sutcliffe, Precise predictions for \(\Lambda _b \rightarrow \Lambda _c\) semileptonic decays. Phys. Rev. D 99(5), 055008 (2019). https://doi.org/10.1103/PhysRevD.99.055008. arXiv:1812.07593 [hep-ph]

    Article  ADS  Google Scholar 

  93. M. Blanke, A. Crivellin, S. Boer, T. Kitahara, M. Moscati, U. Nierste, I. Nišandžić, Impact of polarization observables and \( B_c\rightarrow \tau \nu \) on new physics explanations of the \(b\rightarrow c \tau \nu \) anomaly. Phys. Rev. D 99(7), 075006 (2019). https://doi.org/10.1103/PhysRevD.99.075006. arXiv:1811.09603 [hep-ph]

    Article  ADS  Google Scholar 

  94. M. Blanke, A. Crivellin, T. Kitahara, M. Moscati, U. Nierste, I. Nišandžić, Addendum to “Impact of polarization observables and \(B_c\rightarrow \tau \nu \) on new physics explanations of the \(b\rightarrow c \tau \nu \) anomaly” (2019). https://doi.org/10.1103/PhysRevD.100.035035arXiv:1905.08253 [hep-ph]. [Addendum: Phys.Rev.D 100, 035035 (2019)]

  95. M. Fedele, M. Blanke, A. Crivellin, S. Iguro, T. Kitahara, U. Nierste, R. Watanabe, Impact of \(\Lambda \)b\(\rightarrow \)\(\Lambda \)c\(\tau \)\(\nu \) measurement on new physics in b\(\rightarrow \)cl\(\nu \) transitions. Phys. Rev. D 107(5), 055005 (2023). https://doi.org/10.1103/PhysRevD.107.055005. arXiv:2211.14172 [hep-ph]

    Article  ADS  Google Scholar 

  96. Y. Li, Search for Beyond Standard Model Physics at \(BaBar\). PhD thesis, Caltech (2022). https://doi.org/10.7907/tz7n-d662

  97. D. Bigi, P. Gambino, Revisiting \(B\rightarrow D \ell \nu \). Phys. Rev. D 94(9), 094008 (2016). https://doi.org/10.1103/PhysRevD.94.094008. arXiv:1606.08030 [hep-ph]

    Article  ADS  Google Scholar 

  98. F.U. Bernlochner, Z. Ligeti, M. Papucci, D.J. Robinson, Combined analysis of semileptonic \(B\) decays to \(D\) and \(D^*\): \(R(D^{(*)})\), \(|V_{cb}|\), and new physics. Phys. Rev. D 95(11), 115008 (2017). https://doi.org/10.1103/PhysRevD.95.115008. arXiv:1703.05330 [hep-ph]. [Erratum: Phys.Rev.D 97, 059902 (2018)]

    Article  ADS  Google Scholar 

  99. S. Jaiswal, S. Nandi, S.K. Patra, Extraction of \(|V_{cb}|\) from \(B\rightarrow D^{(*)}\ell \nu _\ell \) and the standard model predictions of \(R(D^{(*)})\). JHEP 12, 060 (2017). https://doi.org/10.1007/JHEP12(2017)060. arXiv:1707.09977 [hep-ph]

    Article  ADS  Google Scholar 

  100. P. Gambino, M. Jung, S. Schacht, The \(V_{cb}\) puzzle: an update. Phys. Lett. B 795, 386–390 (2019). https://doi.org/10.1016/j.physletb.2019.06.039. arXiv:1905.08209 [hep-ph]

    Article  ADS  Google Scholar 

  101. M. Bordone, M. Jung, D. Dyk, Theory determination of \(\bar{B}\rightarrow D^{(*)}\ell ^-\bar{\nu }\) form factors at \(\cal{O} (1/m_c^2)\). Eur. Phys. J. C 80(2), 74 (2020). https://doi.org/10.1140/epjc/s10052-020-7616-4. arXiv:1908.09398 [hep-ph]

    Article  ADS  Google Scholar 

  102. G. Martinelli, S. Simula, L. Vittorio, \(\vert V_{cb} \vert \) and \(R(D)^{(*)}\)) using lattice QCD and unitarity. Phys. Rev. D 105(3), 034503 (2022). https://doi.org/10.1103/PhysRevD.105.034503. arXiv:2105.08674 [hep-ph]

    Article  ADS  Google Scholar 

  103. A. Bazavov et al., Semileptonic form factors for \(B\rightarrow D^*\ell \nu \) at nonzero recoil from \(2+1\)-flavor lattice QCD: Fermilab lattice and MILC Collaborations. Eur. Phys. J. C 82(12), 1141 (2022). https://doi.org/10.1140/epjc/s10052-022-10984-9. arXiv:2105.14019 [hep-lat]. [Erratum: Eur.Phys.J.C 83, 21 (2023)]

    Article  ADS  Google Scholar 

  104. J. Harrison, C.T.H. Davies, \(B \rightarrow D^*\) vector, axial-vector and tensor form factors for the full \(q^2\) range from lattice QCD (2023). arXiv:2304.03137 [hep-lat]

  105. M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, Unitarity bounds for semileptonic decays in lattice QCD. Phys. Rev. D 104(5), 054502 (2021). https://doi.org/10.1103/PhysRevD.104.054502. arXiv:2105.02497 [hep-lat]

    Article  ADS  Google Scholar 

  106. G. Martinelli, S. Simula, L. Vittorio, Constraints for the semileptonic B\(\rightarrow \)D(*) form factors from lattice QCD simulations of two-point correlation functions. Phys. Rev. D 104(9), 094512 (2021). https://doi.org/10.1103/PhysRevD.104.094512. arXiv:2105.07851 [hep-lat]

    Article  ADS  Google Scholar 

  107. G. Martinelli, S. Simula, L. Vittorio, Exclusive determinations of \(\vert V_{cb} \vert \) and \(R(D^{*})\) through unitarity. Eur. Phys. J. C 82(12), 1083 (2022). https://doi.org/10.1140/epjc/s10052-022-11050-0. arXiv:2109.15248 [hep-ph]

    Article  ADS  Google Scholar 

  108. M. Fedele, M. Blanke, A. Crivellin, S. Iguro, U. Nierste, S. Simula, L. Vittorio, Discriminating \(B\rightarrow D^{*}\ell \nu \) form factors via polarization observables and asymmetries (2023). arXiv:2305.15457 [hep-ph]

  109. A. Carvunis, A. Crivellin, D. Guadagnoli, S. Gangal, The forward–backward asymmetry in \(B\rightarrow D^{*}\ell \nu \): one more hint for scalar leptoquarks? Phys. Rev. D 105(3), 031701 (2022). https://doi.org/10.1103/PhysRevD.105.L031701. arXiv:2106.09610 [hep-ph]

    Article  ADS  Google Scholar 

  110. S. Iguro, T. Kitahara, R. Watanabe, Global fit to \(b \rightarrow c\tau \nu \) anomalies 2022 mid-autumn (2022). arXiv:2210.10751 [hep-ph]

  111. A.J. Buras, J. Girrbach, Left-handed \(Z^{\prime }\) and \(Z\) FCNC quark couplings facing new \(b \rightarrow s \mu ^+ \mu ^-\) data. JHEP 12, 009 (2013). https://doi.org/10.1007/JHEP12(2013)009. arXiv:1309.2466 [hep-ph]

    Article  ADS  Google Scholar 

  112. R. Gauld, F. Goertz, U. Haisch, On minimal \(Z^{\prime }\) explanations of the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly. Phys. Rev. D 89, 015005 (2014). https://doi.org/10.1103/PhysRevD.89.015005. arXiv:1308.1959 [hep-ph]

    Article  ADS  Google Scholar 

  113. W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Quark flavor transitions in \(L_\mu -L_\tau \) models. Phys. Rev. D 89, 095033 (2014). https://doi.org/10.1103/PhysRevD.89.095033. arXiv:1403.1269 [hep-ph]

    Article  ADS  Google Scholar 

  114. A. Crivellin, G. D’Ambrosio, J. Heeck, Explaining \(h\rightarrow \mu ^\pm \tau ^\mp \), \(B\rightarrow K^* \mu ^+\mu ^-\) and \(B\rightarrow K \mu ^+\mu ^-/B\rightarrow K e^+e^-\) in a two-Higgs-doublet model with gauged \(L_\mu -L_\tau \). Phys. Rev. Lett. 114, 151801 (2015). https://doi.org/10.1103/PhysRevLett.114.151801. arXiv:1501.00993 [hep-ph]

    Article  ADS  Google Scholar 

  115. L. Di Luzio, M. Kirk, A. Lenz, Updated \(B_s\)-mixing constraints on new physics models for \(b\rightarrow s\ell ^+\ell ^-\) anomalies. Phys. Rev. D 97(9), 095035 (2018). https://doi.org/10.1103/PhysRevD.97.095035. arXiv:1712.06572 [hep-ph]

    Article  ADS  Google Scholar 

  116. B. Allanach, F.S. Queiroz, A. Strumia, S. Sun, \(Z^\prime \) models for the LHCb and \(g-2\) muon anomalies. Phys. Rev. D 93(5), 055045 (2016). https://doi.org/10.1103/PhysRevD.93.055045. arXiv:1511.07447 [hep-ph]. [Erratum: Phys.Rev.D 95, 119902 (2017)]

    Article  ADS  Google Scholar 

  117. J. Alcaraz et al.: A combination of preliminary electroweak measurements and constraints on the standard model (2006). arXiv:hep-ex/0612034

  118. A.J. Buras, F. De Fazio, J. Girrbach, The anatomy of Z’ and Z with flavour changing neutral currents in the flavour precision era. JHEP 02, 116 (2013). https://doi.org/10.1007/JHEP02(2013)116. arXiv:1211.1896 [hep-ph]

    Article  ADS  Google Scholar 

  119. A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski, J. Rosiek, Lepton-flavour violating \(B\) decays in generic \(Z^{\prime }\) models. Phys. Rev. D 92(5), 054013 (2015). https://doi.org/10.1103/PhysRevD.92.054013. arXiv:1504.07928 [hep-ph]

    Article  ADS  Google Scholar 

  120. A. Crivellin, G. D’Ambrosio, J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries. Phys. Rev. D 91(7), 075006 (2015). https://doi.org/10.1103/PhysRevD.91.075006. arXiv:1503.03477 [hep-ph]

    Article  ADS  Google Scholar 

  121. L. Calibbi, A. Crivellin, F. Kirk, C.A. Manzari, L. Vernazza, \(Z^\prime \) models with less-minimal flavour violation. Phys. Rev. D 101(9), 095003 (2020). https://doi.org/10.1103/PhysRevD.101.095003. arXiv:1910.00014 [hep-ph]

    Article  ADS  Google Scholar 

  122. S. Jäger, M. Kirk, A. Lenz, K. Leslie, Charming new physics in rare B-decays and mixing? Phys. Rev. D 97(1), 015021 (2018). https://doi.org/10.1103/PhysRevD.97.015021. arXiv:1701.09183 [hep-ph]

    Article  ADS  Google Scholar 

  123. C. Bobeth, U. Haisch, A. Lenz, B. Pecjak, G. Tetlalmatzi-Xolocotzi, On new physics in \(\Delta \Gamma _{d}\). JHEP 06, 040 (2014). https://doi.org/10.1007/JHEP06(2014)040. arXiv:1404.2531 [hep-ph]

    Article  ADS  Google Scholar 

  124. A. Crivellin, C. Greub, D. Müller, F. Saturnino, Importance of loop effects in explaining the accumulated evidence for new physics in B Decays with a vector leptoquark. Phys. Rev. Lett. 122(1), 011805 (2019). https://doi.org/10.1103/PhysRevLett.122.011805. arXiv:1807.02068 [hep-ph]

    Article  ADS  Google Scholar 

  125. A. Crivellin, D. Müller, F. Saturnino, Flavor phenomenology of the leptoquark singlet–triplet model. JHEP 06, 020 (2020). https://doi.org/10.1007/JHEP06(2020)020. arXiv:1912.04224 [hep-ph]

    Article  ADS  Google Scholar 

  126. A. Crivellin, B. Fuks, L. Schnell, Explaining the hints for lepton flavour universality violation with three S\(_{2}\) leptoquark generations. JHEP 06, 169 (2022). https://doi.org/10.1007/JHEP06(2022)169. arXiv:2203.10111 [hep-ph]

    Article  ADS  Google Scholar 

  127. S. Iguro, K. Tobe, \(R(D^{(*)})\) in a general two Higgs doublet model. Nucl. Phys. B 925, 560–606 (2017). https://doi.org/10.1016/j.nuclphysb.2017.10.014. arXiv:1708.06176 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  128. S. Iguro, Y. Omura, Status of the semileptonic \(B\) decays and muon \(g-2\) in general 2HDMs with right-handed neutrinos. JHEP 05, 173 (2018). https://doi.org/10.1007/JHEP05(2018)173. arXiv:1802.01732 [hep-ph]

    Article  ADS  Google Scholar 

  129. A. Crivellin, D. Müller, C. Wiegand, \(b\rightarrow s\ell ^+\ell ^-\) transitions in two-Higgs-doublet models. JHEP 06, 119 (2019). https://doi.org/10.1007/JHEP06(2019)119. arXiv:1903.10440 [hep-ph]

    Article  ADS  Google Scholar 

  130. A. Crivellin, M. Kirk, Diquark explanation of \(b\rightarrow s\ell ^+\ell ^-\) (2023). arXiv:2309.07205 [hep-ph]

  131. A. Crivellin, D. Müller, A. Signer, Y. Ulrich, Correlating lepton flavor universality violation in \(B\) decays with \(\mu \rightarrow e\gamma \) using leptoquarks. Phys. Rev. D 97(1), 015019 (2018). https://doi.org/10.1103/PhysRevD.97.015019. arXiv:1706.08511 [hep-ph]

    Article  ADS  Google Scholar 

  132. B. Gripaios, M. Nardecchia, S.A. Renner, Linear flavour violation and anomalies in \(B\) physics. JHEP 06, 083 (2016). https://doi.org/10.1007/JHEP06(2016)083. arXiv:1509.05020 [hep-ph]

    Article  ADS  Google Scholar 

  133. P. Arnan, L. Hofer, F. Mescia, A. Crivellin, Loop effects of heavy new scalars and fermions in \(b\rightarrow s\mu ^+\mu ^-\). JHEP 04, 043 (2017). https://doi.org/10.1007/JHEP04(2017)043. arXiv:1608.07832 [hep-ph]

    Article  ADS  Google Scholar 

  134. B. Grinstein, S. Pokorski, G.G. Ross, Lepton non-universality in \(B\) decays and fermion mass structure. JHEP 12, 079 (2018). https://doi.org/10.1007/JHEP12(2018)079. arXiv:1809.01766 [hep-ph]

    Article  ADS  Google Scholar 

  135. P. Arnan, A. Crivellin, M. Fedele, F. Mescia, Generic loop effects of new scalars and fermions in \(b\rightarrow s\ell ^+\ell ^-\), \((g-2)_\mu \) and a vector-like \(4^{\rm th}\) generation. JHEP 06, 118 (2019). https://doi.org/10.1007/JHEP06(2019)118. arXiv:1904.05890 [hep-ph]

    Article  ADS  Google Scholar 

  136. A. Crivellin, C. Greub, A. Kokulu, Explaining \(B\rightarrow D\tau \nu \), \(B\rightarrow D^*\tau \nu \) and \(B\rightarrow \tau \nu \) in a 2HDM of type III. Phys. Rev. D 86, 054014 (2012). https://doi.org/10.1103/PhysRevD.86.054014. arXiv:1206.2634 [hep-ph]

    Article  ADS  Google Scholar 

  137. S. Fajfer, J.F. Kamenik, I. Nisandzic, J. Zupan, Implications of lepton flavor universality violations in \(B\) decays. Phys. Rev. Lett. 109, 161801 (2012). https://doi.org/10.1103/PhysRevLett.109.161801. arXiv:1206.1872 [hep-ph]

    Article  ADS  Google Scholar 

  138. A. Celis, M. Jung, X.-Q. Li, A. Pich, Sensitivity to charged scalars in \(\varvec {B\rightarrow D^{(*)}\tau \nu _\tau }\) and \(\varvec {B\rightarrow \tau \nu _\tau }\) decays. JHEP 01, 054 (2013). https://doi.org/10.1007/JHEP01(2013)054. arXiv:1210.8443 [hep-ph]

    Article  ADS  Google Scholar 

  139. B. Bhattacharya, A. Datta, D. London, S. Shivashankara, Simultaneous explanation of the \(R_K\) and \(R(D^{(*)})\) puzzles. Phys. Lett. B 742, 370–374 (2015). https://doi.org/10.1016/j.physletb.2015.02.011. arXiv:1412.7164 [hep-ph]

    Article  ADS  Google Scholar 

  140. A. Greljo, G. Isidori, D. Marzocca, On the breaking of lepton flavor universality in \(B\) decays. JHEP 07, 142 (2015). https://doi.org/10.1007/JHEP07(2015)142. arXiv:1506.01705 [hep-ph]

    Article  ADS  Google Scholar 

  141. S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 12, 059 (2016). https://doi.org/10.1007/JHEP12(2016)059. arXiv:1608.01349 [hep-ph]

    Article  ADS  Google Scholar 

  142. M. Carena, E. Megías, M. Quíros, C. Wagner, \( {R}_{D^{\left(*\right)}} \) in custodial warped space. JHEP 12, 043 (2018). https://doi.org/10.1007/JHEP12(2018)043. arXiv:1809.01107 [hep-ph]

    Article  ADS  Google Scholar 

  143. Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe, Testing leptoquark models in \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\). Phys. Rev. D 88(9), 094012 (2013). https://doi.org/10.1103/PhysRevD.88.094012. arXiv:1309.0301 [hep-ph]

    Article  ADS  Google Scholar 

  144. M. Bauer, M. Neubert, Minimal leptoquark explanation for the \(R_{D^{(*)}}\), \(R_K\), and \((g-2)_\mu \) anomalies. Phys. Rev. Lett. 116(14), 141802 (2016). https://doi.org/10.1103/PhysRevLett.116.141802. arXiv:1511.01900 [hep-ph]

    Article  ADS  Google Scholar 

  145. M. Freytsis, Z. Ligeti, J.T. Ruderman, Flavor models for \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\). Phys. Rev. D 92(5), 054018 (2015). https://doi.org/10.1103/PhysRevD.92.054018. arXiv:1506.08896 [hep-ph]

    Article  ADS  Google Scholar 

  146. S. Fajfer, N. Košnik, Vector leptoquark resolution of \(R_K\) and \(R_{D^{(*)}}\) puzzles. Phys. Lett. B 755, 270–274 (2016). https://doi.org/10.1016/j.physletb.2016.02.018. arXiv:1511.06024 [hep-ph]

    Article  ADS  Google Scholar 

  147. A. Celis, M. Jung, X.-Q. Li, A. Pich, Scalar contributions to \(b\rightarrow c (u) \tau \nu \) transitions. Phys. Lett. B 771, 168–179 (2017). https://doi.org/10.1016/j.physletb.2017.05.037. arXiv:1612.07757 [hep-ph]

    Article  ADS  Google Scholar 

  148. R. Alonso, B. Grinstein, J. Martin Camalich, Lifetime of \(B_c^-\) constrains explanations for anomalies in \(B\rightarrow D^{(*)}\tau \nu \). Phys. Rev. Lett. 118(8), 081802 (2017). https://doi.org/10.1103/PhysRevLett.118.081802. arXiv:1611.06676 [hep-ph]

    Article  ADS  Google Scholar 

  149. J. Aebischer, B. Grinstein, Standard model prediction of the B\(_{c}\) lifetime. JHEP 07, 130 (2021). https://doi.org/10.1007/JHEP07(2021)130. arXiv:2105.02988 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  150. M. Blanke, S. Iguro, H. Zhang, Towards ruling out the charged Higgs interpretation of the \( {R}_{D^{\left(\ast \right)}} \) anomaly. JHEP 06, 043 (2022). https://doi.org/10.1007/JHEP06(2022)043. arXiv:2202.10468 [hep-ph]

    Article  ADS  Google Scholar 

  151. L. Calibbi, A. Crivellin, T. Ota, Effective field theory approach to \(b\rightarrow s\ell \ell ^{(^{\prime })}\), \(B\rightarrow K^{(*)}\nu \overline{\nu }\) and \(B\rightarrow D^{(*)}\tau \nu \) with third generation couplings. Phys. Rev. Lett. 115, 181801 (2015). https://doi.org/10.1103/PhysRevLett.115.181801. arXiv:1506.02661 [hep-ph]

    Article  ADS  Google Scholar 

  152. R. Barbieri, C.W. Murphy, F. Senia, B-decay anomalies in a composite leptoquark model. Eur. Phys. J. C 77(1), 8 (2017). https://doi.org/10.1140/epjc/s10052-016-4578-7. arXiv:1611.04930 [hep-ph]

    Article  ADS  Google Scholar 

  153. L. Di Luzio, A. Greljo, M. Nardecchia, Gauge leptoquark as the origin of \(B\)-physics anomalies. Phys. Rev. D 96(11), 115011 (2017). https://doi.org/10.1103/PhysRevD.96.115011. arXiv:1708.08450 [hep-ph]

    Article  ADS  Google Scholar 

  154. L. Calibbi, A. Crivellin, T. Li, Model of vector leptoquarks in view of the \(B\)-physics anomalies. Phys. Rev. D 98(11), 115002 (2018). https://doi.org/10.1103/PhysRevD.98.115002. arXiv:1709.00692 [hep-ph]

    Article  ADS  Google Scholar 

  155. M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies. Phys. Lett. B 779, 317–323 (2018). https://doi.org/10.1016/j.physletb.2018.02.011. arXiv:1712.01368 [hep-ph]

    Article  ADS  Google Scholar 

  156. M. Blanke, A. Crivellin, \(B\) meson anomalies in a Pati–Salam model within the Randall–Sundrum background. Phys. Rev. Lett. 121(1), 011801 (2018). https://doi.org/10.1103/PhysRevLett.121.011801. arXiv:1801.07256 [hep-ph]

    Article  ADS  Google Scholar 

  157. A. Crivellin, D. Müller, T. Ota, Simultaneous explanations of \(R(D^{(*)})\) and \(b\rightarrow e\ell ^+\ell ^-\): The last scalar leptoquarks standing. JHEP 09, 040 (2017). https://doi.org/10.1007/JHEP09(2017)040. arXiv:1703.09226 [hep-ph]

    Article  ADS  Google Scholar 

  158. V. Gherardi, D. Marzocca, E. Venturini, Low-energy phenomenology of scalar leptoquarks at one-loop accuracy. JHEP 01, 138 (2021). https://doi.org/10.1007/JHEP01(2021)138. arXiv:2008.09548 [hep-ph]

    Article  ADS  Google Scholar 

  159. E. Ganiev (On behalf of the Belle II Collaboration). Talk given at EPS-HEP 2023 “On Radiative and Electroweak Penguin Decays”, Hamburg, DESY (2023)

  160. B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer, J. Matias, Searching for new physics with \(b\rightarrow s\tau ^+\tau ^-\) processes. Phys. Rev. Lett. 120(18), 181802 (2018). https://doi.org/10.1103/PhysRevLett.120.181802. arXiv:1712.01919 [hep-ph]

    Article  ADS  Google Scholar 

  161. M. Algueró, J. Matias, B. Capdevila, A. Crivellin, Disentangling lepton flavor universal and lepton flavor universality violating effects in \(b\rightarrow s \ell ^+\ell ^-\) transitions. Phys. Rev. D 105(11), 113007 (2022). https://doi.org/10.1103/PhysRevD.105.113007. arXiv:2205.15212 [hep-ph]

    Article  ADS  Google Scholar 

  162. S. Iguro, Conclusive probe of the charged Higgs solution of \(P_5^\prime \) and \(R(D^{(*)})\) discrepancies. Phys. Rev. D 107(9), 095004 (2023). https://doi.org/10.1103/PhysRevD.107.095004. arXiv:2302.08935 [hep-ph]

    Article  ADS  Google Scholar 

  163. J. Fuentes-Martín, G. Isidori, M. König, N. Selimović, Vector leptoquarks beyond tree level. Phys. Rev. D 101(3), 035024 (2020). https://doi.org/10.1103/PhysRevD.101.035024. arXiv:1910.13474 [hep-ph]

    Article  ADS  Google Scholar 

  164. J. Fuentes-Martín, G. Isidori, M. König, N. Selimović, Vector leptoquarks beyond tree level III: vector-like fermions and flavor-changing transitions. Phys. Rev. D 102, 115015 (2020). https://doi.org/10.1103/PhysRevD.102.115015. arXiv:2009.11296 [hep-ph]

    Article  ADS  Google Scholar 

  165. M. Fernández Navarro, S.F. King, B-anomalies in a twin Pati–Salam theory of flavour including the 2022 LHCb \( {R}_{K^{\left(\ast \right)}} \) analysis. JHEP 02, 188 (2023). https://doi.org/10.1007/JHEP02(2023)188. arXiv:2209.00276 [hep-ph]

    Article  ADS  Google Scholar 

  166. V. Gherardi, D. Marzocca, E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop. JHEP 07, 225 (2020). https://doi.org/10.1007/JHEP07(2020)225. arXiv:2003.12525 [hep-ph]. [Erratum: JHEP 01, 006 (2021)]

    Article  ADS  MathSciNet  Google Scholar 

  167. C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen, N. Serra, Hunting for \(B^+\rightarrow K^+ \tau ^+\tau ^-\) imprints on the \(B^+ \rightarrow K^+ \mu ^+\mu ^-\) dimuon spectrum. Eur. Phys. J. C 80(12), 1095 (2020). https://doi.org/10.1140/epjc/s10052-020-08674-5. arXiv:2001.04470 [hep-ph]

    Article  ADS  Google Scholar 

  168. M. Algueró, A. Crivellin, S. Descotes-Genon, J. Matias, M. Novoa-Brunet, A new \(B\)-flavour anomaly in \(B_{d, s}\rightarrow K^{*0}\bar{K}^{*0}\): anatomy and interpretation. JHEP 04, 066 (2021). https://doi.org/10.1007/JHEP04(2021)066. arXiv:2011.07867 [hep-ph]

    Article  ADS  Google Scholar 

  169. A. Biswas, S. Descotes-Genon, J. Matias, G. Tetlalmatzi-Xolocotzi, A new puzzle in non-leptonic \(B\) decays. JHEP 06, 108 (2023). https://doi.org/10.1007/JHEP06(2023)108. arXiv:2301.10542 [hep-ph]

    Article  ADS  Google Scholar 

  170. R.L. Workman et al., Review of particle physics. PTEP 2022, 083-01 (2022). https://doi.org/10.1093/ptep/ptac097

    Article  Google Scholar 

  171. Y.-T. Duh et al., Measurements of branching fractions and direct CP asymmetries for B\(\rightarrow \)K\(\pi \), B\(\rightarrow \)\(\pi \) and B\(\rightarrow \)KK decays. Phys. Rev. D 87(3), 031103 (2013). https://doi.org/10.1103/PhysRevD.87.031103. arXiv:1210.1348 [hep-ex]

    Article  ADS  MathSciNet  Google Scholar 

  172. B. Aubert et al., Observation of \(B^{+} \rightarrow \bar{K}^0 K^{+}\) and \(B^0 \rightarrow K^0 \bar{K}^0\). Phys. Rev. Lett. 97, 171805 (2006). https://doi.org/10.1103/PhysRevLett.97.171805. arXiv:hep-ex/0608036

    Article  ADS  Google Scholar 

  173. R. Aaij et al., Measurement of the branching fraction of the decay \(B_s^0\rightarrow K_S^0 K_S^0\). Phys. Rev. D 102(1), 012011 (2020). https://doi.org/10.1103/PhysRevD.102.012011. arXiv:2002.08229 [hep-ex]

    Article  ADS  Google Scholar 

  174. B. Pal et al., Observation of the decay \(B_s^0\rightarrow K^0\overline{K}^0\). Phys. Rev. Lett. 116(16), 161801 (2016). https://doi.org/10.1103/PhysRevLett.116.161801. arXiv:1512.02145 [hep-ex]

    Article  ADS  Google Scholar 

  175. R. Aaij et al., Amplitude analysis of the \(B^0_{(s)} \rightarrow K^{*0} \overline{K}^{*0}\) decays and measurement of the branching fraction of the \(B^0 \rightarrow K^{*0} \overline{K}^{*0}\) decay. JHEP 07, 032 (2019). https://doi.org/10.1007/JHEP07(2019)032. arXiv:1905.06662 [hep-ex]

    Article  ADS  Google Scholar 

  176. B. Aubert et al., Observation of \(B^0 \rightarrow \) K*0 \(\bar{K}\)* 0 and search for \(B^0 \rightarrow \) K*0 K*0. Phys. Rev. Lett. 100, 081801 (2008). https://doi.org/10.1103/PhysRevLett.100.081801. arXiv:0708.2248 [hep-ex]

    Article  ADS  Google Scholar 

  177. M. Beneke, J. Rohrer, D. Yang, Branching fractions, polarisation and asymmetries of \(B\rightarrow VV\) decays. Nucl. Phys. B 774, 64–101 (2007). https://doi.org/10.1016/j.nuclphysb.2007.03.020. arXiv:hep-ph/0612290

    Article  ADS  Google Scholar 

  178. J.M. Lizana, J. Matias, B.A. Stefanek, Explaining the \(B_{d,s}\rightarrow {K^{(*)}\bar{K}^{(*)}}\) non-leptonic puzzle and charged-current \(B\)-anomalies via scalar leptoquarks (2023). arXiv:2306.09178 [hep-ph]

  179. R. Barbieri, G. Isidori, A. Pattori, F. Senia, Anomalies in \(B\)-decays and \(U(2)\) flavour symmetry. Eur. Phys. J. C 76(2), 67 (2016). https://doi.org/10.1140/epjc/s10052-016-3905-3. arXiv:1512.01560 [hep-ph]

    Article  ADS  Google Scholar 

  180. A. Mauri, Talk at CKM2023 on behalf of the LHCb collaboration (2023)

Download references

Acknowledgements

A.C. thanks Syuhei Iguro for useful discussions. A.C. gratefully acknowledges the support by the Swiss National Science Foundation under Project No. PP00P21_76884. JM acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (PID2020-112965GB-I00/AEI/ 10.13039/501100011033) and by ICREA under the ICREA Academia programme. The work of B.C. is supported by the Margarita Salas postdoctoral program funded by the European Union-NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernat Capdevila, Andreas Crivellin or Joaquim Matias.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capdevila, B., Crivellin, A. & Matias, J. Review of semileptonic B anomalies. Eur. Phys. J. Spec. Top. 233, 409–428 (2024). https://doi.org/10.1140/epjs/s11734-023-01012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01012-2

Navigation