Skip to main content
Log in

Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A novel method for controlling and manipulating quantum states of both matter and field has been developed. The approach has been applied to govern the population in rotational levels of weakly aligned molecules. This technique entails the use of an adiabatically varying electric field to interact with dipole molecules. The interaction of weakly aligned molecules with a microwave field within a high finesse cavity indicates the feasibility of achieving population inversion, rendering them well suited for maser operation even at room temperature. In addition to this, the research has shown that the absorption of molecules can be controlled too making it exceptionally well suited for gas sensing with high sensitivity and selectivity. These sensors hold promise across diverse domains, including technology, the sciences, environmental monitoring, biology, and medicine. Furthermore, the technique has the potential for employing control techniques to vacuum fields that holds promise for the generation of strongly correlated, entangled photons. This development could have far-reaching implications in quantum technology, and various applications in quantum information science and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data are associated with this manuscript.

References

  1. J.P. Gordon, H.J. Zeiger, C.H. Townes, The maser-new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99(4), 1264 (1955). https://doi.org/10.1103/PhysRev.99.1264

    Article  ADS  CAS  Google Scholar 

  2. M. Bertolotti, The History of the Laser (CRC Press, NewYork, 2004)

    Book  Google Scholar 

  3. M. Oxborrow, J. Breeze, N. Alford, Room-temperature solid-state maser. Nature 488, 353–356 (2012). https://doi.org/10.1038/nature11339

    Article  ADS  CAS  PubMed  Google Scholar 

  4. J.D. Breeze, E. Salvadori, J. Sathian, N. McN, C.W.M. Alford, Kay., Continuous-wave room-temperature diamond maser. Nature 555(7697), 493 (2018). https://doi.org/10.1038/nature25970

  5. M. Lemeshko, R.V. Krems, J.M. Doyle, S. Kais, Manipulation of molecules with electromagnetic fields. Mol. Phys. 111, 1648–1682 (2013)

    Article  ADS  CAS  Google Scholar 

  6. H.J. Loesch, J. Bulthuis, S. Stolte, A. Durand, J.-C. Loison, J. Vigué, Molecules oriented by brute force. Europhys. News 27, 12–15 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Z. Brankovic, Y. Rostovtsev, A resonant single frequency molecular detector with high sensitivity and selectivity for gas mixtures. Sci. Rep. 10, 1537 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Rostovtsev, Z. Brankovic, A resonant single-frequency molecular detector based on adiabatically changing electric field. Proc. Opt. Quant. Sens. Precis. Metrol. 11700, 1170018 (2021). https://doi.org/10.1117/12.2586

    Article  ADS  Google Scholar 

  9. C. Roy, Z. Branković, Y. Rostovtsev, Weakly aligned molecules: from molecular detectors to room-temperature tunable masers. J. Phys. Conf. Ser. 2249, 012001 (2022)

    Article  Google Scholar 

  10. C. D. Roy, Optical Control of Coherent Quantum Systems. [Doctoral dissertation, University of North Texas] (2022)

  11. E. Arimondo, Progress in optics. In: E. Wolf , Vol. XXXV, (Elsevier Science, Amsterdam, 1996), p. 257

  12. M.O. Scully, M.S. Zubairy, Quant. Opt. (Cambridge University Press, Cambridge, 1997)

  13. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  CAS  Google Scholar 

  14. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  CAS  Google Scholar 

  15. V.A. Sautenkov, H. Li, Y.V. Rostovtsev, M.O. Scully, Ultradispersive adaptive prism based on a coherently prepared atomic medium. Phys. Rev. A 81, 063824 (2010)

    Article  ADS  Google Scholar 

  16. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  ADS  CAS  Google Scholar 

  17. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229 (1999)

    Article  ADS  CAS  Google Scholar 

  19. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999)

    Article  ADS  CAS  Google Scholar 

  20. L.J. Wang, A. Kuzmich, A. Dogariu, Gain-assisted superluminal light propagation. Nat. (Lond.) 406, 277 (2000)

    CAS  Google Scholar 

  21. A. Dogariu, A. Kuzmich, L.J. Wang, Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  22. G.S. Agarwal, T.N. Dey, S. Menon, Knob for changing light propagation from subluminal to superluminal. Phys. Rev. A 64, 053809 (2001)

    Article  ADS  Google Scholar 

  23. E.E. Mikhailov, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, Buffer-gas-induced absorption resonances in Rb vapor. J. Opt. Soc. Am. B 21, 425 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Q. Sun, Y.V. Rostovtsev, J.P. Dowling, M.O. Scully, M.S. Zubairy, Optically controlled delays for broadband pulses. Phys. Rev. A 72, 031802 (2005)

    Article  ADS  Google Scholar 

  25. D. Pestov, R.K. Murawski, G.O. Ariunbold, X. Wang, M. Zhi, A.V. Sokolov, V.A. Sautenkov, Y.V. Rostovtsev, A. Dogariu, Y. Huang, M.O. Scully, Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316, 265–268 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. P. Singh, A.K. Patnaik, S. Roy, J.R. Gord, Y.V. Rostovtsev, Influence of coherent population trapping on Raman scattering. Phys. Rev. A 100, 023808 (2019)

    Article  ADS  CAS  Google Scholar 

  27. C. Roy, P. Singh, A. K. Patnaik, Y. Rostovtsev, Chirped-pulse propagation influenced by coherent population trapping in molecular media (2023) (in press)

  28. A.R. Edmonds, Angular Momentum in Quantum Mechanics, Series: Investigations in Physics (Princeton University Press, Princeton, 1996)

    Google Scholar 

  29. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press Inc, New York, 2006)

    Google Scholar 

  30. E.G. Warburg, Magnetische Untersuchungen über einige Wirkungen der Coerzitivkraft. Annalen der Physik (Leipzig) 13, 141–164 (1881)

    Article  ADS  Google Scholar 

  31. P. Weiss, A. Piccard, Le phénomène magnétocalorique. J. Phys. (Paris) 5th Ser. 7, 103–109 (1917)

  32. A. Smith, Who discovered the magnetocaloric effect? Eur. Phys. J. 38(4), 507–517 (2013)

    Google Scholar 

  33. Parameters of some molecules are the following: CO, \({\mathcal {P}}_{{ {CO}}} = 0.122\) D, \(B_e = 1.93\) cm\(^{-1}\); and HCN, \({\mathcal {P}}_{{ {HCN}}} = 2.98\) D, \(B_v = 1.47\) cm\(^{-1}\), N\(_2\)O, \({\mathcal {P}}_{{{ {N}}_{2} { {O}}}} = 0.17\) D, \(B_e = 1.93\) cm\(^{-1}\); and NO, \({\mathcal {P}}_{{ {NO}}} = 0.16\) D, \(B_v = 1.67\) cm\(^{-1}\). NO\(_2\), \({\mathcal {P} }_{NO_2} = 0.316\) D, \(A = 8.0\) cm\(^{-1}\), \(B = 0.43\) cm\(^{-1}\), \(C = 0.41\) cm\(^{-1}\), H\(_2\)O, \({\mathcal {P} }_{H_2O} = 1.85\) D, \(B_v = 15.\) cm\(^{-1}\)

  34. W. Pieter Kok, Brendon, Optical quantum information processing (Cambridge University Press, Lovett, 2014)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-9/2021-14/200053), and from The Advanced Materials and Manufacturing Processes Institute at the University of North Texas Seed Research Project. Y.R. acknowledges the support from the Fulbright Scholarship, 2021–2022 to Serbia, and he is grateful to the hospitality of the Institute for Multidisciplinary Research, University of Belgrade. We cordially thank Vladimir Sautenkov, Goran Branković, and Andrey Matsko for fruitful discussions, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Rostovtsev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emerick, J., Roy, C., Branković, Z. et al. Quantum control of quantum systems: from room-temperature masers to generation of entanglement photons. Eur. Phys. J. Spec. Top. 232, 3359–3367 (2023). https://doi.org/10.1140/epjs/s11734-023-01009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01009-x

Navigation